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This text contains some elementary, essentially trivial, and nasty, but
useful calculations for the standard actions of the special linear group of or-
der 2 and its Lie algebra over an arbitrary field. We determine the stabilizers
of some sample binary forms and discuss the closedness of their orbits, as
well as the separability of their orbit maps. For an application to invariant
theory see [4] or [2]. Some of the results were stated in [2] without proofs.

The determination of the stabilizers uses only elementary algebra—that
is the solution of equations—and is valid over any field (with some varia-
tions in the results). The statements on orbits assume that the base field is
algebraically closed. Their proofs use some facts from algebraic geometry,
in particular on algebraic goups and their actions. For these we refer to [1]
and [5].

1 The Operation of the Group SL2 and its Lie
Algebra sl2

1.1 The action of SL2 on binary forms

Let k be a field. We consider the group G = SL2(k) of 2× 2-matrices with
determinant 1 over k. The matrix

(1) g =

(
a b
c d

)
∈ G

acts on the 2-dimensional vector space k2 by the formula(
a b
c d

)(
x
y

)
=

(
ax+ by
cx+ dy

)
.

Denote the coordinate functions k2 −→ k by X and Y , where

X

(
x
y

)
= x, Y

(
x
y

)
= y
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for all x, y ∈ k. Since the inverse of g is

g−1 =

(
d −b
−c a

)
the induced (“contragredient”) action on the space of linear forms spanned
by the coordinate functions X and Y is given by

X 7→ dX − bY,
Y 7→ −cX + aY.

(In general a function f : k2 −→ k is transformed to f ◦ g−1.) This ac-
tion extends to the polynomial ring k[X,Y ] as group of automorphisms. In
particular for the powers of the coordinate functions we get the formulas

Xr 7→ (dX − bY )r = drXr − rdr−1bXr−1Y + · · ·+ (−1)rbrY r

=
r∑

ν=0

(−1)ν
(
r

ν

)
bνdr−νXr−νY ν ,

Y s 7→ (−cX + aY )s = (−c)sXs + s(−c)s−1aXs−1Y + · · ·+ asY s

=

s∑
ν=0

(−1)s−ν
(
s

ν

)
aνcs−νXs−νY ν .

Thus depending on the prime divisors of the binomial coefficients there are
some anomalies in prime characteristics.

The Lie algebra sl2(k) consists of the 2× 2-matrices with trace 0,

sl2(k) =

{(
a b
c −a

) ∣∣∣∣ a, b, c ∈ k} .
It acts on the polynomial ring k[X,Y ] by derivations, starting with the
formulas

(2)
X 7→ −aX − bY,
Y 7→ −cX + aY,

for A =

(
a b
c −a

)
∈ sl2(k).

(The easiest way to remember the formulas (2) is by using dual numbers
[1, Section 9.5], that is considering SL2(k[δ]) where δ2 = 0.) In particular

Xr 7→ rXr−1(−aX − bY ),

Y s 7→ s Y s−1(−cX + aY ).

Let R = k[X,Y ] be the polynomial ring and Rm be its homogeneous
part of degree m, an SL2-invariant subspace of R with dimk Rm = m+ 1.
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Remarks

1. We’ll calculate the stabilizers of some homogeneous polynomials in
k[X,Y ]. If H is the stabilizer in SL2(K) for an extension field K ⊇ k,
then H ∩ SL2(k) is the stabilizer in SL2(k). This allows us to freely
retreat to the algebraic closure k̄ of our base field k.

2. Statements about the dimension or the closure of an orbit refer to the
orbit over k̄, often without explicit mention. This also applies to other
geometric objects.

3. By definition an element A of the Lie algebra “stabilizes” a vector v in
an SL2-module if and only if Av = 0. (Think of Av as a displacement.)

4. In characteristic 0 the Rm exactly represent the irreducible SL2-
modules. We won’t use this fact.

5. Let p = char k, m = s pt with s ≥ 1, t ≥ 1, p - s. Let w ∈ Rs and
v = wp

t ∈ Rm. Then the stabilizers in G = SL2(k) coincide: Gv = Gw.
This follows from the injectivity of the pt-th power map:

g · v = v ⇐⇒ g · vpt = (g · v)p
t

= vp
t
.

1.2 Some elements and subgroups of SL2

If primitive nth roots of unity exist in k we distiguish one of them and denote
it by εn. We consider the matrices

∆(t) =

(
t 0
0 t−1

)
with t ∈ k×,

I =

(
0 i
i 0

)
with i2 = −1, i. e.

{
i = ε4 if char k 6= 2,

i = 1 if char k = 2,

J =

(
0 1
−1 0

)
,

A(b) =

(
1 b
0 1

)
with b ∈ k,

in SL2(k). The order of ∆(εn) is n (if εn exists in k). Since J2 = I2 = −1,
the order of I and of J is 4 if char k 6= 2. If char k = 2, then J = I, and its
order is 2.

Here are some relevant subgroups and Lie algebras:
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T =
{

∆(t)| t ∈ k×
}
, the canonical maximal torus of SL2,

with corresponding Lie algebra t =

{(
a 0
0 −a

)∣∣∣∣ a ∈ k} ,
N = NG(T ) = T ∪ TJ the normalizer of T (note J∆(t)J−1 = ∆(t−1)),

the canonical Cartan subgroup of SL2,

U = {A(b) | b ∈ k}, the canonical maximal unipotent subgroup of SL2,

with corresponding Lie algebra u =

{(
0 b
0 0

)∣∣∣∣ b ∈ k} ,
Tn = {∆(εn)q | 0 ≤ q ≤ n− 1}, a cyclic subgroup of SL2(k̄) of order n,

Tn(k) = {∆(ε) | εn = 1}, a cyclic group of order #Tn(k) | n,
Nn(k) = Tn(k) ∪ Tn(k)J, an extension of Tn(k) of order 2 if n is even

or if char k = 2, a dihedral group.

1.3 Stability

Let G be an affine algebraic group over an algebraically closed field k. Let
V be a finite-dimensional rational G-module. A point x ∈ V is called

unstable if 0 is in the closure of the orbit G · x, i. e. 0 ∈ G · x,

semistable if x is not unstable, i. e. if 0 6∈ G · x,

stable if x 6= 0 and the orbit G · x is closed and of maximal dimension
(among all orbits),

properly stable if x 6= 0, the orbit G · x is closed, and the stabilizer Gx is
finite.

As consequences of the Hilbert-Mumford criterion, see [5, Section 2.4.1]
or [3] we get:

Proposition 1 Let G = SL2 and F ∈ Rm a binary form of degree m. Then

(i) F is unstable if and only if F has a linear factor of multiplicity > m
2 .

(ii) F is semistable if and only if all linear factors of F have multiplicity
≤ m

2 .

(iii) (For m ≥ 3) F is stable if and only if F has only linear factors of
multiplicity < m

2 . In this case F is even properly stable.

Remember that a homogeneous binary form has a decomposition into
linear factors, unique up to the sequential order and up to scalar multiples.
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1.4 Types of SL2-orbits

In this section and the next one we again assume that k is an algebraically
closed field. Let V be a finite-dimensional rational SL2-module. For v ∈ V
the orbit G · v ⊆ V has dimension ≤ 3. We also consider the connected
component Go

v of the stabilizer Gv in G = SL2.

• If dimG · v = 3, then the stabilizer of v is finite, hence Go
v = 1, the

trivial subgroup.

• If dimG · v = 2, then the stabilizer has dimension 1, hence Go
v is

conjugated with one of the subgroups T or U , see [1, Chap. 20].

• The assumption dimG · v = 1 leads to a contradiction: It implies that
dimGo

v = 2. But the only 2-dimensional subgroups of SL2 are the
Borel subgroups, hence, see [1, Sect. 4.6 and Exercise 4 of Chap. 12],
the orbit would be homeomorphic with the projective variety G/B
where B = TU is the canonical Borel subgroup, hence be a complete
variety. However an affine variety has no complete subvarieties.

• If dimG · v = 0, then the stabilizer is G itself, and v is a fixed point
for the action of G.

This enumeration suggests a taxonomy of SL2-orbits in a rational SL2-
module V . Let ∂(G · v) = G · v −G · v denote the border of the orbit.

(I) dimG · v = 3, Go
v = 1. Then ∂(G · v) may contain some orbits of

dimension 2—finitely many of them—and fixed points. More precisely
we distinguish between five subcases:

(a) G · v is closed, i. e. ∂(G · v) is empty.

(b) ∂(G · v) has dimension 0, hence consists of finitely many fixed
points.

(c) ∂(G · v) has dimension 1, hence consists of a one-dimensional
algebraic subset of fixed points.

(d) ∂(G · v) consists of finitely many closed orbits of dimension 2.

(e) ∂(G·v) contains finitely many 2-dimensional orbits and some fixed
points.

(II) dimG · v = 2, Go
v ∼ T . Then ∂(G · v) is empty or consists of fixed

points. There is a g ∈ G such that w = g · v is contained in the fixed
point set V T of the maximal torus T . There are three subcases:

(a) G · v is closed.

(b) ∂(G · v) has dimension 0, hence consists of finitely many fixed
points.
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(c) ∂(G · v) has dimension 1, hence consists of a one-dimensional
algebraic subset of fixed points.

(III) dimG · v = 2, Go
v ∼ U . Then Gv is not reductive, hence G · v is not

closed, see [3], and ∂(G · v) consists of fixed points. There is a g ∈ G
such that w = g · v is contained in the fixed point set V U of the
unipotent subgroup U . There are two variants:

(a) ∂(G · v) has dimension 0, hence consists of finitely many fixed
points.

(b) ∂(G · v) has dimension 1, hence consists of a one-dimensional
algebraic subset of fixed points.

(IV) v is a fixed point.

For the types Ib, Ic, IIb, IIc, IIIa, and IIIb the border ∂(G · v) consists
of fixed points. Thus

∂(G · v) = G · v ∩ V G

where V G ⊆ V is the linear subspace of fixed points.

1.5 Fixed binary forms

The classification of orbits in 1.4 suggests that determining the fixed point
subspaces of G, T , and U of an SL2-module might be useful.

We start with the action of the maximal torus T ≤ G on the SL2-
module Rm. Its elements ∆(t) transform Xr 7→ t−rXr and Y s 7→ tsY s.
Thus applying ∆(t) to

v =
m∑
ν=0

aνX
m−νY ν

yields the result
m∑
ν=0

aνt
2ν−mXm−νY ν .

Hence v is a fixed point of T if and only if

aνt
2ν−m = aν for all t ∈ k× and all ν = 1, . . . ,m.

Since k is assumed as algebraically closed, hence infinite, this forces aν = 0
except when t2ν−m = 1 constant, i. e. when m = 2ν.

Proposition 2 The binary forms of degree m that are fixed by T form the
subspace

RTm =

{
0 if m is odd,

kXrY r if m = 2r is even.
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In a similar way we determine the fixed points of the maximal unipotent
subgroup U ≤ G on Rm. Its elements A(−b) (minus sign for convenience)
transformXr 7→ (X+bY )r and Y s 7→ Y s. In particular U fixes Y m. Applying
A(−b) to

v =

m∑
ν=0

aνX
m−νY ν

yields the result

m∑
ν=0

aν(X+bY )m−νY ν = a0X
m+(a1 +a0mb)X

m−1Y + · · ·+(am+P (b))Y m

where P ∈ k[Z] is the polynomial

P = a0Z
m + a1Z

m−1 + · · ·+ am−1Z.

Hence if v is a fixed point of U then P (b) = 0 for all b ∈ k. Since k is
assumed as algebraically closed, hence infinite, this forces P = 0, or aν = 0
for ν = 0, . . . ,m− 1.

Proposition 3 The binary forms of degree m that are fixed by U form the
subspace

RUm = kY m.

For the fixed points of the whole group G = SL2 we have RGm ⊆ RTm∩RUm.
Thus:

Proposition 4 The binary forms of degree m that are fixed by G = SL2

form the trivial subspace RGm = 0.

Since 0 is the only fixed point in Rm the general taxonomy of orbits is
somewhat simplified:

Proposition 5 The SL2-orbit of every binary form of degree m is of one
of the following types Ia–e, II, III, or IV.

If m is odd, then the SL2-orbit of every binary form of degree m is of
one of the types Ia–c, Ie, III, or IV.
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(I) dimG · v = 3, Go
v = 1.

(a) G · v is closed, v is (properly) stable, all its linear factors have
multiplicities < m/2.

(b) ∂(G · v) consists of the unique fixed point 0, v is unstable, hence
has a linear factor of multiplicity > m/2.

(c) Void.

(d) ∂(G ·v) consists of finitely many closed orbits of dimension 2, v is
semistable but not stable, all its linear factors have multiplicities
≤ m/2, and at least one of them has multiplicity = m/2. (This
case may occur only if m is even.)

(e) ∂(G · v) contains finitely many 2-dimensional orbits and the fixed
point 0, thus v is unstable and has a linear factor of multiplicity
> m/2.

(II) dimG · v = 2, Go
v ∼ T . Then ∂(G · v) is empty or consists of the only

fixed point 0. If RTm 6= {0} we conclude that m = 2r is even, and there
are g ∈ SL2 and c ∈ k× such that g · v = cXrY r. Thus v has two
different linear factors of multiplicities r = m/2, hence is semistable,
hence 0 6∈ G · v. We conclude that G ·v is closed. (This case may occur
only if m is even.)

If m = 2, then v is even stable, see Section 2.2. If m ≥ 4, then v is not
stable by Proposition 1 (iii). Or we use the results from below that
show the existence of three-dimensional orbits in Rm, for example that
of Xm−1Y +XY m−1, see Section 5.3 for m = 4, and 5.5 for m ≥ 6.

(III) dimG · v = 2, Go
v ∼ U , ∂(G · v) consists of the only fixed point 0.

Moreover there are g ∈ SL2 and c ∈ k× such that g · v ∈ RUm, or
g · v = cY m. In particular v is unstable. Since ∆(t) · Y m = tmY m the
orbit of Y m contains the entire line k×Y m, thus it is the only one of
this type in Rm.

(IV) v is the fixed point 0.

Note that we explicitly know all the orbits of types II, III, and IV. For
odd m the types Id and II are impossible.

For type II we conclude that v is (a scalar multiple of) a product of two
different linear forms taken to the m/2-th power. For type III likewise v is
(a scalar multiple of) the mth power of a linear form. Since k is algebraically
closed we may absorb the scalar factors into the linear forms.

Moreover for type Id we conclude that exactly one of the linear factors
has multiplicity = m/2.
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Corollary 1 Let v ∈ Rm. Then the following statements are equivalent:

(i) The SL2-orbit of v has dimension 2.

(ii) The stabilizer of v has dimension 1.

(iii) v is the mth power of a non-zero linear form, or (only for even m = 2r)
the rth power of a product of two different non-zero linear forms.

Corollary 2 The only SL2-orbits in Rm of dimension < 3 are those of 0,
Y m, and (if m = 2r is even) cXrY r with c ∈ k×.

Corollary 3 Let v ∈ Rm be a binary form of degree m all of whose linear
factors have multiplicities ≤ m

2 , and assume that the stabilizer of v has
dimension 1. Then m = 2r is even and the SL2-orbit of v is closed and
meets cXrY r.

Proof. The orbit has dimension 2. The assumption on the multiplicities rules
out type III. Thus we have type II. 3

Call two linear factors essentially different if they are not scalar multiples
of each other.

Corollary 4 Assume that v ∈ Rm has at least three essentially different
linear factors. Then the stabilizer Gv is finite.

Proof. By Corollary 2 binary forms with orbits of dimension < 3 have at
most two essentially different linear factors. 3

Corollary 5 Assume that v ∈ Rm has a linear factor of multiplicity 6= m
or m

2 . Then the stabilizer Gv is finite.

Résumé: Except in the very few cases listed in Corollary 2 the stabilizer
of a binary form is finite.

2 Low Dimensions

We start the study of the stabilizers and orbits of sample concrete binary
forms with the low degrees up to 3.
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2.1 The case m = 1 of linear forms

Let us start with the trivial case m = 1, dimRm = 2, and consider the

element v = Y ∈ R1. Setting g =

(
a b
c d

)
∈ SL2(k) we see that the orbit

contains g · v = −cX + aY , that is an arbitrary element 6= 0 of R1. Thus
G = SL2(k) has (besides G · 0 = 0) exactly one orbit, G · Y = R1 − {0},
that is obviously not closed in R1. Since g · v = v if and only if a = 1 and
c = 0, the stabilizer Gv is the maximal unipotent subgroup U . A Lie algebra

element A =

(
a b
c −a

)
∈ g = sl2(k) annihilates v if and only if c = a = 0.

Thus the stabilizer in the Lie algebra is gv = u = Lie(Gv). In particular the
orbit map is separable. The result is:

Proposition 6 The stabilizer of the homogeneous polynomial Y in the
group G = SL2(k) is the maximal unipotent subgroup U . The orbit of Y
contains 0 in its closure hence is not closed, ∂(G · Y ) = {0}, and Y is
unstable. The orbit map is separable.

(For the second sentence we assume that k is algebraically closed.)

Corollary 1 Let Z ∈ R1 be a nonzero linear form. Then the stabilizer of Z
in the group SL2(k) a maximal unipotent subgroup. The orbit of Z contains
0 in its closure, hence it not closed, ∂(G ·Z) = {0}, and Z is unstable. The
orbit map is separable.

This result has an application to powers of the characteristic:

Corollary 2 Assume char k = p > 0 and q = pt with t ≥ 1. Let Z ∈ R1 be
a nonzero linear form. Then the stabilizer of the homogeneous polynomial
Zq ∈ Rq in the group SL2(k) is the same maximal unipotent subgroup as
the stabilizer of Z. The orbit contains 0 ∈ Rq in its closure, hence it not
closed but unstable, and ∂(G · Zq) = {0}. The stabilizer in the Lie algebra
g = sl2(k) is g, in particular the orbit map is inseparable.

Proof. The first statement follows from the injectivity of the q-th power
map, see remark 5 in 1.1. The last statement follows since every derivation
A annihilates every q-th power: A(Zq) = q Zq−1A(Z) = 0. 3

2.2 The case m = 2 of quadratic forms

We won’t work out the complete orbit classification for R2 over arbitrary
fields but concentrate on two representative elements, the quadratic forms

1. v = XY , an example of a non-degenerate form, of orbit type II,
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2. v = Y 2, the degenerate case, of orbit type III.

Note that these two quadratic forms in a certain sense are typical represen-
tatives: Over the algebraic closure k̄ every non-zero quadratic form is either
a product of two different linear forms or the square of a linear form. In
the first case, the non-degenerate case, as in 2.1 a suitable matrix ∈ SL2(k̄)
transforms the second factor to Y , and then a matrix from the stabilizer of
Y transforms the first factor to sX with s ∈ k̄×. (In particular under GL2(k̄)
the non-degenerate quadratic forms form a single orbit.) Thus up to a scalar
multiple (that doesn’t change the stabilizer nor the geometric properties of
the orbit) we are in case 1, at least over an algebraically closed field. For an
instance what might happen over a field that is not algebraically closed see
Proposition 16.

In the second case, the square of a linear form, we again transform this
linear form to Y , the resulting quadratic form being Y 2.

The non-degenerate case

The matrix g ∈ SL2 given by (1) maps the form v = XY to

(dX − bY )(aY − cX) = −cdX2 + (ad+ bc)XY − abY 2.

Hence g stabilizes v if and only if

ad− bc = 1, cd = 0, ad+ bc = 1, ab = 0.

If c = 0, then these conditions yield ad = 1, d = 1/a, b = 0, hence
g = ∆(a) ∈ T .

If c 6= 0 and char k 6= 2, the conditions yield d = 0, bc = −1, as well as
bc = 1, a contradiction. If however char k = 2, we get c = 1/b and a = 0,
forcing g = ∆(b) I, a matrix ∈ N that stabilizes v.

The Lie algebra element A ∈ sl2(k), acting as in (2), maps v = XY to

X (−cX + aY ) + (−aX − bY )Y = −cX2 − bY 2.

Hence A annihilates XY if and only if b = c = 0, that is if and only if A ∈ t,
the Lie algebra of the torus T . In particular the orbit map is separable.

Proposition 7 The stabilizer of the homogeneous polynomial XY in the
group SL2(k) is the maximal torus T if char k 6= 2, the Cartan subgroup N
if char k = 2. The orbit of XY is closed. The orbit map is separable.

Corollary 1 The quadratic form XY , or more generally every non-
degenerate quadratic form, is stable for SL2.
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The degenerate case

The matrix g ∈ G = SL2 given by (1) maps the form v = Y 2 to

(aY − cX)2 = c2X2 − 2acXY + a2Y 2.

Hence g stabilizes v if and only if

ad− bc = 1, c2 = 0, 2ac = 0, a2 = 1,

that is if and only if c = 0, a = ±1, d = 1/a. Therefore Gv = U ∪ −U if
char k 6= 2, Gv = U if char k = 2.

The Lie algebra element A ∈ sl2(k), acting as in (2), maps v = Y 2 to

2Y (−cX + aY ) = −2cXY + 2aY 2.

In characteristic 2 every A ∈ sl2(k) annihilates Y 2, hence the orbit map is
inseparable. In characteristic 6= 2 the matrix A annihilates Y 2 if and only
if a = c = 0, that is if and only if A ∈ u, the Lie algebra of the unipotent
group U . In particular the orbit map is separable.

Proposition 8 The stabilizer of the homogeneous polynomial Y 2 in the
group G = SL2(k) is the maximal unipotent subgroup U if char k = 2,
the extension U ∪−U of order 2 if char k 6= 2. The orbit of Y 2 is not closed
but ∂(G · Y 2) = {0}. The orbit map is separable if and only if char k 6= 2.

Corollary 1 The quadratic form Y 2, or more generally every degenerate
quadratic form, is unstable for SL2.

2.3 The case m = 3 of cubic forms

Here again we’ll concentrate on three typical forms:

1. X2Y +XY 2 = XY (X+Y ), a product of three different linear factors,
of orbit type Ia,

2. XY 2, a product of a square and a different linear form, of orbit type
Ib or Ie (it will turn out to be Ie),

3. Y 3, a cube of a linear form, of orbit type III.

Note that every cube of a non-zero linear form may be transformed to Y 3 by
SL2(k), thus the non-zero cubes constitute a single SL2(k)-orbit, and Y 3 is
representative for it. In case 2 we may transform the squared linear form to
Y 2, and then the different linear form to a scalar multiple of X by SL2(k)
(or to X by GL2(k)). Thus XY 2 is a good representative. The situation
with three different linear forms is more complex, we only treat the sample
form given in 1. Sections 4.3 and ?? treat the alternative example X3 + Y 3

that has three different linear factors if and only if char k 6= 3.
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An example of a product of three different linear forms

The matrix g from (1) transforms v = X2Y +XY 2 to

(dX − bY )2(−cX + aY ) + (dX − bY )(−cX + aY )2 =

−cd2X3 + 2bcdX2Y − b2cXY 2

+ ad2X2Y − 2abdXY 2 + ab2Y 3

+c2dX3 − 2acdX2Y + a2dXY 2

− bc2X2Y + 2abcXY 2 − a2bY 3.

The conditions that g is in SL2(k) and fixes v are equivalent with the equa-
tions

ad− bc = 1(3)

c2d− cd2 = 0(4)

ad2 + 2bcd− 2acd− bc2 = 1(5)

a2d+ 2abc− b2c− 2abd = 1(6)

ab2 − a2b = 0(7)

Equation (4) is equivalent with cd(c − d) = 0, Equation (7) with
ab(b− a) = 0. Therefore we distinguish three cases: c = 0 or d = 0 or c = d,
and in the third case we distinguish between a = 0 or b = 0 or a = b.

Case 1, c = 0. We get (3) ad = 1 and (5) ad2 = 1, hence a = d = 1,
and (6) 1− 2b = 1. For char k 6= 2 we conclude b = 0, therefore g = 1 is the

unit matrix. For char k = 2 we get the solution g =

(
1 b
0 1

)
= A(b) where

b ∈ k is restricted by (7) b2 − b = 0, hence b = 0 or b = 1.
Case 2, d = 0, c 6= 0. We get (3) −bc = 1 and (5) −bc2 = 1, hence c = 1,

b = −1, and (6) −2a− 1 = 1. For char k 6= 2 we conclude a = −1, therefore
g is the matrix

B =

(
−1 −1
1 0

)
,

a matrix of multiplicative order 3. For char k = 2 we get the solution g =(
a 1
1 0

)
where a ∈ k is restricted by (7) a+ a2 = 0, hence a = 0 or a = 1.

Case 3, c = d with c 6= 0, d 6= 0. If a = 0 the conditions boil down to
−bc = 1 and −bc2 = 1, yielding b = 1 and c = −1, and g is the matrix

B2 =

(
0 1
−1 −1

)
.

If a 6= 0, but b = 0 we get the conditions ad = 1, −ad2 = ad2 − 2acd = 1,
a2d = 1 that are contradictory if char k 6= 2. If char k = 2 the conditions
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ad = 1, ad2 = 1, a2d = 1, have the solution a = d = c = 1, yielding

g =

(
1 0
1 1

)
. In the third subcase, a 6= 0, b 6= 0, b = a equation (3) yields

the contradiction ad− ad = 1 (in any characteristic).
This is the result:

Proposition 9 The stabilizer of the homogeneous polynomial X2Y +XY 2

in the group SL2(k) is finite, more exactly it is

(i) the cyclic subgroup of order 3 generated by the matrix B and consisting
of (

−1 −1
1 0

)
,

(
0 1
−1 −1

)
,

(
1 0
0 1

)
,

if char k 6= 2.

(ii) the group of order 6 generated by J and A(1), consisting of(
1 1
1 0

)
,

(
0 1
1 1

)
,

(
1 0
1 1

)
,

(
0 1
1 0

)
,

(
1 1
0 1

)
,

(
1 0
0 1

)
,

and isomorphic with the symmetric group S3 if char k = 2.

The Lie algebra action of A =

(
a b
c −a

)
∈ sl2(k) as in (2) maps

X2Y +XY 2 to

−cX3 − (a+ 2c)X2Y + (a− 2b)XY 2 − bY 3.

Hence A annihilates X2Y + XY 2 if and only if c = 0, b = 0, and a = 0,
regardless of the characteristic.

Corollary 1 The stabilizer of the homogeneous polynomial X2Y +XY 2 in
the Lie algebra sl2(k) is 0. In particular the orbit map is separable.

A cubic with a square factor

To decide between the orbit types Ib and Ie we consider the matrix(
a −1/a2

0 1/a

)
∈ SL2(k). It transforms

XY 2 7→ aXY 2 + Y 3.

The specialization a → 0 shows that Y 3 ∈ ∂(G · v). Therefore the border
doesn’t consist of 0 alone, and the orbit is of type Ie.

The cubic form v = XY 2 is mapped to

(dX−bY )(−cX+aY )2 = c2dX3−(2acd+bc2)X2Y +(a2d+2abc)XY 2−a2bY 3
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by g ∈ SL2(k). Therefore g stabilizes v if and only if

ad− bc = 1, c2d = 0, a2b = 0, 2acd+ bc2 = 0, 2abc+ a2d = 1.

Assuming b 6= 0 we get a = 0, −bc = 1, bc2 = 0, a contradiction.
Hence b = 0, ad = 1, a2d = 1, a = 1, d = 1, c = 0. Thus the stabilizer

consists of the unit matrix only.
The Lie algebra action of A ∈ sl2(k) maps v to

(−aX − bY )Y 2 + 2XY (−cX + aY ) = −2cX2Y + aXY 2 − bY 3.

This is 0 if and only if a = b = 0, 2c = 0. These conditions force A = 0 if

char k 6= 2. If char k = 2 they force A =

(
0 0
c 0

)
with arbitrary c ∈ k.

Proposition 10 Let v ∈ R3 be the homogeneous polynomial XY 2.

(i) The stabilizer of v in the group SL2(k) is the trivial subgroup 1.

(ii) v is unstable, the orbit of v is not closed, its closure contains 0 as well
as the unique two-dimensional orbit G · Y 3.

(iii) If char k 6= 2, then the stabilizer of v in the Lie algebra sl2(k) is 0. The
orbit map is separable.

(iv) If char k = 2, then the stabilizer of v in the Lie algebra sl2(k) is nilpo-
tent of dimension 1. The orbit map is inseparable.

A cube

The cubic form v = Y 3 is mapped to

(−cX + aY )3 = −c3X3 + 3ac2X2Y − 3a2cXY 2 + a3Y 3

by g ∈ SL2(k). Therefore g stabilizes v if and only if c = 0 and a3 = 1, or if
and only if

(8) g =

(
ε b
0 1/ε

)
where ε is a 3rd root of unity and b ∈ k arbitrary.

The Lie algebra action of A ∈ sl2(k) maps v to

3Y 2 (−cX + aY ) = −3cXY 2 + 3aY 3.

This is 0 if and only if 3a = 3c = 0. We summarize:
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Proposition 11 Let v ∈ R3 be the homogeneous polynomial Y 3.

(i) The stabilizer Gv of v in the group G = SL2(k) is the subgroup con-
sisting of the elements (8), a finite extension of the maximal unipotent
subgroup U .

(ii) The orbit of v is not closed, and ∂(G · v) = {0}.

(iii) If char k 6= 3, then the stabilizer of v in the Lie algebra sl2(k) is
u = Lie(U) = Lie(Gv). The orbit map is separable.

(iv) If char k = 3, then the stabilizer of v in the Lie algebra sl2(k) is sl2(k).
The orbit map is inseparable.

In characteristic 3 this result repeats Corollary 2 in 2.1.

3 Stabilizer and Orbit of Y m and XrY r

For general m we consider some selected orbits only, starting with the “ex-
ceptional” orbit types II and III.

3.1 The binary form Y m

The last example easily extends from Y 3 to v = Y m. The matrix g from (1)
transforms v to

(−cX + aY )m = (−c)mXm + · · ·+ amY m.

Hence g stabilizes v if and only if c = 0 and am = 1, that is if and only if

(9) g =

(
ε b
0 1/ε

)
where ε is an mth root of unity and b ∈ k arbitrary.

The derivation A ∈ sl2(k) as in (2) maps v to

mY m−1 (−cX + aY ) = −mcXY m−1 +maY m.

hence annihilates v if and only if ma = mc = 0, that is in any case if
char k | m, and if and only if a = c = 0 if char k - m.

We summarize:

16



Proposition 12 Let v ∈ Rm be the homogeneous polynomial Y m.

(i) The stabilizer Gv of v in the group G = SL2(k) is the subgroup con-
sisting of the elements (9), a finite extension of the maximal unipotent
subgroup U .

(ii) The orbit of v is not closed, and ∂(G · v) = {0}.

(iii) If char k - m, then the stabilizer of v in the Lie algebra sl2(k) is
u = Lie(U) = Lie(Gv). The orbit map is separable.

(iv) If char k | m, then the stabilizer of v in the Lie algebra sl2(k) is sl2(k).
The orbit map is inseparable.

3.2 The binary form XrY r

The orbit is of type II, in particular it is closed. Since the diagonal matrix
∆(t), t ∈ k×, maps Xr 7→ t−rXr and Y r 7→ trY r, T stabilizes XrY r, and T
has finite index in the stabilizer.

Moreover J maps X 7→ −Y and Y 7→ X. Hence for an even r (or in
characteristic 2 for any r) also J stabilizes XrY r, and so does the whole
Cartan subgroup N .

The case r = 1 was treated in 2.2.

The Lie algebra action

The matrix

(
a b
c −a

)
∈ g = sl2(k) maps v = XrY r to

rXr−1Y r (−aX−bY )+rXrY r−1 (−cX+aY ) = −rbXr−1Y r+1−rcXr+1Y r−1.

This is 0 if and only if char k | r or b = c = 0. Thus

gv =

{
t if char k - r,
g if char k | r.

Since v is a pure rth power, the orbit map is separable if and only if char k - r.

The case r ≥ 2 even

The matrix g from (1) transforms v = XrY r to

(dX − bY )r(−cX + aY )r = crdrX2r − . . .+ arbrY 2r.

If g stabilizes v, then ab = 0, hence a = 0 or b = 0, and cd = 0. If b = 0,
then ad = 1, d = 1/a 6= 0, c = 0, thus g ∈ T . If a = 0, then −bc = 1,
c = −1/b 6= 0, d = 0, thus g ∈ TJ .

In summary we have shown:
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Proposition 13 Let r ≥ 2 be even. Then the stabilizer of the homogeneous
polynomial XrY r in the group SL2(k) is the Cartan subgroup N . The orbit
is closed, and the orbit map is

(i) separable if char k - r,

(ii) inseparable if char k | r.

The case r ≥ 1 odd

The matrix g from (1) transforms v = XrY r to

−crdrX2r + . . .− arbrY 2r.

If g stabilizes v, then ab = 0, hence a = 0 or b = 0, and cd = 0. If b = 0,
then ad = 1, d = 1/a 6= 0, c = 0, thus g ∈ T . If a = 0, then −bc = 1,
c = −1/b 6= 0, d = 0, thus g ∈ TJ . However J maps XrY r to −XrY r,
contradiction for char k 6= 2.

In summary we have shown:

Proposition 14 Let r ≥ 1 be odd. Then the stabilizer of the homogeneous
polynomial XrY r in the group SL2(k) is

(i) the maximal torus T if char k 6= 2,

(ii) the Cartan subgroup N if char k = 2.

The orbit is closed, and the orbit map is

(iii) separable if char k - r,

(iv) inseparable if char k | r.

For r = 1 this result repeats Proposition 7.

Résumé

(For (ii) and (iii) we assume k to be algebraically closed.)

Theorem 1 Let r ≥ 1 and v be the binary form v = XrY r of degree 2r.
Then:

(i) The stabilizer of v in G = SL2(k) is

• the canonical maximal torus T if r is odd and char k 6= 2,

• the Cartan subgroup N = NG(T ) if r is even or if char k = 2.

(ii) The G-orbit of v is closed, and v is

• stable if r = 1,

• semistable but not stable if r ≥ 2.

(iii) The orbit map G −→ G · v is separable if and only if char k - r.
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4 Stabilizer and Orbit of Xr + Y r

Here is the result for an algebraically closed field k. The proofs of its single
parts are in sections 4.1 to 4.6, as well as the explicit determination of the
stabilizer (in most cases) over an arbitrary field.

Theorem 2 Assume that k is algebraically closed. Let r ≥ 1 and v be the
binary form v = Xr + Y r of degree r. Then:

(i) The stabilizer of v in G = SL2(k) is

• a maximal unipotent subgroup if r is a power of char k (including
r = 1),

• a maximal torus if r is twice a power of char k (including r = 2)
and char k 6= 2,

• finite otherwise.

(ii) The G-orbit of v

• is not closed but ∂(G · v) = {0}, if r is a power of char k,

• is closed otherwise,

and v is

• unstable if r is a power of char k,

• semistable but not stable if char k 6= 2, r ≥ 3, and r is twice a
power of char k,

• stable otherwise.

(iii) The orbit map G −→ G · v is separable if and only if char k - r.

The proof is in 4.1 for r = 1 and r = 2, in 4.2 for r ≥ 3.
A general remark: The diagonal matrix ∆(t) maps Xr to t−rXr and Y r

to trY r. Hence for an rth root of unity ε ∈ k the diagonal matrix ∆(ε) fixes
v = Xr + Y r. Thus the stabilizer Gv contains the cyclic subgroup Tr(k)
consisting of the rth roots of unity in k. If k contains a primitive rth root of
unity, then Tr(k) = Tr has order r.

4.1 The cases r = 1 and r = 2

The case r = 1 was implicitly treated in Section 2.1. Instead of determining

Gv directly we note that h =

(
1 0
−1 1

)
maps u = Y to v = X + Y , thus

Gv = hGuh
−1. The orbit is of type III.
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Proposition 15 The stabilizer of the homogeneous polynomial X+Y in the
group G = SL2(k) is the maximal unipotent subgroup hUh−1 and consists

of the matrices

(
1 + b b
−b 1− b

)
for b ∈ k. The binary linear form v = X+Y

is unstable, its orbit is not closed but ∂(G · v) = {0}. The stabilizer in the
Lie algebra g = sl2(k) is the nilpotent subalgebra consisting of the matrices(
a a
−a −a

)
for a ∈ k. In particular gv is the Lie algebra of Gv, thus the

orbit map is separable.

Corollary 2 in 2.1 also settles the case of Xq + Y q = (X + Y )q for q a
power of the characteristic, in particular the case r = 2 in characteristic 2.

The case r = 2 for char k 6= 2 is implicit in 2.2. Let us calculate the
stabilizer explicitly. The matrix g from (1) transforms v = X2 + Y 2 to
(dX − bY )2 + (aY − cX)2 =

d2X2 − 2bdXY + b2Y 2 + c2X2 − 2acXY + a2Y 2.

The conditions that g is in SL2(k) and fixes v yield the equations

ad− bc = 1,(10)

c2 + d2 = 1,(11)

ac+ bd = 0,(12)

a2 + b2 = 1.(13)

First assume a 6= 0. Then multiplying (12) by a we get

0 = a2c+ abd = (1− b2) · c+ b · (1 + bc) = c− b2c+ b+ b2c = b+ c,

hence c = −b. If we also assume b 6= 0, multiplying (12) by b we likewise get

0 = abc+ b2d = a · (−1 + ad) + (1− a2) · d = −a+ a2d+ d− a2d = d− a,

hence d = a. We are left with the condition a2 + b2 = 1. This defines a
maximal torus of G (that over k̄ must be conjugated with T ).

Proposition 16 The stabilizer of the homogeneous polynomial X2 + Y 2 in
the group SL2(k)

(i) (for char k 6= 2) is the torus{(
a b
−b a

) ∣∣∣∣ a, b ∈ k, a2 + b2 = 1

}
,

and the orbit is closed, the orbit map is separable,
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(ii) (for char k = 2) is the maximal unipotent subgroup{(
1 + b b
−b 1− b

) ∣∣∣∣ b ∈ k} ,
and ∂(G · v) = {0}. The orbit map is inseparable.

In characteristic 2 the orbit is of type III, otherwise of type II.

4.2 The Lie algebra action and stability for r ≥ 3

Proposition 17 Assume r ≥ 3. Then the stabilizer of the homogeneous
polynomial v = Xr + Y r in the Lie algebra g = sl2(k) is

(i) gv = g if char k | r. In particular the orbit map for v under SL2 is
inseparable.

(ii) gv = 0 if char k - r. In particular the stabilizer Gv in G = SL2(k) is
finite, the SL2-orbit of v over the algebraic closure k̄ has dimension 3,
and the orbit map is separable.

Proof. The Lie algebra element A =

(
a b
c −a

)
∈ g = sl2(k) transforms

v = Xr + Y r to

r Xr−1AX + r Y r−1AY = −raXr − rbXr−1Y − rcXY r−1 + raY r,

For (i) we immediately conclude that Av = 0.
For (ii) we see that A annihilates v if and only if a = b = c = 0, that is

A = 0. The additional statements are immediate consequences. 3

Proposition 18 Let r ≥ 3. Then the SL2-orbit of v = Xr + Y r is

(i) closed (over k̄) and properly stable if char k - r (type I),

(ii) not closed with ∂(G · v) = {0}, and unstable if r is a power of char k
(type III); the stabilizer Gv is the maximal unipotent subgroup from
Proposition 15,

(iii) closed and semistable if r is twice a power of char k and char k 6= 2
(type II); the stabilizer Gv is the torus from Proposition 16,

(iv) closed and properly stable if char k | r, but r is not a power nor twice
a power of char k (type I).
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Proof. In the case of (i) Xr + Y r decomposes into r different simple linear
factors over k̄. Thus it is stable and has a closed orbit.

Now assume p = char k | r, say r = spt with t > 0 and p - s. We have

Xr + Y r = (Xs + Y s)p
t

where Xs + Y s decomposes into s different linear factors. Hence Xr + Y r

decomposes into s different linear factors, each of multiplicity pt. In the case
of (ii) we have s = 1, thus all linear factors are identical. Hence Xr + Y r is
unstable for the action of SL2, and its stabilizer equals GX+Y .

In the case of (iii) the multiplicity of the linear factors equals r/2, im-
plying semistability. The stabilizer is equal to GX2+Y 2 hence conjugate with
T by Proposition 16. The orbit is of type II.

In the case of (iv) the multiplicity is < r
2 , implying proper stability. 3

Corollary 1 Let p = char k, r = s pt with p - s. Let v = Xr + Y r and
w = Xs + Y s. Then Gv = Gw.

Proof. This is a special case of Remark 5 in 1.1. 3

This corollary reduces the case p | r to the case p - s.

4.3 The stabilizer for r odd, r ≥ 3

By the corollary in 4.2 we may assume that char k - r.
The matrix g from (1) transforms v = Xr + Y r to

(dX − bY )r + (aY − cX)r =

drXr − rdr−1bXr−1Y +

(
r

2

)
dr−2b2Xr−2Y 2 − · · · +rdbr−1XY r−1 − brY r

− crXr + rcr−1aXr−1Y −
(
r

2

)
cr−2a2Xr−2Y 2 + · · · −rcar−1XY r−1 + arY r.

The conditions that g is in SL2(k) and fixes v yield the equations

ad− bc = 1,(14)

dr − cr = 1,(15)

ar − br = 1,(16)

acr−1 − bdr−1 = 0,(17)

ar−1c− br−1d = 0.(18)

First assuming that char k - r − 1 we have
(
r
2

)
6= 0 and get the additional

necessary condition

(19) a2cr−2 − b2dr−2 = 0.
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Multiplying Equation (17) by a we get

0 = a2cr−1 − abdr−1 = b2dr−2c− abdr−1 = bdr−2 · (bc− ad)

using Equation (19). Since the determinant is ad − bc = 1, and r ≥ 3, we
conclude that

b = 0 or d = 0.

First assume b 6= 0. Then necessarily d = 0, and our equations collapse
to

−bc = 1, −cr = 1, ar − br = 1, acr−1 = 0, . . .

Since c 6= 0 by the first one, the fourth one gives a = 0. Then from the third
one br = −1, hence brcr = (−1)(−1) = 1, contradicting the first equation
since r is odd and the characteristic of k is not 2 (note that r − 1 is even).

Thus we necessarily have b = 0. In this case our equations collapse to

ad = 1, dr − cr = 1, ar = 1, acr−1 = 0, . . .

Since a 6= 0 by the first one, the fourth one gives c = 0. By the third one a
is an rth root of unity and d is its inverse.

Since these matrices indeed fix v we have shown:

Proposition 19 Let r ≥ 3 be odd. Assume that the characteristic of k
doesn’t divide r(r − 1). Then the stabilizer of the homogeneous polynomial
Xr + Y r in the group SL2(k) is the cyclic subgroup Tr(k) of order | r.

The remaining case where char k | r − 1 is considerably more complex.
Equation (19) doesn’t necessarily hold. Instead we use Equation (18), and
multiplying Equation (17) by ar−2 we get

0 = ar−1cr−1−ar−2bdr−1 = br−1cr−2d−ar−2bdr−1 = bd (br−2cr−2−ar−2dr−2).

One of the factors must vanish: b = 0 or d = 0 or br−2cr−2 − ar−2dr−2 = 0.
The case b = 0 results in ad = 1, ar = 1, ar−1c = 0, c = 0,

g = ∆(ε) with εr = 1.

The case d = 0 results in bc = −1, cr = −1, br = −1/cr = 1 (since r is odd),
acr−1 = 0, a = 0, br = ar − 1 = −1, contradiction for char k 6= 2.

If however char k = 2 we get the additional solutions

g =

(
0 ε

1/ε 0

)
= ∆(ε)J with εr = 1.

The last (and most complex) subcase to consider is b 6= 0 and d 6= 0.
Then also a 6= 0 and c 6= 0, but

br−2cr−2 − ar−2dr−2 = 0.

We keep this intermediate result:
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Lemma 1 Let r ≥ 3 be odd, char k | r − 1, and let g =

(
a b
c d

)
∈ SL2(k)

stabilize Xr+Y r. Then either g ∈ Tr(k), or (only if char k = 2) g ∈ Tr(k)J ,
or abcd 6= 0 and (ad)r−2 = (bc)r−2.

Now in k̄ we have the decomposition

r−3∏
ν=0

(bc− ηνad) = br−2cr−2 − ar−2dr−2 = 0

where η = εr−2 is a primitive (r − 2)th root of unity. This root exists in k̄
since char k - r − 2. At least one of the r − 2 factors must vanish, but the
factor for ν = 0 is bc− ad = −1 6= 0.

If r = 3 we are done: In this case char k = 2 and the stabilizer is
Gv = Nr(k). Moreover k contains non-trivial 3rd roots of unity if and only
if k contains the field F4, the only extension of degree 2 of the prime field
F2. The multiplicative group F×4 is cyclic of order 3. Thus we have proved:

Proposition 20 Let k be a field of characteristic 2. Then the stabilizer of
the homogeneous polynomial X3 + Y 3 in the group SL2(k) is

(i) the extension of the cyclic group T3 of order 3 by the matrix J =(
0 1
1 0

)
of order 2, isomorphic with the symmetric group S3, if k con-

tains the field F4,

(ii) the cyclic group of order 2 generated by J otherwise.

Now we assume that r > 3. Then

bc = ζad for a ζ ∈ k̄ with ζ 6= 1, ζr−2 = 1.

Clearly then ζ = bc/ad is in k. If k doesn’t contain non-trivial (r−2)th roots
of unity we are done with Gv = Tr(k) (resp. Nr(k) if char k = 2). Otherwise
for each such ζ we get further elements of Gv:

The determinant condition ad− bc = 1 implies (1− ζ) ad = 1, thus

(20) d =
1

a (1− ζ)
.

Likewise

bc = ad− 1 =
1

1− ζ
− 1 =

ζ

1− ζ
,

(21) c =
ζ

b (1− ζ)
.
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The conditions dr − cr = 1 and

(22) br = ar − 1

imply that

1

ar (1− ζ)r
− ζr

br (1− ζ)r
= 1,

br − arζr = arbr(1− ζ)r,

ar − 1− arζr = a2r (1− ζ)r − ar (1− ζ)r.

This is a quadratic equation for ar:

(23) (1− ζ)ra2r + ar [ζr − 1− (1− ζ)r] + 1 = 0.

Here is the disappointing result:

Proposition 21 Let r ≥ 5 be odd and char k | r − 1. Let v be the ho-
mogeneous polynomial Xr + Y r. Then the stabilizer Gv of v in the group
G = SL2(k) consists of

(i) the subgroup Tr(k) (resp. Nr(k) if char k = 2),

(ii) the matrices

(
a b
c d

)
∈ G with abcd 6= 0 such that ar is a solution of

(23), b is a solution of (22), and c, d are given by (21) and (20), where
ζ is a non-trivial (r − 2)th root of unity in k.

Problem Find more concrete results on the solutions of (20) – (23).

4.4 The stabilizer for r = 5

The case of char k - r (r−1), here char k 6= 2, 5, is settled by Proposition 19.
The case of char k | r, here char k = 5, is reduced to X + Y by the corollary
of Proposition 18 and thus settled. For the remaining case char k | r−1, here
char k = 2, we up to now only have the vague result of Proposition 21. We’ll
try to make it more concrete. Instead of attacking the equations directly
we’ll prove as an intermediate step:

Lemma 2 Let char k = 2 and g =

(
a b
c d

)
∈ SL2(k) with abcd 6= 0 stabilize

v = X5 + Y 5. Then a, b, c, and d are 15th roots of unity.

Remark: Since the multiplicative group F×16 has order 15 and is cyclic it
is generated by a primitive 15th root of unity ε = ε15, and F16 = F2[ε] is
a field extension of order 4 with F16 ⊃ F4 ⊃ F2. The lemma implies that
a, b, c, d ∈ F16.
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Proof. In Proposition 21 ζ is a non-trivial 3rd root of unity, thus ζ = ε5 or
ε10, and ζ2 + ζ + 1 = 0, ζ2 = ζ + 1, ζ3 = 1, ζ4 = ζ, ζ5 = ζ2 = ζ + 1. Since

(1− ζ)5 = 1− 5ζ + 10ζ2 − 10ζ3 + 5ζ4 − ζ5 = 1 + ζ + 0 + 0 + ζ + (ζ + 1) = ζ

Equation (23) (for x = a5) becomes

0 = ζx2 + x [ζ5 + 1 + ζ] + 1 = ζx2 + 1,

hence x2 = 1/ζ = ζ2, a5 = x = ζ, and a15 = x3 = 1.
Now b5 = a5 + 1 = ζ + 1 = ζ2, and b15 = 1. Equations 20 and 21 yield

d =
1

a (1− ζ)
=

1

a ζ2
, c =

ζ

b (1− ζ)
=

ζ

b ζ2
,

and show that d15 = 1 and c15 = 1. 3

Corollary 1 For G = SL2(F2) and v = X5 + Y 5 we have Gv ⊆ SL2(F16).

Therefore in the case abcd 6= 0 a group element g ∈ Gv has the form

g =

(
εs εt

εu εw

)
,

It stabilizes v if and only if the following five conditions hold:

(24) εs+w + εt+u = 1,

(25) ε5u + ε5w = 1, ε5s + ε5t = 1,

(26) εs+4u + εt+4w = 0, ε4s+u + ε4t+w = 0.

The third pair of conditions (26) is equivalent with

s+ 4u ≡ t+ 4w (mod 15), 4s+ u ≡ 4t+ w (mod 15).

Adding 3s to the first equation and substituting from the second one we get

3s+ t+ 4w ≡ 4s+ u+ 3u ≡ 4t+ w + 3u (mod 15),

3s+ 3w ≡ 3t+ 3u (mod 15),

(27) s+ w ≡ t+ u (mod 5).

For the evaluation of condition (24) (the determinant) we use a lemma:

26



Lemma 3 Let ε be a generator of the multiplicative group F×16. Then the
solutions of the equation

εx + εy = 1 with y ≡ x (mod 5)

are

(i) x ≡ 5 (mod 15) and y ≡ 10 (mod 15),

(ii) x ≡ 10 (mod 15) and y ≡ 5 (mod 15).

Proof. Let y = x+ 5z and α = ε5 (thus α is a non-trivial 3rd root of unity).
Then 1 = εx ·(1+αz), hence εx ∈ F2[α] = F4 = {0, α, α2, 1}. The assumption
εx = 1 yields εy = 1 + εx = 0, a contradiction. The remaining possibilities
are

εx = α = ε5 and εy = 1 + α = α2 = ε10,

that is statement (i), or

εx = α2 = ε10 and εy = 1 + α2 = α = ε5,

that is statement (ii). 3

Exercise Show that the lemma is true even without the assumption y ≡ x
(mod 5).

Thus we have two alternative possibilities for the entries of g:

1a s+ w ≡ 5 (mod 15) and t+ u ≡ 10 (mod 15).

1b s+ w ≡ 10 (mod 15) and t+ u ≡ 5 (mod 15).

Applying the lemma to the pair (25) of conditions we get the alternatives
“either 2a or 2b”, as well as “either 3a or 3b”:

2a u ≡ 1 (mod 3) and w ≡ 2 (mod 3).

2b u ≡ 2 (mod 3) and w ≡ 1 (mod 3).

3a s ≡ 1 (mod 3) and t ≡ 2 (mod 3).

3b s ≡ 2 (mod 3) and t ≡ 1 (mod 3).

We have to check eight combinations of 1, 2, and 3. Six of them are contra-
dictory, but the two combinations

1a ∧ 2b ∧ 3a and 1b ∧ 2a ∧ 3b

each yield 16 valid solutions. We won’t pursue the calculation beyond this
point but only present one of these solutions:(

ε ε2

ε8 ε4

)
.
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Problem Determine the structure of the group Gv for r = 5, char k = 2.

Problem Determine the stabilizer of Xr +Y r for other odd values of r ≥ 7
with char k | r − 1.

4.5 The stabilizer for r even, r ≥ 4

By the corollary in 4.2 we may assume that char k - r.
The matrix g from (1) transforms v = Xr + Y r to

drXr − rdr−1bXr−1Y +

(
r

2

)
dr−2b2Xr−2Y 2 − · · · − rdbr−1XY r−1 + brY r

+ crXr − rcr−1aXr−1Y +

(
r

2

)
cr−2a2Xr−2Y 2 − · · · − rcar−1XY r−1 + arY r.

The conditions that g is in SL2(k) and fixes v now yield the equations

ad− bc = 1(28)

dr + cr = 1(29)

ar + br = 1(30)

acr−1 + bdr−1 = 0,(31)

ar−1c+ br−1d = 0.(32)

Assuming again that the characteristic of k doesn’t divide r − 1 we have(
r
2

)
6= 0 and get the additional necessary condition

(33) a2cr−2 + b2dr−2 = 0,

Multiplying Equation (31) by a we get

0 = a2cr−1 + abdr−1 = −b2dr−2c+ abdr−1 = bdr−2 · (ad− bc)

using Equation (33). Since the determinant is ad− bc = 1 we again conclude
that

b = 0 or d = 0.

First assume b = 0. In this case our equations collapse to

ad = 1, dr + cr = 1, ar = 1, acr−1 = 0, . . .

Since a 6= 0 by the first one, the fourth one gives c = 0. By the third one a
is an rth root of 1 and d is its inverse. Thus g = ∆(ε) with εr = 1.

Now assume b 6= 0. Then necessarily d = 0, and our equations collapse
to

−bc = 1, cr = 1, ar + br = 1, acr−1 = 0, . . .
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Since c 6= 0 by the first one, the fourth one gives a = 0. The solutions are: b
an rth root of unity, and c = −1/b.

Since (
0 t
−1/t 0

)
=

(
t 0
0 1/t

)(
0 1
−1 0

)
we have shown (see also [2]):

Proposition 22 Let r ≥ 4 be even. Assume that the characteristic of k
doesn’t divide r(r − 1). Then the stabilizer of the homogeneous polynomial
v = Xr + Y r in the group G = SL2(k) is Gv = Nr(k). If k contains a
primitive rth root of 1, then Gv has order 2r.

Now for the remaining case where char k | r−1, in particular char k 6= 2.
Equation (33) breaks down. Instead we use Equation (32), and multiplying
Equation (31) by ar−2 we get

0 = ar−1cr−1+ar−2bdr−1 = ar−2bdr−1−br−1cr−2d = bd (ar−2dr−2−br−2cr−2).

One of the factors must vanish: b = 0 or d = 0 or ar−2dr−2 − br−2cr−2 = 0.
The case b = 0 results in ad = 1, ar = 1, ar−1c = 0, c = 0,

g = ∆(ε) with εr = 1.

The case d = 0 results in bc = −1, cr = −1, br = 1/cr = −1 (since r is
even), acr−1 = 0, a = 0, br = 1, contradiction since char k 6= 2.

In the remaining subcase we have b 6= 0 and d 6= 0, hence even abcd 6= 0,
but

ar−2dr−2 − br−2cr−2 = 0.

Thus Lemma 1 also holds for r ≥ 4 even (excluding the characteristic 2
case).

Now in k̄ we have the decomposition

r−3∏
ν=0

(ad− ηνbc) = ar−2dr−2 − br−2cr−2 = 0

where η = εr−2 is a primitive (r − 2)th root of unity. This root exists in k̄
since char k - r − 2. At least one of the r − 2 factors must vanish, but the
factor for ν = 0 is ad− bc = 1 6= 0. Hence

bc = ζad for a ζ ∈ k̄ with ζ 6= 1, ζr−2 = 1.

Clearly ζ = bc/ad is in k. For each such ζ we get further elements of Gv:
The determinant condition ad− bc = 1 implies (1− ζ) ad = 1, thus

(34) d =
1

a (1− ζ)
.
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Likewise

bc = ad− 1 =
1

1− ζ
− 1 =

ζ

1− ζ
,

(35) c =
ζ

b (1− ζ)
.

The conditions dr + cr = 1 and

(36) br = 1− ar

imply that

1

ar (1− ζ)r
+

ζr

br (1− ζ)r
= 1,

br + arζr = arbr(1− ζ)r,

1− ar + arζr = ar (1− ζ)r − a2r (1− ζ)r.

This is the same quadratic equation for ar as in (23):

(37) (1− ζ)ra2r + ar [ζr − 1− (1− ζ)r] + 1 = 0.

Here is the result:

Proposition 23 Let r ≥ 4 be even and char k | r − 1. Let v be the ho-
mogeneous polynomial Xr + Y r. Then the stabilizer Gv of v in the group
G = SL2(k) consists of

(i) the subgroup Tr(k),

(ii) the matrices

(
a b
c d

)
∈ G with abcd 6= 0 such that ar is a solution of

(37), b is a solution of (36), and c, d are given by (35) and (34), where
ζ is a non-trivial (r − 2)th root of unity in k.

Problem Find more concrete results on the solutions of (34) – (37).

4.6 The stabilizer for r = 4

The case of char k - r(r− 1), here char k 6= 2, 3, is settled by Proposition 22.
The case of char k | r, here char k = 2, is reduced to X + Y by the corollary
of Proposition 18, hence settled.

For the remaining case char k | r − 1, here char k = 3, we’ll try to make
Proposition 23 more concrete. First we’ll prove:

Lemma 4 Let char k = 3 and g =

(
a b
c d

)
∈ SL2(k) with abcd 6= 0 stabilize

v = X4 + Y 4. Then a, b, c, and d are 8th roots of unity.
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Remark: F3 doesn’t contain a primitive 4th root of unity, and a forteriori
not an 8th one. But its extension F9 of degree 2 has a multiplicative group
of order 8 that is generated by ε8 and contains ε4 = ε28. The lemma implies
that a, b, c, d ∈ F9.
Proof. In Proposition 23 necessarily ζ = −1. Furthermore 1 − ζ = 2 = −1,
(1− ζ)4 = 1. Equation (37) for x = a4 becomes

0 = x2 + x [1− 1− 1] + 1 = x2 − x+ 1 = (x+ 1)2.

Its only solution is x = −1, hence a4 = −1, a8 = 1.
From (36) we get b4 = 2 = −1, b8 = 1. From c = 1/b and d = −1/a also

c8 = d8 = 1 3

Now the situation is analogous with that in Section 4.4: A group element
g ∈ Gv with abcd 6= 0 has the form

g =

(
εs εt

εu εw

)
,

where ε = ε8, in particular Gv ⊆ SL2(F9).
A similar calculation yields further solutions for g ∈ Gv, for example this

one: (
ε ε3

ε5 ε3

)
,

Problem Determine the structure of the group Gv for r = 4, char k = 3.

Problem Determine the stabilizer of Xr+Y r for other even values of r ≥ 6
with char k | r − 1.
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5 Stabilizer and Orbit of XrY +XY r

The case r = 0 was treated in 2.1: The stabilizer is maximal unipotent.
The case r = 1 is void for char k = 2. The modified case with u = XY
was treated in 2.2: The stabilizer is the canonical maximal torus. The case
r = 2 is in Section 2.3: The stabilizer of X2Y +XY 2 is finite of order 3 for
char k 6= 2, of order 6 for char k = 2.

We henceforth assume that r ≥ 2, and are going to prove:

Theorem 3 Assume that k is algebraically closed. Let r ≥ 2 and v be the
binary form v = XrY +XY r of degree r + 1. Then:

(i) The stabilizer of v in G = SL2(k) is finite.

(ii) v is

• unstable if r ≥ 4 and r− 1 is a power of char k, in particular the
orbit G · v contains 0 in its closure (type Ib or Ie),

• semistable with non-closed orbit if char k = 2 and r = 3 (type Id),

• properly stable otherwise (type Ia).

(iii) The orbit map G −→ G · v is separable if and only if char k - r − 1.

Statement (i) is proved in Corollary 4 in 1.5. The proof of (ii) follows in
5.1, the proof of (iii) is in 5.2.

The sections 5.3 – 5.5 contain the explicit determination of the finite
group Gv over an arbitrary, not necessarily algebraically closed field k in
some cases, and highlight the complexity of this task in other cases. A general
remark: Let ε be an (r− 1)th root of unity. Since the diagonal matrix ∆(t),
t ∈ k×, transforms

XrY 7→ t−r+1XrY, XY r 7→ tr−1XY r,

∆(ε) stabilizes v = XrY +XY r. Thus Tr−1(k) ⊆ Gv in any case.

5.1 Stability

In the factorization XrY +XY r = XY (Xr−1 + Y r−1), if char k - r − 1, all
the linear factors are simple. Thus v is (properly) stable under the action of
SL2, and the orbit is of type Ia.

In the case of p = char k | r − 1 the stability depends on the prime
decomposition of r − 1. In analogy with 4.2 we decompose r − 1 = spt with
t > 0 and p - s and distinguish two cases:
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Case 1, r − 1 is a power of p:

Then s = 1, and all linear factors of Xr−1 + Y r−1 are identical. Since
r − 1 ≥ p ≥ 2 we have r ≥ 3. If even r ≥ 4, then there is a linear factor
of multiplicity r − 1 > r+1

2 , hence orbit is unstable, thus contains 0 in its
closure.

The case r = 3 can occur only for p = 2. Then our form X3Y +XY 3 =
XY (X2 +Y 2) has two simple linear factors and one of multiplicity 2. Hence
its orbit is semistable, but not stable. Looking at the taxonomy of 1.5 we
see that this must be type Id, in particular the orbit is not closed.

Problem (for r ≥ 4) Decide between the orbit types Ib and Ie.

Case 2, r − 1 is not a power of p:

Then s ≥ 2, hence pt = r
s ≤

r
2 <

r+1
2 . Our form

XrY +XY r = XY (Xpt + Y pt)s

has two simple linear factors and s ones of multiplicity pt. Hence v is (prop-
erly) stable, and the orbit closed.

The proof of Theorem 3 (ii) is complete.

5.2 The Lie algebra action for r ≥ 2

The following Proposition implies Theorem 3 (iii).

Proposition 24 Assume r ≥ 2. Then the stabilizer of the homogeneous
polynomial v = XrY +XY r in the Lie algebra g = sl2(k) is

(i) gv = t if char k | r−1 where t is the subalgebra consisting of the diagonal
matrices in sl2(k) (the Lie algebra of the canonical maximal torus), and
the orbit map is inseparable.

(ii) gv = 0 if char k - r − 1, and the orbit map is separable.

Proof. The Lie algebra element A =

(
a b
c −a

)
∈ g = sl2(k) transforms

v = XrY +XY r to

−cXr+1− (r− 1) aXrY − rbXr−1Y 2− rcX2Y r−1 + (r− 1) aXY r − bY r+1,

If A annihilates v, then b = c = 0, regardless of the characteristic and the
value of r ≥ 2.

If char k | r − 1 this implies Av = 0, whence (i).
Now let char k - r− 1. Depending on the value of r there is some overlap

of the terms of Av. If r = 2 we have a term −aX2Y − rcX2Y , and since
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c = 0 for Av = 0 we conclude that a = 0, hence A = 0. If r = 3 then
char k 6= 2 and we have 2a + 3c = 0, hence a = 0, thus A = 0. For r ≥ 4
there is no overlap, and (r − 1)a = 0 implies a = 0 and A = 0. This proves
(ii). 3

5.3 The stabilizer for r = 3

We consider the quartic form v = X3Y + XY 3. The matrix g from (1)
transforms it to

−cd3X4 + 3bcd2X3Y − 3b2cdX2Y 2 + b3cXY 3

+ ad3X3Y − 3abd2X2Y 2 + 3ab2dXY 3 − ab3Y 4

−c3dX4 + 3ac2dX3Y − 3a2cdX2Y 2 + a3dXY 3

+ bc3X3Y − 3abc2X2Y 2 + 3a2bcXY 3 − a3bY 4.

The conditions that g is in SL2(k) and fixes v are equivalent with the equa-
tions

ad− bc = 1(38)

cd3 + c3d = 0(39)

3bcd2 + ad3 + 3ac2d+ bc3 = 1(40)

3 (b2cd+ abd2 + a2cd+ abc2) = 0(41)

b3c+ 3ab2d+ a3d+ 3a2bc = 1(42)

ab3 + a3b = 0(43)

Equation (39) is equivalent with cd(d2 + c2) = 0, Equation (43) with
ab(b2 + a2) = 0. Therefore we distinguish three cases: c = 0 or d = 0 or
c2 = −d2, and in the third case we distinguish between a = 0 or b = 0 or
b2 = −a2.

If c = 0 we get (38) ad = 1 and (40) ad3 = 1, hence d2 = 1. Furthermore

• if char k 6= 3, (41) yields abd2 = 0, hence ab = 0, and by (42) a3d = 1,

• if char k = 3, also a3d = 1, this time immediately by (42).

Thus a2 = 1, and

• if char k 6= 3, b = 0 by (41), hence g = ±1,

• if char k = 3, by (43) 0 = a2b3 + a4b = b3 + b = b (b2 + 1), yielding the
solutions b = 0 or (if k ⊇ F9) b = ±i, with a = d = ±1.

If d = 0, c 6= 0, we get (38) −bc = 1 and (40) bc3 = 1, hence c2 = −1,
c = ±i, b = −1/c = c, and
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• if char k 6= 3, abc2 = 0 by (41), hence a = 0,

• if char k = 3, by (43) 0 = ab4 +a3b2 = a−a3 = a (1−a2), yielding the
solutions a = 0 or a = ±1.

Therefore g is one of the matrices

• (if char k 6= 2, 3 and i ∈ k) I =

(
0 i
i 0

)
or I3 =

(
0 −i
−i 0

)
,

• (if char k = 2) I,

• (if char k = 3 and F9 ⊆ k) I =

(
0 i
i 0

)
or I3 =

(
0 −i
−i 0

)
or one of

(
1 i
i 0

)
,

(
−1 i
i 0

)
,

(
1 −i
−i 0

)
,

(
−1 −i
−i 0

)
.

The remaining case is c2 = −d2 with c 6= 0, d 6= 0. If a = 0 the conditions
imply −bc = 1 and b2cd = 0, a contradiction. Likewise for b = 0 with a 6= 0
we get the contradictory equation a2cd = 0.

This leaves us with the case where a, b, c, d are all 6= 0, and c2 = −d2,
b2 = −a2.

If char k = 2, we have c2 = d2, b2 = a2, hence c = d and b = a,
contradicting (38).

If char k = 3, we conclude c = ±id and b = ±ia where the signs are
different because of 1 = ad− bc = ad±ad. But then by (40) 1 = ad3 + bc3 =
ad3 − i4ad3 = ad3 − ad3 = 0, contradiction.

Now in the case char k 6= 2, 3 from (40) and (42) we get −2d2 = 1 and
−2a2 = 1. This has the four solutions

C =

(
i√
2

1√
2

− 1√
2
− i√

2

)
, D =

(
− i√

2
1√
2

− 1√
2

i√
2

)
,

D3 =

(
i√
2
− 1√

2
1√
2
− i√

2

)
, C3 =

(
− i√

2
− 1√

2
1√
2

i√
2

)
.

Note that C2 = D2 = −1, CI = D3, DI = C.
This is the result:

Proposition 25 The stabilizer Gv of the homogeneous polynomial
v = X3Y +XY 3 in the group G = SL2(k) is finite.

(i) If char k 6= 2, 3, then Gv is the subgroup H of order 8 generated by
the matrices I and D, each of order 4, provided that k contains square
roots of −1 and 2, otherwise Gv is the intersection of H ⊆ SL2(k̄)
with SL2(k).
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(ii) If char k = 2, then the stabilizer is the cyclic group of order 2 generated
by I = J .

(iii) If char k = 3, then the stabilizer is finite of order 12 if F9 ⊆ k, of order
2 if F9 6⊆ k.

Problem Determine the group structure of the stabilizer for char k 6= 2.

5.4 The stabilizer for r even, r ≥ 4

The matrix g from (1) transforms v = XrY +XY r to

− cdrXr+1 + rbcdr−1XrY −
(
r

2

)
b2cdr−2Xr−1Y 2 + · · · − brcXY r

+ adrXrY − rabdr−1Xr−1Y 2 + · · · − rabr−1dXY r + abrY r+1

+ crdXr+1 − racr−1dXrY +

(
r

2

)
a2cr−2dXr−1Y 2 − · · · + ardXY r

− bcrXrY + rabcr−1Xr−1Y 2 − · · · + rar−1bcXY r − arbY r+1.

The conditions that g is in SL2(k) and fixes v are equivalent with the equa-
tions

ad− bc = 1(44)

crd− cdr = 0(45)

rbcdr−1 + adr − racr−1d− bcr = 1(46) (
r

2

)
a2cr−2d+ rabcr−1 −

(
r

2

)
b2cdr−2 − rabdr−1 = 0(47)

...

ard+ rar−1bc− brc− rabr−1d = 1(48)

abr − arb = 0(49)

Equation (45) is equivalent with cd(cr−1 − dr−1) = 0, equation (49) with
ab(br−1 − ar−1) = 0. Therefore we distinguish three cases: c = 0 or d = 0 or
cr−1 = dr−1, and in the third case we distinguish between a = 0 or b = 0 or
ar−1 = br−1.

Case 1, c = 0:

Equations (44), (46), (47), (49) collapse to

ad = 1

adr = 1

rabdr−1 = 0

abr − arb = 0
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From the first two of these we conclude d = 1/a and dr−1 = 1, ar−1 = 1,
thus ar = a, and the fourth equation yields a (br − b) = 0, hence br = b,
thus b is 0 or an (r − 1)th root of unity. If char k - r, the third equation
yields b = 0. Hence g is in the cyclic subgroup Tr−1(k) consisting of the
diagonal matrices ∆(ε) where ε runs through the (r − 1)th roots of 1 in k.
If however char k | r, then b could also be an (r − 1)th root of unity, and

we get additional solutions of the form

(
ε δ
0 1/ε

)
with δr−1 = 1. We resolve

the situation by a lemma:

Lemma 5 Let r ≥ 2 be even, char k = p | r, and δ and ε be (r − 1)th roots
of unity in k. The matrix

(i) g1 =

(
ε δ
0 1/ε

)
∈ SL2(k)

(ii) g2 =

(
ε 0
δ 1/ε

)
∈ SL2(k)

(iii) g3 =

(
−δ ε
−1/ε 0

)
∈ SL2(k)

(iv) g4 =

(
0 ε
−1/ε δ

)
∈ SL2(k)

stabilizes the homogeneous polynomial XrY +XY r if and only if p = 2 and
r is a power of p.

Proof. The image of XrY +XY r under g1, g2, g3, g4 is respectively(
1

ε
X − δ Y

)r
·ε Y+

(
1

ε
X − δ Y

)
·(ε Y )r =

(
1

ε
X − δ Y

)r
·ε Y+X Y r−δε Y r+1

(
1

ε
X

)r
(−δ X+ε Y )+

1

ε
X (−δ X + ε Y )r = −δ

ε
Xr+1+XrY+

1

ε
X·(−δX + ε Y )r

(−ε Y )r·
(

1

ε
X − δ Y

)
−ε Y ·

(
1

ε
X − δ Y

)r
= X Y r−δε Y r+1−ε Y ·

(
1

ε
X − δ Y

)r
(δ X−ε Y )r

(
1

ε
X

)
+(δ X−ε Y )

(
1

ε
X

)r
=

1

ε
X ·(δ X−ε Y )r+

δ

ε
Xr+1−XrY

where we used εr = ε and δr = δ.
As first case we assume that r is a power of p, say r = pt where t ≥ 1

(and necessarily p = 2 since r is even). Then the image of XrY +XY r under
g1, g2, g3, g4 is respectively(

1

ε
Xr + δ Y r

)
· ε Y +X Y r − δε Y r+1 = XrY + δε Y r+1 +X Y r − δε Y r+1
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−δ
ε
Xr+1 +XrY +

1

ε
X · (δXr + ε Y r) = −δ

ε
Xr+1 +XrY +

δ

ε
Xr+1 +X Y r

X Y r − δε Y r+1 − ε Y ·
(

1

ε
Xr + δ Y r

)
= XY r − δε Y r+1 −XrY − δε Y r+1

1

ε
X · (δ Xr + ε Y r) +

δ

ε
Xr+1 −XrY =

δ

ε
Xr+1 +X Y r +

δ

ε
Xr+1 −XrY

In all four cases this is = XrY +X Y r (remember char k = 2).
As second case we assume that r is not a power of p, say r = spt where

s ≥ 2 and p - s, and t ≥ 1. Then the image of XrY +XY r under g1 is

=

(
1

εpt
Xpt ± δptY pt

)s
· ε Y +X Y r − δε Y r+1

=

(
1

ε
Xr ± s δp

t

εpt(s−1)
Xpt(s−1)Y pt ± · · ·

)
· ε Y +X Y r − δε Y r+1

=XrY ± sηXpt(s−1)Y pt+1 ± · · ·+X Y r − δε Y r+1

where η is an (r − 1)th root of unity, a contradiction since s 6= 0 in k. The
action of g3 yields the same contradictory term, whereas the actions of g2
and g4 each yield the non-zero term

±sηXpt+1Y pt(s−1)

that yields an analogous contradiction. 3

Case 2, d = 0, c 6= 0:

From Equations (44) and (46) – (49) we get

−bc = 1

−bcr = 1

rabcr−1 = 0

rar−1bc− brc = 1

abr − arb = 0

The first two yield b = −1/c, cr−1 = 1, hence br−1 = −1 and br = −b. The
last one yields ar + a = 0, hence a = 0 or an (r − 1)th root of −1.

Now assume that char k - r (in particular char k 6= 2). Then the third
equation yields a = 0, and then the fourth one, −brc = 1. Substituting
c = −1/b we get the contradiction br−1 = 1 (since char k 6= 2).

If char k | r, then also br−1 = −1 and br−1 = 1, a contradiction
if char k 6= 2. But if char k = 2, we get additional solutions of the form
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(
δ ε

1/ε 0

)
with εr−1 = 1, and δ = 0 or δr−1 = 1. In the first case we find

the solutions g = ∆(ε) J . In the second case we again resolve the situation
by Lemma 5: These additional solutions, of type g3, stabilize XrY + X Y r

if and only if r is a power of char k = 2.

Case 3, cr−1 = dr−1, d 6= 0, c 6= 0:

We have c = εd with εr−1 = 1, hence also cr = εdr and cr−2 = 1
εd
r−2.

Equations (44) and (46) boil down to

ad− εbd = 1, or d (a− εb) = 1

1 = rεbdr + adr − radr − εbdr = (r − 1) (εb− a) dr = −(r − 1) dr−1

In the case char k | r−1 this is a contradiction that settles this case. Hence-
forth we may asssume that char k - r − 1, and continue with equations (47)
– (49)

0 =

(
r

2

)[
a2

1

ε
dr−1 − b2εdr−1

]
=
r (r − 1)

2
· dr−1

[
a2

ε
− b2ε

]
or

r

2
·
[
a2 − b2ε2

]
= 0

1 = ard+ rεar−1bd− εbrd− rabr−1d = d ·
[
ar−1(a+ rεb)− br−1(εb+ ra)

]
ab (br−1 − ar−1) = 0

We proceed by looking at a and b.

Case 3a, cr−1 = dr−1, d 6= 0, c 6= 0, a = 0:

From (44) we have −εbd = −bc = 1, hence bd = −1/ε, in particular b 6= 0.
Equation (47) yields r

2 b
2ε = 0, a contradiction except when char k | r.

If char k | r equation (46) yields dr−1 = 1. Then b = −1/εd, br−1 = −1.
But (48) says −brc = 1, thus bc = 1, a contradiction if char k 6= 2. But if

char k = 2 we get additional solutions of the form

(
0 1

εd
εd d

)
. Case (iv) of

Lemma 5 applies: The additional solutions stabilize XrY +X Y r if and only
if r is a power of char k = 2.

Case 3b, cr−1 = dr−1, d 6= 0, c 6= 0, b = 0, a 6= 0:

Equation (47) yields
(
r
2

)
a2cr−2d = 0, a contradiction except when char k | r.

From (44) we have ad = 1, hence d = 1/a. If char k | r equation (46)
again yields dr−1 = 1, or ar−1 = 1, resulting in additional solutions of the

form

(
a 0
ε/a 1/a

)
. Case (ii) of Lemma 5 applies: The additional solutions

stabilize XrY +X Y r if and only if r is a power of char k = 2.
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Case 3c, cr−1 = dr−1, d 6= 0, c 6= 0, ar−1 = br−1, a 6= 0, b 6= 0:

Then b = δa with δr−1 = 1. From (44) we get ad (1− δε) = 1, in particular
(1− δε) 6= 0. Equation (47) yields(

r

2

)
a2dr−1

(
1

ε
− δ2ε

)
= 0, or

r

2
· (1− δ2ε2) =

r

2
· (1− δε)(1 + δε) = 0

If char k - r (in particular char k 6= 2) we conclude 1+δε = 0, thus δ = −1/ε.
This yields the contradiction δr−1 = −1/εr−1 = −1.

We are left with the case char k | r. Then from (46) we get dr−1 = 1,
and from (48) we get

1 = ard (1− δε) = ar−1.

Thus a, b, c, and d are (r − 1)th roots of unity, and g has the form

(50) g =

(
εsr−1 εtr−1
εur−1 εwr−1

)
.

(If r = 2 we are in characteristic 2 and this solution set is empty.)

Problem Find necessary and sufficient conditions that this matrix stabilzes
XrY +X Y r in the case char k | r.

The result:

Collecting these calculations together we get an extension of another result
from [2]:

Theorem 4 Let r ≥ 4 be even. Then the stabilizer Gv of the homogeneous
polynomial v = XrY +XY r in the group G = SL2(k) is finite and contains
the cyclic subgroup Tr−1(k) consisting of the diagonal matrices ∆(ε) where
ε runs through the (r − 1)-th roots of 1 in k. More precisely:

(i) If char k - r, then Gv = Tr−1(k).

(ii) If char k | r, char k 6= 2, then Gv consists of Tr−1(k) and additional
elements of the form (50).

(iii) If char k = 2 but r is not a power of 2, then Gv = Nr−1(k).

(iv) If char k = 2 and r is a power of 2, then Gv consists of Nr−1(k) and
the matrices of types g1, g2, g3, g4 from Lemma 5.

In [2] this result is erroneously stated also for r = 2 (in characteristic 0).
However the case r = 2 is different as shown in 2.3.

40



5.5 The stabilizer for r odd, r ≥ 5

The matrix g from (1) transforms v = XrY +XY r to

− cdrXr+1 + rbcdr−1XrY −
(
r

2

)
b2cdr−2Xr−1Y 2 + · · · + brcXY r

+ adrXrY − rabdr−1Xr−1Y 2 + · · · + rabr−1dXY r − abrY r+1

− crdXr+1 + racr−1dXrY −
(
r

2

)
a2cr−2dXr−1Y 2 − · · · + ardXY r

+ bcrXrY − rabcr−1Xr−1Y 2 − · · · + rar−1bcXY r − arbY r+1.

(Compared with Section 5.4 only some signs changed.) The conditions that
g is in SL2(k) and fixes v are equivalent with the equations

ad− bc = 1(51)

crd+ cdr = 0(52)

rbcdr−1 + adr + racr−1d+ bcr = 1(53) (
r

2

)
a2cr−2d+ rabcr−1 +

(
r

2

)
b2cdr−2 + rabdr−1 = 0(54)

...

ard+ rar−1bc+ brc+ rabr−1d = 1(55)

abr + arb = 0(56)

Equation (52) is equivalent with cd(cr−1 + dr−1) = 0, equation (56) with
ab(br−1 + ar−1) = 0. Therefore we distinguish three cases: c = 0 or d = 0 or
cr−1 = −dr−1, and in the third case we distinguish between a = 0 or b = 0
or br−1 = −ar−1.

Case 1, c = 0:

Equations (51), (53), (54), (56) collapse to

ad = 1

adr = 1

rabdr−1 = 0

abr + arb = 0

From the first two of these we conclude d = 1/a and dr−1 = 1, ar−1 = 1,
thus ar = a, and the fourth equation yields a (br + b) = 0, hence br = −b,
thus b is 0 or an (r − 1)th root of −1. If char k - r, the third equation yields
b = 0. Hence g ∈ Tr−1(k). If however char k | r, then b could also be an

(r − 1)th root of −1, and we get additional solutions of the form

(
ε δ
0 1/ε

)
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with δr−1 = −1. We resolve the situation by an analogue of Lemma 5—these
additional solutions stabilize XrY +XY r if and only if r is a power of char k:

Lemma 6 Let r ≥ 3 be odd, char k = p | r. The matrix

(i) g1 =

(
ε δ
0 1/ε

)
∈ SL2(k) with εr−1 = 1, δr−1 = −1,

(ii) g2 =

(
ε 0
δ 1/ε

)
∈ SL2(k) with εr−1 = 1, δr−1 = −1,

(iii) g3 =

(
δ ε
−1/ε 0

)
∈ SL2(k) with εr−1 = −1, δr−1 = 1,

(iv) g4 =

(
0 ε
−1/ε δ

)
∈ SL2(k) with εr−1 = −1, δr−1 = 1,

stabilizes the homogeneous polynomial XrY +XY r if and only if r is a power
of p.

Proof. The image of XrY +XY r under g1, g2, g3, g4 is respectively(
1

ε
X − δ Y

)r
·ε Y+

(
1

ε
X − δ Y

)
·(ε Y )r =

(
1

ε
X − δ Y

)r
·ε Y+X Y r−δε Y r+1

(
1

ε
X

)r
(−δ X+ε Y )+

1

ε
X (−δ X + ε Y )r = −δ

ε
Xr+1+XrY+

1

ε
X·(−δX + ε Y )r

(−ε Y )r·
(

1

ε
X + δ Y

)
−ε Y ·

(
1

ε
X + δ Y

)r
= X Y r+δε Y r+1−ε Y ·

(
1

ε
X + δ Y

)r
(δ X−ε Y )r

(
1

ε
X

)
+(δ X−ε Y )

(
1

ε
X

)r
=

1

ε
X ·(δ X−ε Y )r−δ

ε
Xr+1+XrY

where we used that εr = ±ε and δr = ±δ.
As first case we assume that r is a power of p, say r = pt where t ≥ 1.

Then the image of XrY +XY r under g1, g2, g3, g4 is respectively(
1

ε
Xr + δ Y r

)
· ε Y +X Y r − δε Y r+1 = XrY + δε Y r+1 +X Y r − δε Y r+1

−δ
ε
Xr+1 +XrY +

1

ε
X · (δXr + ε Y r) = −δ

ε
Xr+1 +XrY +

δ

ε
Xr+1 +X Y r

X Y r + δε Y r+1− ε Y ·
(
−1

ε
Xr + δ Y r

)
= XY r + δε Y r+1 +XrY − δε Y r+1

1

ε
X · (δ Xr + ε Y r)− δ

ε
Xr+1 +XrY =

δ

ε
Xr+1 +X Y r − δ

ε
Xr+1 +XrY

In all four cases this is = XrY +X Y r.
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As second case we assume that r is not a power of p, say r = spt where
s ≥ 2 and p - s, and t ≥ 1, and s and p are odd. Then the image of
XrY +XY r under g1 is

=

(
1

εpt
Xpt − δptY pt

)s
· ε Y +X Y r − δε Y r+1

=

(
1

ε
Xr − s δp

t

εpt(s−1)
Xpt(s−1)Y pt + · · ·

)
· ε Y +X Y r − δε Y r+1

=XrY − sηXpt(s−1)Y pt+1 + · · ·+X Y r − δε Y r+1

where η 6= 0, a contradiction since s 6= 0 in k. The action of g2, g3, and g4
yield the same contradictory term sηXpt(s−1)Y pt+1 or sηXpt(s−1)+1Y pt . 3

Case 2, d = 0, c 6= 0:

From Equations (51) and (53) – (56) we get

−bc = 1

bcr = 1

rabcr−1 = 0

rar−1bc+ brc = 1

abr + arb = 0

The first two yield b = −1/c, cr−1 = −1, hence br−1 = (−1/c)r−1 = 1/cr−1 =
−1 and br = −b. The last one yields b (ar − a) = 0, hence a = 0 or an

(r−1)th root of 1. For a = 0 we get the solutions

(
0 ε
−1/ε 0

)
= ∆(ε)J with

εr−1 = −1.
Now assume that char k - r. Then the third equation yields a = 0, and

we are done.
If however char k | r, then we get additional solutions of the form(
δ ε
−1/ε 0

)
with εr−1 = −1, δr−1 = 1. Again we resolve the situation by

Lemma 6: These additional solutions stabilize XrY +X Y r if and only if r
is a power of char k.

Case 3, cr−1 = −dr−1, d 6= 0, c 6= 0:

We have c = εd with εr−1 = −1, hence also cr = −εdr and cr−2 = −1
εd
r−2.

Equations (51) and (53) boil down to

ad− εbd = 1, or d (a− εb) = 1
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1 = rεbdr + adr − radr − εbdr = (r − 1) (εb− a) dr = −(r − 1) dr−1

In the case char k | r − 1 this is a contradiction that settles this case.
Henceforth we may asssume that char k - r− 1, and continue with equa-

tions (54) – (56)

0 =

(
r

2

)[
b2εdr−1 − a2 1

ε
dr−1

]
=

(
r

2

)
· dr−1

[
b2ε− a2

ε

]
or

(
r

2

)
·
[
b2ε2 − a2

]
= 0

1 = ard+ rεar−1bd+ εbrd+ rabr−1d = d ·
[
ar−1(a+ rεb) + br−1(εb+ ra)

]
ab (br−1 + ar−1) = 0

We proceed by looking at a and b.

Case 3a, cr−1 = −dr−1, d 6= 0, c 6= 0, a = 0:

From (51) we have −εbd = −bc = 1, hence bd = −1/ε, in particular b 6= 0.
Equation (54) yields

(
r
2

)
b2ε = 0, a contradiction except when

(
r
2

)
= 0. This

exception occurs only for char k | r (since char k = 2 was already excluded
by char k - r − 1).

If char k | r equation (53) yields cr−1 = −1, hence dr−1 = 1, resulting in

additional solutions of the form

(
0 ε
−1/ε δ

)
with εr−1 = −1, δr−1 = 1. Case

(iv) of Lemma 6 applies: The additional solutions stabilize XrY + X Y r if
and only if r is a power of char k.

Case 3b, cr−1 = −dr−1, d 6= 0, c 6= 0, b = 0, a 6= 0:

From (51) we have ad = 1, hence d = 1/a. Equation (54) yields
(
r
2

)
a2 = 0,

a contradiction except when char k | r.
If char k | r equation (53) again yields ar−1 = 1, resulting in additional

solutions of the form

(
ε 0
δ 1/ε

)
with εr−1 = 1, δr−1 = −1. Case (ii) of

Lemma 6 applies: The additional solutions stabilize XrY +X Y r if and only
if r is a power of char k.

Case 3c, cr−1 = −dr−1, d 6= 0, c 6= 0, br−1 = −ar−1, a 6= 0, b 6= 0:

Then b = δa with δr−1 = −1. From (51) we get ad (1−δε) = 1, in particular
1− δε 6= 0. Equation (53) yields

1 = −(r − 1) dr−1,
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equation (54) (
r

2

)
·
(
δ2ε2a2 − a2

)
= 0,

and equation (55)

1 = d
[
δεa(r − 1)ar−1 + a(1− r)ar−1

]
= dar (r − 1) (δε− 1),

thus, using ad (1− δε) = 1, 1 = −ar−1(r − 1), hence

ar−1 = dr−1 = − 1

r − 1
.

Case 3c – char k - r

If char k - r we conclude that 0 = δ2ε2−1 = (δε−1)(δε+1), hence δε+1 = 0,
thus δ = −1/ε, and 1− δε = 2, hence 2ad = 1.

We get the solution

d =
1

2a
, b = −a

ε
, c =

ε

2a

for a ∈ k with ar−1 = −1/(r − 1), leading to the matrix

(57)

(
a −a

ε
ε
2a

1
2a

)
with ar−1 = −1/(r − 1), εr−1 = −1.

Whether the matrix (57) really defines a solution however depends on a
side condition: From d = 1/2a we conclude that

− 1

d− 1
= dr−1 =

1

2r−1ar−1
= −r − 1

2r−1
,

or 2r−1 = (r − 1)2 in k. Both sides of this equation lie in the prime field,
thus the side condition is: r − 1 is a solution of the congruence

(58) 2x ≡ x2 (mod char k).

Case 3c – char k | r

We are left with the case char k | r. Then from (53) we get dr−1 = 1, and
from (55) we get ar−1 = 1. Thus a and d are (r − 1)th roots of unity, b and
c are (r − 1)th roots of −1, and g has the form

(59) g =

(
εsl εtl
εul εwl

)
with l = 2r − 2, s and w even.

Problem Find necessary and sufficient conditions that this matrix stabilzes
XrY +X Y r in the case char k | r.
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Theorem 5 Let r ≥ 5 be odd. Then the stabilizer Gv of the homogeneous
polynomial v = XrY +XY r in the group G = SL2(k) is finite and contains
the dihedral subgroup Nr−1(k). More precisely:

(i) If char k - r (r− 1), or if char k | r but r is not a power of char k, then

• Gv = Nr−1(k) if char k doesn’t fulfill (58),

• Gv consists of Nr−1(k) and all matrices (57) if char k fulfills (58).

(ii) If char k | r − 1, then Gv = Nr−1(k).

(iii) If r is a power of char k, then

• Gv consists of Nr−1(k) and all matrices of types g1, g2, g3, g4
from Lemma 6 if char k doesn’t fulfill (58),

• Gv consists of Nr−1(k), all matrices of types g1, g2, g3, g4 from
Lemma 6, and all matrices (57) if char k fulfills (58).
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