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Consider an arbitrary (commutative) field K. The functions from Kn to K form
a K-algebra A := Map(Kn,K). Let K[T ] be the polynomial algebra in the n-tuple
T = (T1, . . . , Tn) of indeterminates. Then

α : K[T ] −→ A,

ϕ 7→ α(ϕ) with α(ϕ)(x1, . . . , xn) := ϕ(x1, . . . , xn)

is a K-algebra homomorphism, called the “substitution homomorphism”. Its image,
α(K[T ]) ⊆ A, is the algebra of polynomial functions on Kn. We distinguish two funda-
mentally different cases—K is infinite, or K is finite.

1 Polynomial Functions over Infinite Fields

Let K be infinite. Then α is

• injective, i. e., different polynomials define different functions—the proof is the
uniqueness proof of interpolation formulas, and is given below,

• not surjective, because K[T ] has the same cardinality as K, but A is strictly
larger—the proof is elementary set theory.

The proof of injectivity relies on the following lemma:

Lemma 1 Let K be a field with at least d+1 elements, and let ϕ ∈ K[T ] be a polynomial
of degree ≤ d with ϕ(x) = 0 for all x ∈ Kn. Then ϕ = 0.

Proof. We prove this by induction on the dimension n. In the case n = 1 the polynomial
ϕ has more than d roots, whence ϕ = 0 by elementary algebra.

Now let n ≥ 2. Split the indeterminates into X = (T1, . . . , Tn−1) and Y = Tn. Then

ϕ =

d∑
i=0

ψi(X) · Y i where degψi ≤ d− i ≤ d.

Fix an arbitrary x ∈ Kn−1. Then ϕ(x, y) =
∑

i ψi(x) ·yi = 0 for all y ∈ K. The assertion
in the case n = 1 gives ψ0(x) = . . . = ψd(x) = 0. Since this holds for all x, induction
gives ψ0 = . . . = ψd = 0. Hence ϕ = 0. 3
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From this lemma we immediately get the following theorem:

Theorem 1 Let K be an infinite field. Then the substitution homomorphism
α : K[T ] −→ A is injective.

Now let x1, . . . , xd ∈ Kn be d distinct points, xi = (xi1, . . . , xin). We want to con-
struct a polynomial that takes given (not necessarily distinct) values a1, . . . , ad at these
points. To this end consider the polynomials

ψk :=
∏

i∈{1,...,d}\{k}

∏
j∈{1,...,n | xij 6=xkj}

(Tj − xij).

For i 6= k at least one coordinate xij 6= xkj , therefore ψk(xi) = 0. On the other hand
ψk(xk) 6= 0. Hence for ϕk := ψk/ψk(xk) we conclude:

Lemma 2 For each k = 1, . . . d there is a polynomial ϕk ∈ K[T ] with all partial degrees
≤ d− 1 and

ϕk(xi) =

{
1 for i = k,

0 for i otherwise.

Taking the linear combination ϕ =
∑
akϕk we get:

Theorem 2 Let x1, . . . , xd ∈ Kn be d distinct points, and a1, . . . , ad ∈ K. Then there is
a polynomial ϕ ∈ K[T1, . . . , Tn] of partial degree ≤ d−1 in each Ti such that ϕ(xk) = ak
for k = 1, . . . d.

Note that the proof was constructive but didn’t care about the most efficient algo-
rithm.

2 Polynomial Functions over Finite Fields

Let K be finite with #K = q elements. Then α is

• not injective, because K[T ] is infinite, but #A = qq
n
.

• surjective, because F ∈ A is completely determined by the qn pairs (x, F (x)),
x ∈ Kn, that is by the graph of F ; interpolation gives a polynomial ϕ ∈ K[T ]
with ϕ(x) = F (x) for all x ∈ Kn, i. e., α(ϕ) = F . A proof follows directly from
Theorem 2, however in the following we give an independent proof.

The polynomial

ϕ =
n∏

i=1

(
−T q−1

i + 1
)
∈ K[T ]

has partial degree q − 1 in each Ti.
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Lemma 3 The function α(ϕ) is the indicator function

ϕ(x) =

{
1 for x = 0,

0 for x ∈ Kn otherwise.

Proof. This is immediate from aq−1 = 1 for a ∈ K×. 3

Corollary 1 For each a ∈ K there is a polynomial ϕa ∈ K[T ] with all partial degrees
q − 1 and

ϕa(x) =

{
1 for x = a,

0 for x ∈ Kn otherwise.

Proof. Take ϕa = ϕ(T1 − a1, . . . , Tn − an). 3

Now let F : Kn −→ K be given. Then the polynomial

ϕ =
∑
a∈Kn

F (a)ϕa ∈ K[T ]

has all partial degrees ≤ q−1, and ϕ(x) = F (x) for all x ∈ Kn. This proves the following
theorem:

Theorem 3 Let K be a finite field with q elements, and n ∈ N. Then each function
F : Kn −→ K is given by a polynomial ϕ ∈ K[T1, . . . , Tn] of partial degree ≤ q − 1 in
each Ti.

Corollary 2 Each function F : Fn
2 −→ F2 is given by a polynomial ϕ ∈ F2[T1, . . . , Tn]

that is linear in each Ti.

Corollary 3 The kernel of the substitution homomorphism α is the ideal a =
(T q

1 − T1, . . . , T
q
n − Tn) �K[T ].

Proof. Clearly a ⊆ Kerα. Because DimK[T ]/a = qn = DimA, and α is surjective, we
have a = Kerα. 3

Corollary 4 Let m,n ∈ N. Then each map F : Kn −→ Km is given by an m-tuple
(ϕ1, . . . , ϕm) of polynomials ϕi ∈ K[T1, . . . , Tn] of partial degree ≤ q − 1 in each Ti.

Corollary 5 Each map F : V −→W between finite dimensional K-vectorspaces V and
W is polynomial with partial degrees each ≤ q − 1.
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