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Figures 1 and 2 illustrate two summation formulas for binomial coefficients that will be
proved and analyzed in a rather general form in the following.

Figure 1: Pascal’s triangle with the relation
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1 Pascal Tableaus

Definition Let M be a Z-module (most applications use M = Z). A Pascal tableau
in M is a map

T : N× N −→M

with the following properties, see Figure 3:

(i) T (m, 0) ∈M arbitrary for all m ∈ N.

(ii) T (m,n) = 0 for all n > m.

(iii) T (n, n) = T (0, 0) for all n ≥ 1.

(iv) For m > n ≥ 1

T (m,n) = T (m− 1, n− 1) + T (m− 1, n).
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Figure 2: Pascal’s triangle with the relation 6·
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Figure 3: A general Pascal tableau

2



Example M = Z, T (m,n) =
(
m
n

)
.

In this general context the rule illustrated by Figure 1 looks as follows:

Lemma 1 Let T be a Pascal tableau in M . Then for integers m ≥ n ≥ 1:

m∑
k=n

T (k, n) = T (m+ 1, n+ 1) .

Proof. Induction on m = n, n+ 1, . . . with fixed n. The base case m = n is obvious: The
lefthand side is T (n, n) = T (0, 0), and the righthand side, T (n+ 1, n+ 1) = T (0, 0).

Now let m ≥ n+ 1. Then by induction

m∑
k=n

T (k, n) = T (m,n) +
m−1∑
k=n

T (k, n)︸ ︷︷ ︸
=T (m,n+1)

= T (m+ 1, n+ 1).
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This method of proof yields more, as Figure 2 suggests:

Proposition 1 Let T be a Pascal tableau in M . Then for integers m ≥ n ≥ 1 , r ≥ 0:

m∑
k=n

(
m− k + r

r

)
T (k, n) = T (m+ r + 1, n+ r + 1) .

Proof. Double induction on r and m. For r = 0 the assertion is proved by Lemma 1.
For m = n (with arbitrary r) it is trivial: The lefthand side is

(
r
r

)
T (n, n) = T (0, 0), the

righthand side, T (n+ r + 1, n+ r + 1) = T (0, 0).
For the inductive step let m ≥ n+ 1 and r ≥ 1. The sum decomposes as

m∑
k=n

(
m− k + r

r

)
T (k, n) =

m∑
k=n

[(
m− k + r − 1

r − 1

)
+

(
m− k + r − 1

r

)]
T (k, n).

Separate evaluation of the two summands yields:

m∑
k=n

(
m− k + r − 1

r − 1

)
T (k, n) = T (m+ r, n+ r)

by induction on r,

m∑
k=n

(
m− k + r − 1

r

)
T (k, n) =

m−1∑
k=n

(
m− k + r − 1

r

)
T (k, n)

=

q∑
k=n

(
q − k + r

r

)
T (k, n) = T (q + r + 1, n+ r + 1)
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by induction on m (since q = m− 1). The complete sum is

T (m+ r, n+ r) + T (m+ r, n+ r + 1) = T (m+ r + 1, n+ r + 1)

by the defining rule of a Pascal tableau. 3

The special case r = 0 is in Lemma 1, the cases r = 1 and r = 2 in explicit form look
like this:

Corollary 1 Let T be a Pascal tableau, and m ≥ n ≥ 1. Then:

T (m+ 2, n+ 2) =
m∑

k=n

(m− k + 1)T (k, n),(1)

T (m+ 3, n+ 3) =
m∑

k=n

(m− k + 1)(m− k + 2)

2
T (k, n).(2)

Another interesting special case of Proposition 1 is n = 0. Then the formula becomes

m∑
k=0

(
m− k + r

r

)
T (k, 0) = T (m+ r + 1, r + 1) .

Setting q = m+ r+ 1, n = r+ 1 (note the changed meaning of n), hence m = q−n, the
formula transforms to

q−n∑
k=0

(
q − 1− k
n− 1

)
T (k, 0) = T (q, n) .

Changing the meaning of m and denoting q by m results in a formula that expresses the
general term of a Pascal tableau by its first column:

Corollary 2 Let T be a Pascal tableau, and m ≥ n ≥ 1. Then

T (m,n) =
m−n∑
k=0

(
m− 1− k
n− 1

)
T (k, 0) .

Applying Proposition 1 to the binomial coefficients T (m,n) =
(
m
n

)
yields the formula

m∑
k=n

(
m− k + r

r

)(
k

n

)
=

(
m+ r + 1

n+ r + 1

)
.

Setting N = m+ 1 and q = n+ 1 yields the variant(
N + r

q + r

)
=

N−1∑
k=q−1

(
N − 1− k + r

r

)(
k

q − 1

)
=

N−q+1∑
i=1

(
i− 1 + r

r

)(
N − i
q − 1

)
,

thus, once more renaming the variables:
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Corollary 3 For integers N ≥ n ≥ 1, r ≥ 0:(
N + r

n+ r

)
=

N−n+1∑
i=1

(
i+ r − 1

r

)(
N − i
n− 1

)
.

The explicit form of the special cases r = 0, 1, 2 is:

Corollary 4 For integers N ≥ n ≥ 1:(
N

n

)
=

N−n+1∑
i=1

(
N − i
n− 1

)
,(1)

(
N + 1

n+ 1

)
=

N−n+1∑
i=1

i ·
(
N − i
n− 1

)
,(2)

(
N + 2

n+ 2

)
=

N−n+1∑
i=1

i (i+ 1)

2
·
(
N − i
n− 1

)
.(3)

We use the relation i (i + 1) = i2 + i, or i2 = 2 · i (i+1)
2 − i, to slightly modify

Formula (iii):

N−n+1∑
i=1

i2 ·
(
N − i
n− 1

)
= 2 ·

(
N + 2

n+ 2

)
−
(
N + 1

n+ 1

)
= 2 ·

(
N + 1

n+ 1

)
+ 2 ·

(
N + 1

n+ 2

)
−
(
N + 1

n+ 1

)
=

(
N + 2

n+ 2

)
+

(
N + 1

n+ 2

)
,

with the result:

Corollary 5 For integers N ≥ n ≥ 1:

N−n+1∑
i=1

i2 ·
(
N − i
n− 1

)
=

(
N + 2

n+ 2

)
+

(
N + 1

n+ 2

)
.

In the same way Corollary 1 yields the more general result:

Corollary 6 Let T be a Pascal tableau and m ≥ n ≥ 1. Then:

m∑
k=n

(m− k + 1)2 T (k, n) = 2T (m+ 3, n+ 3)− T (m+ 2, n+ 2)

= T (m+ 3, n+ 3) + T (m+ 2, n+ 3)

5



2 Sum and Difference Sequences

In this section M continues to be a Z-module. We consider sequences a = (an)n∈N =
(a0, a1, a2, . . .) in M . They form the set MN that is itself a Z-module.

Definition Let a ∈MN be a sequence. The sum sequence b ∈MN of a is defined by

bn =
n∑

i=0

ai for all n ∈ N,

the difference sequence d ∈MN by

dn = an − an−1 for all n ≥ 1, and d0 = a0.

Obviously the difference sequence of the sum sequence is a itself, as is the sum sequence
of the difference sequence. Thus we have two operators on sequences,

σ : MN −→MN (“sum”) and δ : MN −→MN (“difference”)

that are inverse to each other. For a ∈ MN we use the notation a(k) := σk(a) for the
k-fold sum operator.

Proposition 2 Let a ∈MN be a sequence. Then the map

T : N× N −→M, T (m,n) := a
(n)
m−n

(and T (m,n) = 0 for n > m) is a Pascal tableau.

Proof. We have T (n, n) = a0 for all n ∈ N. And for m > n ≥ 1

T (m− 1, n− 1) + T (m− 1, n) = a
(n−1)
m−n + a

(n)
m−n−1

= a
(n−1)
m−n +

m−n−1∑
j=0

a
(n−1)
j =

m−n∑
j=0

a
(n−1)
j

= a
(n)
m−n = T (m,n).

3

On the other hand, given a Pascal tableau T , consider the sequence a defined by
an = T (n, 0). Then T is the Pascal tableau corresponding to a since Lemma 1 says that
the sequence T (∗, n+ 1) is the sum sequence of T (∗, n). Thus we have a map

Λ: MN −→MN×N

that maps the sequences bijectively to the set of Pascal tableaus.
In a more informal way we get a Pascal tableau from a sequence a by the following

procedure:

6



• Write the sequence a as a column.

• For k ≥ 1 construct column k from column k − 1 as its sum sequence.

• Rotate this scheme by 45 degrees to the right to get the usual triangle shape.

For the constant sequence with value 1 the intermediate matrix is

a(0) a(1) a(2) a(3) a(4) a(5) a(6) a(7) . . .

1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8
1 3 6 10 15 21 28 36
1 4 10 20 35 56 84 120
1 5 15 35 70 126 210 330
1 6 21 56 126 252 462 792
1 7 28 84 210 462 924 1716
1 8 36 120 330 792 1716 3432
...

. . .

We recover the original Pascal triangle.
From Propositions 1 and 2 we immediately conclude:

Corollary 1 Let a ∈MN be a sequence. Then for all integers n, q, r ≥ 0

q∑
i=0

(
q + r − i

r

)
a
(n)
i = a(n+r+1)

q .

And Corollary 2 of Proposition 1 yields an explicit expression of the tableau entries
by the generating series and binomial coefficients:

Corollary 2 Let a ∈MN be a sequence and T be the corresponding Pascal tableau. Then
for m ≥ n ≥ 1

T (m,n) =
m−n∑
k=0

(
m− 1− k
n− 1

)
ak .
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