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This text presents some general results and algorithms on how to determine the
period of a periodic sequence in a finite set.

1 Periods of state changes

Let M be a finite set with m = #M . We may think of the elements of M as “states”.
Consider a map (“state transition”)

g : M −→M.

For each element (“initial state”) x0 ∈M we define a sequence (xi)i∈N in M by the
recursion formula xi = g(xi−1) for i ≥ 1. After a preperiod of length µ this sequence
becomes periodic with a period of ν, see Figure 1.
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Figure 1: Period and preperiod

Since M is finite there are smallest integers µ ≥ 0 and ν ≥ 1 such that xµ+ν = xµ:
Take for µ the smallest index such that the element xµ reappears somewhere in the
sequence, and for µ+ ν the index where the first repetition occurs. Then also

xi+ν = xi for i ≥ µ.

Obviously 0 ≤ µ ≤ m − 1, 1 ≤ ν ≤ m, µ + ν ≤ m. The values x0, . . . , xµ+ν−1 are all
distinct, and the values x0, . . . , xµ−1 never reappear in the sequence.

Definition: µ is called (length of the) preperiod, ν is called (length of the) period.
The state-transition graph is the directed graph whose nodes are the elements
of M , and whose arrows x → y correspond to the relations y = g(x).
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Example: M = F2
2, g(x1, x2) = (x1x2, x1), yields the state-transition graph of Figure 2.
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Figure 2: A state-transition graph

2 The case of a known state-transition function

We may determine the length of the period by “naively” searching through the
sequence. There is another algorithm by R. W. Floyd which needs extremely few
storage cells [1, Exercise 3.1.6]. It is based on the following consideration:

Lemma 1 Let j > i. Then

xj = xi ⇐⇒ i ≥ µ and j ≡ i (mod ν).

In particular x2i = xi only, if ν|i.

Proof. We only have to show the implication “=⇒”. The minimality of µ gives i ≥ µ.
Let j − i = kν + r with 0 ≤ r < ν be the division with remainder. Then i+ r = j − kν,
hence

xi+r = xj = xi,

and successively going to the preceding element we also get xµ = xµ+r. The minimality
of ν gives r = 0, hence j − i is divisible by ν.

The addendum is trivial, if i = 0, and otherwise it follows with j = 2i. 3

Let us call Floyd index the smallest index ρ > 0 such that x2ρ = xρ. We may
calculate it as follows:

Proposition 1 [Floyd] Let M be a finite set and g : M −→M . From the initial value
x0 ∈M generate a sequence (xi)i∈N with xi = g(xi−1) for i ≥ 1. Let µ be the preperiod, ν
the period, and ρ the Floyd index of this sequence. Then one of the following statements
is true:

(i) µ = 0 and ρ = ν.

(ii) µ ≥ 1, µ ≤ ρ < µ+ ν, and ρ = ν · dµν e.

In any case ρ is a multiple of ν, namely

ρ =

{
µ, if ν|µ and µ ≥ 1,

µ+ ν − (µ mod ν) otherwise.
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Proof. The assertion is trivial for µ = 0. Now let µ > 0. The first inequality ρ ≥ µ follows
from the minimality of µ.

Between µ (inclusive) and µ+ν (exclusive) there is a multiple kν of ν: Simply choose
the integer k with (k − 1)ν < µ ≤ kν. Since µ > 0 we have k > 0 and

xkν = xkν+ν = · · · = xkν+kν = x2kν .

Therefore there is at least one index i with µ ≤ i < µ + ν and x2i = xi. Hence this
inequality is a forteriori true for the index ρ.

That ρ is a multiple of ν is in the lemma above. The formula for ρ follows because the
right hand side is the unique multiple of ν between µ (inclusive) and µ+ ν (exclusive).
3

The Floyd algorithm derives from Proposition 1 and consists of the following steps:

1. Determine the Floyd index ρ : Start at i = 1, recursively generate xi = g(xi−1)
and x2i = g(g(x2i−2)), until these two elements coincide. This takes up only 2
storage cells, but 3ρ evaluations of g, that together make less then 3 · (µ + ν);
furthermore we have to do ρ comparisions.

2. Determine the preperiod µ : Since ρ is a multiple of the period ν, and a repetition
can occur at xµ at the earliest, µ is the smallest index i with xi+ρ = xi. Start at
x0 and xρ, kept from step 1, and increase both indices succesively by 1, until both
elements coincide. Here too we need only 2 storage cells; the number of necessary
evaluations of g is 2µ, the number of comparisions is µ.

3. Determine the period ν : ν is the smallest index i ≥ 1 with xµ = xµ+i, and again
we determine it using 2 storage cells, and ν additional evaluations of g, and ν
comparisions.

The entire costs are less then 5µ+ 4ν evaluations of g and less then 2µ+ 2ν compar-
isions, or roughly O(µ+ ν), and alltogether the procedure needs only 2 storage cells for
elements of M , plus a third one, that keeps x0.

The naive algorithm would determine and store all the xi successively, would need
µ+ ν storage cells and evaluations of g, but a quadratic number of comparisions.

3 The case of an unknown state-transition function

Consider the situation where the function g, that generates the sequence, is unknown,
but a partial sequence x0, . . . , xn−1 is given; this situation may occur for example when
one tries to predict a pseudorandom generator without knowing its parameters.

The algorithm proceeds in a similar way, but instead of calling the function g one
simply takes the next element from the given partial sequence. In addition one has to
catch the case where the end of the given partial sequence is reached without detecting
periodicity.
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Here is the naive algorithm in Mathematica (note that Mathematica numbers the
elements of a list beginning with 1):

periodNaive[inlist_] := Module[{n, i, j},

n = Length[inlist];

For[j = 2, j <= n, j++,

For[i = 1, i < j, i++,

If[inlist[[i]] == inlist[[j]],

Return[{i - 1, j - i}] (* repetition found *)

] (* End If *)

] (* End For i *)

]; (* End For j *)

Return[{0, 0}] (* no repetition found *)

] (* End PeriodNaive *)

The Floyd algorithm for this case looks like this:

periodFloyd[inlist_] := Module[{n, i, rho = 0, mu = 0, nu = 0},

n = Length[inlist];

For[i = 2, 2 i - 1 <= n, i++,

If[inlist[[i]] == inlist[[2 i - 1]],

rho = i - 1;

Break[] (* FLOYD index rho found *)

] (* End If *)

]; (* End For *)

If[rho == 0, Return[{0, 0}]]; (* algorithm failed *)

For[i = 1, i <= n - rho, i++,

If[inlist[[i]] == inlist[[i + rho]],

mu = i - 1;

Break[] (* preperiod found *)

] (* End If *)

]; (* End For *)

For[i = 2, i <= n - mu, i++,

If[inlist[[mu + 1]] == inlist[[i + mu]],

nu = i - 1;

Break[] (* period found *)

] (* End If *)

]; (* End For *)

Return[{mu, nu}]

] (* End PeriodFloyd *)

In assessing the costs of these algorithms the number of storage cells is no longer
relevant, because the sequence (x0, . . . , xn−1) is given as input. The costs are dominated
by the comparisions, whose number is linear in n for the Floyd algorithm, and quadratic
for the naive algorithm. More exactly:
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1. The naive algorithm needs the elements x0, . . . , xµ+ν of the sequence and does

(µ+ ν)(µ+ ν + 1)

2

comparisions. The worst case is µ + ν ≥ n: Then the algorithm doesn’t find a
repetition, and does n(n−1)

2 comparisions (in vain).

2. The Floyd algorithm uses the elements of the sequence up to x2ρ, that amounts
to 2(µ+ ν)− 1 elements in the worst case (or 2ν+ 1 in the case µ = 0), and 2µ+ 1
elements in the best case. If it is given less elements, it doesn’t detect a repetition.
The number of necessary comparisions is 2ρ+µ+ν, less than 3(µ+ν) (or = 2ν+1
in the case µ = 0). The worst case is 2ρ ≥ n: Then the algorithm does’t find a
repetition—even when there is one in the given partial sequence—and it executes
bn−12 c comparisions.

So the Floyd algorithm has significantly smaller asymptotic expenses, but it doesn’t
succeed in all cases where the naive algorithm finds the period. Therefore we may rec-
ommend:

• For an application where the length n is rather small (for example in predicting
pseudorandom sequences) the argument of efficiency is rather meaningless. Prefer
the naive algorithm for its better success probability.

• If efficiency matters for an application, then first try the Floyd algorithm, and
only after this failed, switch to the naive algorithm.

4 Sequences of unknown origin

Suppose we are given a sequence x0, . . . , xn−1 in M and don’t know whether it is
generated by a recursion as above.

Then we want to know whether there is such a recursion that generates our sequence,
and to learn enough on the generating (state change) map as to predict the sequence
from the index n on.

If there is no repetition in the given sequence, then the solutions are exactly the
maps g : M −→M with

g(x) =

{
xi if there is an i with 1 ≤ i ≤ n− 1 and x = xi−1,

any value otherwise,

in particular the immediate continuation xn of the sequence is completely arbitrary.
If there is a repetition in the given sequence, then the algorithms above will find

it—the naive one in any case, the Floyd algorithm, if the sequence is long enough—,
and they provide two candidate numbers µ and ν for the preperiod and the period. Then
we have to check the consistency condition

xi+ν = xi for µ < i < n− ν.
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If and only if this is true, then the given sequence may be generated by a recursion.
Consistency is checked by the following algorithm in Mathematica; the return value
crash gives the index where the first inconsistency is found, and 0 in case of success:

checkPeriod[inlist_, p_Integer, q_Integer] :=

Module[{l, i, crash = 0},

If[p < 0, Return[0],]; (* nonsense input *)

If[q <= 0, Return[0],]; (* nonsense input or supposed nonperiodicity *)

n = Length[inlist];

For[i = p + 1, i <= n - q, i++,

If[inlist[[i + q]] == inlist[[i]], ,

crash = i + q; Break[]

] (* End If*)

]; (* End For i *)

Return[crash]

] (* End checkPeriod*)

All possible generating maps g are given by the formula above. The continuation of
the sequence is unique and simply relies on the detected periodicity.

If the consistency condition is violated, then there is no recursion formula of the
considered kind that generates the sequence, and any further prediction is impossible by
this approach.
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