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1 Matsushima’s Criterion

Let G be a reductive algebraic group over an algebraically closed field k.
The following was proved by Matsushima in a complex-analytic setting,
but is true in the algebraic geometry setting in any characteristic since a
closed subset of an affine variety is itself affine, and a quotient of a reductive
group G by a closed subgroup H is affine if and only if H is reductive too.

Theorem 1 Let X be an affine G-variety, and let x ∈ V have a closed orbit
G · x. Then the stabilizer Gx is reductive.

2 Luna’s Criterion

Let G be a reductive algebraic group over an algebraically closed field k of
characteristic 0, and H ⊆ G, a reductive subgroup.

Theorem 2 Let X be an affine G-variety, and let x ∈ XH be a fixed point of
H (or equivalently H ⊆ Gx). Then the following statements are equivalent:

(i) The orbit G · x is closed.

(ii) The orbit NG(H) · x is closed.

Note that NG(H) ·XH ⊆ XH . Therefore in (ii) one needs to check only
that NG(H)·x is closed in XH . If NG(H)/H is finite, then the orbit NG(H)·x
is finite, hence closed.

Theorem 3 Let V be a finite-dimensional G-module, and let x ∈ V H be a
fixed point of H. Assume 0 is in the closure of the orbit G · x. Then 0 is
already in the closure of NG(H) · x.

Theorem 4 The following statements are equivalent:
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(i) The group NG(H)/H is finite.

(ii) In every affine G-variety X every G-orbit that meets the fixed point set
XH is closed.

This criterion applies in particular if H = T ⊆ G is a maximal torus.

3 The Hilbert-Mumford Criterion

The notions of stability and related notions apply for actions of algebraic
groups on algebraic varieties, but are relevant almost only for actions of
reductive groups. In this text we confine ourselves to linear actions, a case
where these notions are especially easy to understand.

3.1 Stability for Linear Actions

Definition Let G be an affine algebraic group over an algebraically closed
field k. Let V be a finite-dimensional rational G-module. A point x ∈ V
is called

unstable if 0 is in the closure of the orbit G · x, i. e. 0 ∈ G · x,

semistable if x is not unstable, i. e. if 0 6∈ G · x,

stable if x 6= 0 and the orbit G ·x is closed and of maximal dimension
(among all orbits),

properly stable if x 6= 0, the orbit G · x is closed, and the stabilizer
Gx is finite.

We denote the sets of unstable, semistable, stable, or properly stable
points by

Vu, Vss, Vs, V (0)
s respectively.

We call the action of G on V properly stable (stable, semistable)
if there are properly stable (stable, semistable) points in V , in other

words if V
(0)
s 6= ∅ (Vs 6= ∅, Vss 6= ∅). We call the action unstable if all

points are unstable.

Remarks

1. V = Vu
.
∪ Vss.

2. V
(0)
s ⊆ Vs ⊆ Vss.

3. V
(0)
s = Vs or ∅, depending on whether

max dim{G · x | x ∈ V } = dimG or < dimG.

In other words: If there are properly stable points, then all stable
are properly stable.
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4. If the action is properly stable, or V
(0)
s 6= ∅, then trdegK(V )G =

dimV − dimG, in particular dimV ≥ dimG.

5. If x is unstable, then ρ(x) = ρ(0) for every morphism ρ : V −→ Y
that is constant on the orbits. In particular this holds for every
invariant ρ ∈ O(V )G.

Problem Let G be almost simple, and let V be an irreducible G-module
with dimV ≥ dimG, but V 6∼= g = Lie(G) as G-module. Is the action
of G on V properly stable? (In characteristic 0 this follows by a stupid
case-by-case inspection.)

Examples For G = SL2 and V = Rd, the vector space of forms of degree
d we consider (as x ∈ V ) a form F ∈ Rd. We’ll prove in Section 3.4:

• F is unstable if and only if F has a linear factor of multiplicity
> d

2 .

• F is semistable if and only if all linear factors of F have multi-
plicity ≤ d

2 .

• (For d ≥ 3) F is stable if and only if F has only linear factors of
multiplicity < d

2 . In this case F is even properly stable.

3.2 Stability for Reductive Groups

Now we assume that G is reductive. Then we know that the invariant algebra
O(V )G is finitely generated and defines a “good” quotient π : V −→ V/G,
that is a morphism with the properties

• O(V/G) = O(V )G.

• π is constant on the orbits.

• π has the universal property for morphisms that are constant on the
orbits, in other words, it is a categorial quotient.

• π separates the closed orbits.

Remarks Let G be reductive, and V be a rational G-module.

1. Vu = π−1π(0) since π separates the closed orbits.

2. Let O(V )G = k[f1, . . . , fm] where the fi ∈ O(V )G are homoge-
neous of degrees ≥ 1. Then the quotient map is

π = (f1, . . . , fm) : V −→ V/G ↪→ km,

therefore

x ∈ Vu ⇐⇒ f1(x) = . . . = fm(x) = 0⇐⇒ x ∈ V (f1, . . . , fm),
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the set of common zeros. This was Hilberts definition of unsta-
ble (“Nullform” in the case where G = SLn and V = Rd, the
space of homogeneous forms of degree d).

3. In particular Vu is a closed cone in V , the “nullcone”, where
“cone” means that x ∈ Vu and λ ∈ k× imply that λx ∈ Vu.

4. x is semistable if and only if there is a homogeneous invariant
f ∈ O(V )G of degree ≥ 1 such that f(x) 6= 0. In particular
Vss = V − Vu is an open cone in V .

5. The action is unstable ⇐⇒ Vu = V ⇐⇒ 0 is in the closure of
every orbit ⇐⇒ V/G has only one element ⇐⇒ O(V )G = k.

6. An example for 5 is G = k×· 1V ⊆ GL(V ) as well as any group
between k×· 1V and GL(V ).

Note (without proof) Let G be semisimple. Then

• Only very few G-modules have an unstable G-action.

• Only finitely many G-modules have a G-action that is not stable.

Proposition 1 Let G be reductive, V be a rational G-module, and
π : V −→ V/G be the good quotient. Then Vs ⊆ V is open, and the restriction
π : Vs −→ π(Vs) is a geometric quotient, that is, its fibers are the orbits.

Proof. Since Vs consists of closed orbits in V , the map π separates them. We
have only to show that Vs is open. We may assume that the action is stable,
that is Vs 6= ∅.

Let m = max{dimG·x|x ∈ V }. Then the set Z = {z ∈ V | dimG·z < m}
is closed and G-stable. Hence πZ ⊂ V/G is closed, and U := (V/G) − πZ
is open. Thus π−1U ⊆ V is open and G-stable and consists only of m-
dimensional orbits. Claim: π−1U = Vs.

Assume x ∈ π−1U . Then πx 6∈ πZ. Hence the closed orbit that is con-
tained in the closure of G · x has dimension at least m. But dimG · x ≤ m,
hence G · x itself is this closed orbit, thus x ∈ Vs.

Conversely if x ∈ Vs, then πx 6∈ πZ, hence x ∈ π−1U . 3

3.3 One-Parameter Subgroups

A (multiplicative) one-parameter subgroup of an algebraic group G is (by
abuse of notation) a homomorphism

λ : Gm −→ G

of algebraic groups where Gm = k× is the multiplicative group. Let V be a
rational G-module. If for x ∈ V the morphism

k× −→ V, t 7→ λ(t) · x,
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extends to a morphism λ̃ : k −→ V , then we use the notation (by another
abuse)

λ̃(0) =: lim
t→0

λ(t) · v.

(In algebraic geometry this kind of “limit” is often called specialization. For
k = C this is a limit in the sense of analysis.)

Theorem 5 (The Hilbert-Mumford criterion) Let G be a reductive
algebraic group, V be a rational G-module, and x ∈ V . Then:

(i) x is unstable if and only if there is a one-parameter subgroup
λ : Gm −→ G with limt=0 λ(t) · x = 0.

(ii) x is not properly stable if and only if there is a one-parameter subgroup
λ : Gm −→ G, λ(Gm) 6= 1, such that limt=0 λ(t) · x exists.

The proof is non-trivial. We skip it. The best reference still seems [4]. For a
somewhat more elementary proof over C see [5].

3.4 Binary Forms

We consider the group G = SL2(k) of 2 × 2-matrices with determinant 1
over k. The matrix

g =

(
a b
c d

)
∈ G

acts on the 2-dimensional vector space k2 by the formula(
a b
c d

)(
x
y

)
=

(
ax+ by
cx+ dy

)
.

Denote the coordinate functions k2 −→ k by X and Y , where

X

(
x
y

)
= x, Y

(
x
y

)
= y

for all x, y ∈ k. Since the inverse of g is

g−1 =

(
d −b
−c a

)
the contragredient action on the space of linear forms spanned by the coor-
dinate functions X and Y is given by

X 7→ dX − bY,
Y 7→ −cX + aY.
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(In general a function f : k2 −→ k is transformed to f ◦ g−1.) This action
extends to the polynomial ring k[X,Y ] as automorphisms. The homogeneous
polynomials in k[X,Y ] of degree d (or “binary forms”) form the SL2-module

V = Rd = {a0Xd + a1X
d−1Y + · · ·+ adY

d | a0, . . . , ad ∈ k}.

Each F ∈ Rd decomposes into a product of linear factors,

F = Lm1
1 · · ·L

mr
r

where the Lj ∈ R1 are pairwise different, m1 + · · · + mr = d, and
m1 ≥ . . . ≥ mr > 0.

Assume d ≥ 1, hence r ≥ 1. Then a suitable matrix in SL2 transforms
F to the form

Xp · g

where g ∈ Rd−p has only linear factors of multiplicity ≤ p (or is constant
for p = d). If moreover r ≥ 2, then we may transform F even to

(1) F̃ = XpY q · f

where p ≥ q, p+q ≤ d, and f ∈ Rd−p−q has only linear factors of multiplicity
≤ q. This transformation applies also for r = 1 if we allow q = 0. To
summarize:

Lemma 1 The SL2-orbit of every F ∈ Rd contains a form of type (1) where
p ≥ q ≥ 0, and f has only linear factors of multiplicity ≤ q. In particular

(2) F̃ =

d−q∑
ν=p

aνX
νY d−ν .

Theorem 6 An element F ∈ Rd is unstable for the action of SL2 if and
only if F has a linear factor of multiplicity p > d/2.

Proof. We consider the one-parameter subgroup

λ : Gm −→ SL2, λ(t) =

(
1
t 0
0 t

)
and apply λ(t) with t ∈ k× to the form F̃ from equation (2):

λ(t) · F̃ =

d−q∑
ν=p

aνt
2ν−dXνY d−ν = apt

2p−dXpY d−p + · · ·+ ad−qt
d−2qXd−qY q.

This has a specialization limt→0 λ(t) · F̃ for t = 0 if and only if 2p− d ≥ 0,
and

lim
t→0

λ(t) · F̃ = 0⇐⇒ 2p− d > 0⇐⇒ p >
d

2
.
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This proves the if-part of the proposition.
For the converse we assume that F 6= 0 is unstable. Then by Theorem 5

there is a one-parameter subgroup λ with limt→0 λ(t) · F = 0. The image
λ(Gm) is nontrivial, hence a one-dimensional torus in SL2, hence conjugated
with the maximal torus

T =

{(
s 0
0 1/s

)
|s ∈ k×

}
,

λ(Gm) = gTg−1 = τgT for some g ∈ SL2 where τg is conjugation by g.
Let π : SL2 −→ k be the projection to the left upper coordinate. Then

π ◦ τ−1g ◦ λ is an endomorphism of Gm, hence of the form π ◦ τ−1g ◦ λ(t) = tr

for some r ∈ Z, r 6= 0. Let us introduce the one-parameter subgroup

ρ : Gm −→ T, ρ(t) =

(
tr 0
0 t−r

)
.

Then τ−1g ◦ λ(t) = ρ(t) for all t ∈ k×, hence λ(t) = gρ(t)g−1. For the
polynomial F̄ := g−1 · F we have

ρ(t) · F̄ = ρ(t)g−1 · F = g−1λ(t) · F

hence limt→0 ρ(t) · F̄ = g−1 · 0 = 0. We write

F̄ =

d∑
ν=0

bνX
νY d−ν ,

ρ(t) · F̄ =
d∑

ν=0

bνt
r(2d−ν)XνY d−ν .

In the case r > 0 the vanishing of the limit implies bν = 0 for d − 2ν ≤ 0,
ν ≥ d

2 , thus

Y p | F̄ with p = dd+ 1

2
e.

In the case r < 0 we likewise get

Xp | F̄ with p = dd+ 1

2
e.

In any case F̄ has a linear factor of multiplicity > d/2, and so has F . 3

An equivalent formulation of Theorem 6 is:

Corollary 1 An element F ∈ Rd is semistable for the action of SL2 if and
only if all the linear factors of F have multiplicity ≤ d/2.
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By a slight modification of the proof—looking for the existence of the
limit rather than for its vanishing—we get that in the case r > 0 the exis-
tence of the limit implies bν = 0 for d− 2ν < 0, ν > d

2 , thus

Y p | F̄ with p = dd
2
e.

Likewise for r < 0

Xp | F̄ with p = dd
2
e,

in any case a factor of multiplicity ≥ d
2 if F is not properly stable. This

proves the equivalence of (i) and (ii) in the following:

Corollary 2 Assume d ≥ 3, and F ∈ Rd. Then the following statements
are equivalent:

(i) All linear factors of F have multiplicity < d/2.

(ii) F is properly stable for the action of SL2.

(iii) F is stable for the action of SL2.

Proof. “(iii) ⇒ (ii)”: For d ≥ 3 there exist properly stable points. Hence
stable points must be properly stable. 3
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