3.1 Der Pseudoprimzahltest

Woran erkennt man, dass eine Zahl prim ist? Der "naive" Ansatz, Probedivisionen durch alle Zahlen $\leq \sqrt{n}$ durchzuführen – perfektioniert im Sieb des Eratosthenes –, ist nicht effizient, da $\sqrt{n} = \exp(\frac{1}{2}\log n)$ immer noch exponentiell mit der Stellenzahl $\log n$ von n wächst.

Einen Ansatz, Primzahlen ohne Probedivision zu erkennen, bietet der Satz von Fermat: Ist n prim, so $a^{n-1} \equiv 1 \pmod{n}$ für alle $a = 1, \ldots, n-1$. Umgekehrt sagt man, dass n den **Pseudoprimzahltest zur Basis** a besteht, wenn $a^{n-1} \equiv 1 \pmod{n}$. Eine Primzahl besteht diesen Test also zu jeder Basis $a = 1, \ldots, n-1$. Die Kongruenz $2^{14} \equiv 4 \pmod{15}$ beweist, dass 15 nicht prim ist. Allerdings ist $2^{340} \equiv 1 \pmod{341}$, obwohl $341 = 11 \cdot 31$; aber immerhin ist $3^{340} \equiv 56 \pmod{341}$, so dass 341 durch den Pseudoprimzahltest zur Basis 3 fällt.

Trotzdem reicht dieses Kriterium nicht, um umgekehrt die Primzahleigenschaft zu beweisen. Man nennt n CARMICHAEL-**Zahl**, wenn n den Pseudoprimzahltest zu jeder zu n teilerfremden Basis a besteht, aber nicht prim ist.

Den Pseudoprimzahltest kann man auch dadurch ausdrücken, dass die Ordnung von a in \mathbb{M}_n ein Teiler von n-1 ist. Also ist n genau dann Carmichael-Zahl oder prim, wenn $\lambda(n) \mid n-1$ für die Carmichael-Funktion λ . Es gibt zu viele Carmichael-Zahlen, als dass der Pseudoprimzahltest ruhigen Gewissens als für die Praxis ausreichend betrachtet werden könnte. Insbesondere haben Alford, Granville und Pomerance 1992 bewiesen, dass es unendlich viele Carmichael-Zahlen gibt.

Die kleinste Carmichael-Zahl ist $561 = 3 \cdot 11 \cdot 17$; das folgt leicht aus dem nächsten Satz.

Satz 1 Eine natürliche Zahl n ist genau dann CARMICHAEL-Zahl, wenn sie zuammengesetzt und quadratfrei ist, und $p-1 \mid n-1$ für jeden Primteiler p von n. Eine ungerade CARMICHAEL-Zahl hat mindestens 3 Primfaktoren.

Beweis. " \Longrightarrow ": Wäre $p^2|n$, so enthielte \mathbb{M}_n eine zu \mathbb{M}_{p^e} mit geeignetem $e \geq 2$ isomorphe Untergruppe, also nach Satz 2 in Anhang A.3 auch eine zyklische Gruppe der Ordnung p; also wäre p|n-1, Widerspruch. Da aber \mathbb{M}_n eine zyklische Gruppe der Ordnung p-1 enthält, gibt es ein Element a der Ordnung p-1, und $a^{n-1} \equiv 1 \pmod{n}$, also p-1|n-1.

" —": Da n quadratfrei ist, ist nach dem chinesischen Restsatz die multiplikative Gruppe \mathbb{M}_n das direkte Produkt der zyklischen Gruppen \mathbb{F}_p^{\times} , wobei p die Primteiler von n durchläuft. Da stets $p-1\mid n-1$, hat jedes Element von \mathbb{M}_n eine Ordnung, die n-1 teilt.

Zusatz: Angenommen, n = pq mit zwei Primzahlen p und q, etwa p < q. Dann ist $q - 1 \mid n - 1 = pq - 1$, also $p - 1 \equiv pq - 1 \equiv 0 \pmod{q-1}$, Widerspruch zu p < q. \diamondsuit