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Consider an arbitrary (commutative) field K. The functions from K™ to K form
a K-algebra A := Map(K"™, K). Let K[T] be the polynomial algebra in the n-tuple
T = (T1,...,T,) of indeterminates. Then

a: K[T] — A,
o = ale) with a(e)(x1,...,zn) = @(T1,...,2y)

is a K-algebra homomorphism, called the “substitution homomorphism”. Its image,
a(K[T]) C A, is the algebra of polynomial functions on K™. We distinguish two funda-
mentally different cases—K is infinite, or K is finite.

1 Polynomial Functions over Infinite Fields

Let K be infinite. Then « is

e injective, i. e., different polynomials define different functions—the proof is the
uniqueness proof of interpolation formulas, and is given below,

e not surjective, because K|[T] has the same cardinality as K, but A is strictly
larger—the proof is elementary set theory.

The proof of injectivity relies on the following lemma:

Lemma 1 Let K be a field with at least d+1 elements, and let ¢ € K[T|] be a polynomial
of degree < d with ¢(x) =0 for all z € K™. Then ¢ = 0.

Proof. We prove this by induction on the dimension n. In the case n = 1 the polynomial
¢ has more than d roots, whence ¢ = 0 by elementary algebra.
Now let n > 2. Split the indeterminates into X = (71,...,7T,—1) and Y = T,,. Then

d
= Zwi(X) -Y?" where degt); <d—i<d.
i=0
Fix an arbitrary € K"~!. Then ¢(z,y) = >, ¥i(z)-y* = 0 for all y € K. The assertion
in the case n = 1 gives ¢p(x) = ... = ¢4(x) = 0. Since this holds for all z, induction
gives Y9 = ... =g = 0. Hence ¢ = 0. &



From this lemma we immediately get the following theorem:

Theorem 1 Let K be an infinite field. Then the substitution homomorphism
a: K[T] — A is injective.

Now let z1,...,24 € K™ be d distinct points, x; = (1, .., Tin). We want to con-
struct a polynomial that takes given (not necessarily distinct) values a1, ..., aq at these
points. To this end consider the polynomials

Yy = H H (Tj - l'zj)
iE{l,...,d}\{k‘}jE{l,...,n‘l‘ij7é$k]'}
For i # k at least one coordinate x;; # wy;, therefore 1;(x;) = 0. On the other hand
Yr(z) # 0. Hence for ¢y := ¢y /¢ (xr) we conclude:

Lemma 2 For each k =1,...d there is a polynomial ¢y, € K[T] with all partial degrees

<d-1 and
1 fori=k,
or(x;) =

0 for i otherwise.
Taking the linear combination ¢ = > axpr we get:

Theorem 2 Let x1,...,xq € K" be d distinct points, and a1, ...,aq € K. Then there is
a polynomial p € K[T1,...,T,] of partial degree < d—1 in each T; such that ¢(xy) = ag
fork=1,...d.

Note that the proof was constructive but didn’t care about the most efficient algo-
rithm.

2 Polynomial Functions over Finite Fields

Let K be finite with #K = ¢ elements. Then « is
e not injective, because K[T] is infinite, but #A = ¢4".

e surjective, because F' € A is completely determined by the ¢" pairs (z, F(z)),
x € K", that is by the graph of F'; interpolation gives a polynomial ¢ € KI[T]
with ¢(z) = F(x) for all x € K", i. e., a(p) = F. A proof follows directly from

Theorem 2, however in the following we give an independent proof.
The polynomial
n
=11 (-Tf—l + 1) € K[T]
i=1

has partial degree ¢ — 1 in each T;.



Lemma 3 The function a(p) is the indicator function

o) = {1 for x =0,

0 forx e K™ otherwise.

Proof. This is immediate from a?~! =1 for a € K*. &

Corollary 1 For each a € K there is a polynomial ¢, € KI[T| with all partial degrees

q—1 and
1 forx=a,
Pa(z) = n )
0 forx € K™ otherwise.

Proof. Take o = p(T1 —ay,...,Tn — ap). ©
Now let F': K™ — K be given. Then the polynomial

p= > Fla)ps € K[T)
aceK™

has all partial degrees < ¢—1, and ¢(x) = F(x) for all z € K™. This proves the following
theorem:

Theorem 3 Let K be a finite field with q elements, and n € N. Then each function
F: K" — K is given by a polynomial ¢ € K[T1,...,T,] of partial degree < g — 1 in
each T;.

Corollary 2 Each function F: F} — Fa is given by a polynomial ¢ € Fo[T,...,T)]
that is linear in each T;.

Corollary 3 The kernel of the substitution homomorphism « is the ideal a =
(¢ -Th,..., T} = T,,) <K|[T].

Proof. Clearly a C Ker a. Because Dim K[T']/a = ¢" = Dim A, and « is surjective, we
have a = Kera. ¢

Corollary 4 Let m,n € N. Then each map F : K" — K™ 1is given by an m-tuple
(@1, ., om) of polynomials p; € K[Th,...,T,] of partial degree < q — 1 in each T;.

Corollary 5 Fach map F:V — W between finite dimensional K-vectorspaces V and
W is polynomial with partial degrees each < q — 1.



