
Cryptology Part I: Classic Ciphers

(Mathematical Version)

Klaus Pommerening
Fachbereich Physik, Mathematik, Informatik

der Johannes-Gutenberg-Universität
Saarstraße 21

D-55099 Mainz

October 25, 1999—English version October 5, 2013—last change
January 19, 2021

K. Pommerening, Classic Ciphers 1

Preliminary Note

This text is somewhat incomplete. It focusses on the mathematical back-
ground of Cryptology. People without mathematical ambitions may browse
the HTML pages—these are informal and hopefully self-contained. Also for
historical or motivational stuff I often refer to the accompanying web pages

http://www.staff.uni-mainz.de/pommeren/Cryptology/

Motivational Hints

Classical cryptography considers ciphers in use up to the 1970’s, that is, in
the precomputer era. Today no one seriously uses these ciphers. Why does
it make sense dealing with them?

• We get a feeling for the security of the basic encryption steps that are
in use as components of the more complex ciphers of today.

• The complexity of modern techniques becomes perspicuous.

• Most of the mathematical foundations are relevant also for modern
cryptologic techniques.

• We may learn a lot from the failures of the past—many of the com-
monly accepted principles of cryptology arose a long time ago. In short:
The algorithms are out-of-date, the methods and principles are up-to-
date.

• Classical cryptology makes a good part of general education, not only
for mathematicians or computer scientists. In particular it provides
many interesting project ideas for undergraduates or even school chil-
dren.

• Classical cryptology provides intellectual challenges—better than
chess, poker, or war games [:-)]. The puzzle corners of journals often
contain puzzles whose cryptological background shines through.

• And last but not least: occupation with classical cryptology is fun.

Elonka Dunin’s web site “Famous Unsolved Codes and Ciphers” has an
overview over unsolved “historic” cryptograms:

http://www.elonka.com/UnsolvedCodes.html

“The Secret Code Breaker” (Bob Reynard) has a lot of elementary ma-
terial that’s also great for kids:

http://www.secretcodebreaker.com/

CrypTool also contains a lot of educational material and challenges:

http://www.staff.uni-mainz.de/pommeren/Cryptology/
http://www.elonka.com/UnsolvedCodes.html
http://www.secretcodebreaker.com/

K. Pommerening, Classic Ciphers 2

http://www.cryptool.org/en/

CrypTool online contains lots of classic ciphers which are explained and
executable in a browser or on a smartphone:

http://www.cryptool-online.org/en/

MysteryTwister C3, abbreviated MTC3, is a crypto cipher contest with
currently more than 180 challenges created by more than 40 authors and
used by more than 5000 solvers. The website has a moderated forum. The
challenges are distributed in 4 different levels:

http://www.mysterytwisterc3.org/

Klaus Schmeh has a blog with the latest news in classic cryptology and
many unsolved ciphers (German mostly):

http://scienceblogs.de/klausis-krypto-kolumne/

Conventions

In order to not get lost in less relevant and nasty details most examples in
this chapter follow the model:

• Ciphertexts are written in uppercase letters without word boundaries,
employing the 26 letter alphabet A...Z.

• Plaintexts are written in upper-, lower-, or mixed-case letters, with or
without word boundaries and punctuation.

The mathematical considerations try to be as general as possible with re-
spect to the used alphabet.

Gender Mainstreaming: It is common use in modern cryptology to staff
the scenarios with men and women alternately. Alice and Bob are com-
municating partners, Eve is the eavesdropper, and Mallory, the “man
in the middle”. In classical cryptology the role of the cryptanalyst
corresponds to the eavesdropper. For this reason in the following we
consider the cryptanalyst as female in honor of the famous cryptana-
lysts Elizebeth Friedman, Joan Clarke, and Mavis Lever.

http://www.cryptool.org/en/
http://www.cryptool-online.org/en
http://www.mysterytwisterc3.org/
http://scienceblogs.de/klausis-krypto-kolumne/

Chapter 0

Cryptology as
Entertainment—Literature
and Puzzles

See the web page http://www.staff.uni-mainz.de/pommeren/Cryptology
/Classic/0 Entertain/

3

http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/0_Entertain/
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/0_Entertain/

Chapter 1

Monoalphabetic
Substitutions

1.1 Mathematical Model of Cryptography

We want to give a formal definition of the following two concepts:

• An encryption function transforms arbitrary character strings into
other character strings. (Where the strings are from a given alpha-
bet.)

• A cipher is a parametrized family of encryption functions. The param-
eter is called the key. It determines the choice of a function from the
family.

The purpose of this construct is that nobody can invert the encryption
function except people who know the key. That is, an encrypted message
(or a text, a file . . .) is kept secret from third parties. These can see that
there is a message, but they cannot read the contents of the message because
they don’t have the key and therefore don’t know which of the functions from
the family to invert.

Alphabets and Texts

Let Σ be a finite set, and call it alphabet. Call its elements letters (or
symbols, or characters).

Examples. Here are some alphabets of cryptographic relevance:

• {A, B, . . . , Z}, the standard 26 letter alphabet of classical cryptogra-
phy.

• The 95 character alphabet of printable ASCII characters from “blank”
to “tilde”, including punctuation marks, numbers, lowercase, and up-
percase letters.

4

K. Pommerening, Classic Ciphers 5

• {0, 1} = F2, the alphabet of bits, or the field of two elements. The
earliest appearence (after Bauer[1]) is Bacon 1605.

• F5
2, the alphabet used for telegraphy code since Baudot (1874). It has

32 different symbols and also goes back to Bacon (after Bauer[1]).

• F8
2, the alphabet of bytes (correctly: octets, because in early comput-

ers bytes did not necessarily consist of exactly 8 bits). The earliest
appearance seems to be at IBM around 1964.

• More generally Fl2, the alphabet of l-bit blocks. Often l = 64 (for
example in DES or IDEA), or l = 128 (for example in AES). See Part
II (on Bitblock Ciphers).

Often the alphabet Σ is equipped with a group structure, for example:

• Zn, the cyclic group of order n = #Σ. Often we interpret the cal-
culations in this group as arithmetic modn, as in elementary num-
ber theory, and denote Zn by Z/nZ, the residue class ring of integers
mod n.

• F2 with the field addition +, as Boolean operator often denoted by
XOR or ⊕. (Algebraists like to reserve the symbol ⊕ for direct sums.
For this reason we’ll rarely use it in the Boolean context.)

• Fl2 as l-dimensional vector space over F2 with vector addition, denoted
by +, XOR, or ⊕.

For an alphabet Σ we denote by Σ∗ the set of all finite sequences from
Σ. These sequences are called texts (over Σ). A subset M ⊆ Σ∗ is called a
language or plaintext space, and the texts in M are called meaningful
texts or plaintexts.

Note that the extreme case M = Σ∗ is not excluded.

Ciphers

Let K be a set (finite or infinite), and call its elements keys.

Definition (i) An encryption function over Σ is an injective map
f : Σ∗ −→ Σ∗.

(ii) A cipher (also called encryption system or cryptosystem) over Σ
with key space K is a family F = (fk)k∈K of encryption functions over
Σ.

(iii) Let F be a cipher over Σ, and F̃ = {fk|k ∈ K} ⊆ Map(Σ∗,Σ∗) be
the corresponding set of different encryption functions. Then log2(#K)
is called the key length, and d(F) = log2(#F̃), the effective key
length of the cipher F .

K. Pommerening, Classic Ciphers 6

Remarks

1. This is not the most general definition of an encryption function. One
could also consider non-injective functions, or even relations that are
not functions, or are not defined on all of Σ∗.

2. Strictly speaking, the encryption functions need to be defined only on
the plaintext space M , however we almost always consider encryption
functions that are defined on all of Σ∗.

3. The encryption functions fk, k ∈ K, need not be pairwise different.
Therefore in general #F̃ ≤ #K, and effective key length ≤ key length.
IfK is infinite, then F̃ can be finite or infinite. In general the key length
is easier to determine than the effective key length, however it is less
useful.

4. The elements in the ranges fk(M) depend on the key k. They are
called ciphertexts.

5. Note that the identification of the alphabet Σ with the integers mod n,
Z/nZ, also defines a linear order on Σ. We often implicitely use this
order. In some cases for clarity we must make it explicit.

1.2 Shift Ciphers

Assume that the alphabet is linearly ordered. A shift cipher replaces each
letter of the plaintext by the letter that follows a certain number k of po-
sitions in the alphabet. If the end of the alphabet is reached, restart at the
beginning. That means, we consider cyclic shifts. The number k is the key.

Decryption works in the reverse direction: Count backwards from the
ciphertext letter.

Example 1: Original Caesar

Here Σ = {A,...,Z} = Z26, hence A ↔ 0, B ↔ 1, ..., Z ↔ 25. Caesar used
the fixed key k = 3. Encryption looks like follows

C A E S A R | +3 (plaintext)

F D H V D U (ciphertext)

Note that the original Roman alphabet had only 23 letters with-
out J, U, W. However in this part of the lecture we (almost)
always use the 26 letter alphabet.

As key space we could also take K = Z. Then the key length is ∞. But
effectively we only have 26 different encryption functions, one of them being
trivial. Therefore the effective key length is only log2(26) ≈ 4.7.

K. Pommerening, Classic Ciphers 7

Example 2: Rot13

ROT13 is a shift cipher over the alphabet {A, . . . , Z} that shifts each letter
by 13 positions ahead in the alphabet. As mnemonic take the table

A B C D E F G H I J K L M

N O P Q R S T U V W X Y Z

As encryption function this is almost useless. Its purpose is hiding some
texts, say of offensive content, from immediate recognition. The reader of
the message can figure it out only by a conscious act.

Because 13 + 13 = 26, double encryption restores the plaintext. That
is, ROT13 is an involution. Or in other words: encryption = decryption as
functions.

Example 3: XOR

This example extends the notion of shift cipher towards the more general
version given in the mathematical description below. In this sense XOR
is a shift cipher on the space of l-bit blocks. Thus our alphabet is the l-
dimensional vector space Fl2 over the two element field F2. The operation
XOR is the addition of vectors in this space (because XOR of bits is the
addition in the field F2). The key is a fixed block k. Each plaintext block a
is XORed with k bitwise, that is, “shifted” (or translated) by k.

Mathematical Description

Let the alphabet Σ be a finite group G with n elements and with group
composition ∗. As key space also take K = G. For k ∈ K let

fk : Σ∗ −→ Σ∗

be the continuation of the right translation fk(s) = s ∗ k for s ∈ Σ, that is

fk(a1, . . . , ar) = (a1 ∗ k, . . . , ar ∗ k) for a = (a1, . . . , ar) ∈ Σr.

The effective key length is d(F) = log2(n). Thus the key space is quite
small and is easily completely searched except when n is VERY LARGE.
An example will follow in the next section.

1.3 Cryptanalysis of Shift Ciphers by Exhaustion

General Approach

The most primitive of all cryptanalytic attacks is exhaustion, also known as
brute force attack. It consists of a complete key search—run through the
complete key space K, and try key after key until you get a valid decryption.

K. Pommerening, Classic Ciphers 8

Assume that K is finite (as it is in all practical situations). Then the attacker
needs #K steps in the worst case, and #K/2 steps in the mean. This method
applies to all ciphers. A precondition for the success is the redundancy of
the plaintext language that allows distinguishing between meaningful text
and nonsense character sequences. In general the solution is unique as soon
as the length of the text exceeds the “unicity distance” of the cipher, see
Chapter 10.

For distinguishing between meaningful and meaningless texts, algorithms
that compute language statistics may be used, see Chapter 3.

Solving Shift Ciphers

FDHVDU

GEIWEV

HFJXFW

IGKYGX

JHLZHY

KIMAIZ

LJNBJA

MKOCKB

NLPDLC

OMQEMD

PNRFNE

QOSGOF

RPTHPG

SQUIQH

TRVJRI

USWKSJ

VTXLTK

WUYMUL

XVZNVM

YWAOWN

ZXBPXO

AYCQYP

BZDRZQ

CAESAR

DBFTBS

ECGUCT

This is an example for solving a shift cipher by exhaustion. The first row is
the ciphertext from the last section. The following rows contain the candi-
date plaintexts for each possible key one after the other.

Only the row CAESAR makes sense as plaintext. Hence the ciphertext is
decrypted and the key is 3.

K. Pommerening, Classic Ciphers 9

Note that each column contains the standard alphabet, cyclically contin-
ued. From this observation a purely mechanical approach derives: Produce
some vertical strips containing the alphabet twice, and arrange them be-
neath each other in such a way that one row contains the ciphertext. Then
scan the other rows for meaningful plaintext.

Because of this scheme the exhaustion method is sometimes
called “generatrix method”. This notation comes from an anal-
ogy with cipher cylinders, see Chapter 4.

Lessons Learned

1. Shift ciphers are solvable as soon as the attacker has some small
amount of ciphertext, at least when the alphabet is not too large and
the language is only a small part of all character sequences. (Later we’ll
express this as “high redundancy” or “low entropy”, see Chapter 10.)

2. A cipher should use a large key space (or rather a large effective key
length). But bear in mind:

The effective key length measures the complexity of the exhaus-
tion attack. But in general it is an insufficient measure of the
complexity of the cryptanalysis of a cipher.

In other words: In many cases there are more efficient attacks against a
cipher than exhaustion.

1.4 Monoalphabetic Substitution

Introductory Example

The key of a monoalphabetic substition is a permutation of the alphabet,
for example:

ABCDEFGHIJKLMNOPQRSTUVWXYZ

UNIVERSTABCDFGHJKLMOPQWXYZ

For encryption locate each letter of the plaintext in the first row of this
table, and replace it by the letter below it. In our example this becomes:

ENGLI SHAST RONOM ERWIL LIAML ASSEL LDISC OVERE DTRIT ON

EGSDA MTUMO LHGHF ELWAD DAUFD UMMED DVAMI HQELE VOLAO HG

For decryption we use the inverse permutation, given by the table

ABCDEFGHIJKLMNOPQRSTUVWXYZ

IJKLEMNOCPQRSBTUVFGHADWXYZ

K. Pommerening, Classic Ciphers 10

Mathematical Description

Let S(Σ) be the group of permutations of the alphabet Σ, that is the full
symmetric group. See Appendix A for an introduction to permutations.

A monoalphabetic substitution consists of the elementwise application
of a permutation σ ∈ S(Σ) to texts:

fσ(a1, . . . , ar) := (σa1, . . . , σar) for (a1, . . . , ar) ∈ Σr.

Definition A monoalphabetic cipher over the alphabet Σ with keyspace
K ⊆ S(Σ) is a family (fσ)σ∈K of monoalphabetic substitutions.

Examples 1. The shift cipher where K = the set of right translations.

2. The general monoalphabetic cipher where K = S(Σ). Here #K = n!
with n = #Σ.

The Effective Key Length

The general monoalphabetic cipher F defeats the exhaustion attack, even
with computer help. The n! different keys define n! different encryption
functions. Therefore

d(F) = log2(n!) ≥ n · [log2(n)− log2(e)] ≈ n · log2(n)

by Stirling’s formula, see Appendix B. For n = 26 we have for example

n! ≈ 4 · 1026, d(F) ≈ log2(26!) ≈ 88.38.

Note that for a ciphertext that doesn’t contain all letters of the alphabet
the search is somewhat faster because the attacker doesn’t need to determine
the entire key.

1.5 Algorithms and Programming in Perl

See the web page http://www.staff.uni-mainz.de/pommeren/Cryptology
/Classic/1 Monoalph/MonoPerl.html

1.6 Cryptanalysis of Monoalphabetic Substitution

General Approach

The cryptanalysis of the monoalphabetic substitution makes use of its in-
variants, that is of properties of a text that remain unchanged under en-
cryption:

1. The distribution of the frequencies of single characters is invariant.

http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/1_Monoalph/MonoPerl.html
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/1_Monoalph/MonoPerl.html

K. Pommerening, Classic Ciphers 11

• This means that a letter in the ciphertext occurs exactly as many
times as the corresponding letter in the plaintext.

• The same is true for bigrams (= pairs of letters), trigrams, . . . ,
n-grams.

2. Repeated patterns in the plaintext show up also in the ciphertext.

Both of these invariant properties suggest cryptanalytic approaches:

1. Statistical analysis

2. Pattern recognition (for example matching with the words of a dictio-
nary)

Often the cryptanalyst combines both of these approaches, and supplements
them with systematic guesses:

• Cryptography is Mathematics.

• Cryptanalysis is struggling, using all available aids.

Only in rare situations cryptanalysis is completely algorithmic. But no
matter which method applies and how clean its theoretical basis is, the
successful solution legitimates the cryptanalyst.

1.7 Statistical Analysis of Ciphertext

Character Frequencies

Natural languages such as German, English, Russian, . . . , and also artifi-
cial languages such as MS-DOS-EXE, . . . , Pascal, . . . , MS-Word, . . . , show
typical character frequencies that are

• nonuniformly distributed,

• characteristic for the language.

Texts of about 500 or 1000 letters in a natural language rareley show a
significant deviation from the typical frequencies.

This allows automating the cryptanalysis based on letter frequencies to a
large extent. The web offers several such programs, for example see the ACA
Crypto Dropbox [http://www.und.nodak.edu/org/crypto/crypto/].

http://www.und.nodak.edu/org/crypto/crypto/

K. Pommerening, Classic Ciphers 12

Mathematical Model

The simplest mathematical model for statistical analysis of ciphertext is a
probability distribution on the underlying (finite) alphabet Σ with atomic
probabilities p(s) for all letters s ∈ Σ. Thus we assume that plaintexts are
streams of independent (but not uniformly distributed) random letters.

A closer approximation to the truth would account for dependencies of
letters from their predecessors according to the typical bigram distribution.

There are further possible refinements, for example the most frequent
initial letter of a word in English is T, in German, D.

Example: Byte Frequencies in MS-Word Files

Byte Frequency

00 ca 7-70%

01 ca 0.8-17%

20 = space ca 0.8-12%

65 = e ca 1-10%

FF ca 1-10%

Observations

• The variability is rather large, unexpected peaks occur frequently.

• The distribution depends on the software version.

• All bytes 00-FF occur.

• We see long sequences of zero bytes. If the file is encrypted by XOR,
large parts of the key shine through.

The last remark yields an efficient method for analysis of the XOR en-
cryption of a WORD file with periodically repeated key. This not exactly
a statistical cryptanalysis, it only uses the frequency of a single byte. To
start with, pairwise add the blocks. If one of the plaintext blocks essentially
consists of zeroes, then the sum is readable plaintext:

Plaintext . . . a1 . . . as . . . 0 . . . 0 . . .
Key (repeated) . . . k1 . . . ks . . . k1 . . . ks . . .
Ciphertext . . . c1 . . . cs . . . c′1 . . . c′s . . .

where ci = ai + ki in the first block, and c′i = 0 + ki in the second block for
i = 1, ..., s (s the blocksize).

Therefore ci + c′i = ai + ki + ki = ai,—one block of plaintext revealed
and identified—; and ki = c′i—the key revealed.

If the addition of two cipher text blocks yields a zero block, then with
high probability both plaintext blocks are zero blocks (or with small prob-
ability are identical nonzero blocks). Also in this case the key is revealed.

K. Pommerening, Classic Ciphers 13

1.8 Example of a Statistical Cryptanalysis

See web pages http://www.staff.uni-mainz.de/pommeren/Kryptologie

/Klassisch/1 Monoalph/Beispiel.html (in German) or
http://www.staff.uni-mainz.de/pommeren/Kryptologie/Klassisch

/0 Unterhaltung/Lit/Goldbug Crypto.html (in English)

1.9 Pattern Search

Word Lists

The second basic approach to cryptanalysis of the monoalphabetic substi-
tution is the search for patterns in the ciphertext that correspond to the
patterns of

• supposed words (probable words),

• words from a list.

This method is cumbersome if done by hand but easy with computer support
that completely searches lists of several 100000 words in a few seconds.

Searching for a probable word is a variant of pattern search. We search
for the pattern of a word that we suspect from knowledge of the context as
occuring in the plaintext.

Numerical Patterns for Strings

To normalize letter patterns we describe them by numbers. Here is an exam-
ple: The word “statistics” defines the pattern 1232412451. The general
procedure is: Replace the first letter by 1. Then replace each following letter
by

• the number that was assigned to this letter before,

• the next unused number, if the letter occurs for the first time.

Here is a formal definition:

Definition Let Σ be an alphabet. Let a1, . . . , aq be letters from Σ. The pat-
tern belonging to the string (a1, . . . , aq) ist the q-tuple (n1, . . . , nq) ∈
Nq of numbers that is defined recursively by

• n1 := 1.

• For k = 2, . . . , q:

If there is an i with 1 ≤ i < k and ak = ai, then nk := ni,

else nk := 1 + max{ni | 1 ≤ i < k}.

http://www.staff.uni-mainz.de/pommeren/Kryptologie/Klassisch/1_Monoalph/Beispiel.html
http://www.staff.uni-mainz.de/pommeren/Kryptologie/Klassisch/1_Monoalph/Beispiel.html
http://www.staff.uni-mainz.de/pommeren/Kryptologie/Klassisch/0_Unterhaltung/Lit/Goldbug_Crypto.html
http://www.staff.uni-mainz.de/pommeren/Kryptologie/Klassisch/0_Unterhaltung/Lit/Goldbug_Crypto.html

K. Pommerening, Classic Ciphers 14

Remarks

1. ni = nj ⇐⇒ ai = aj for 1 ≤ i ≤ j ≤ q.
2. {n1, . . . , nq} = [1 . . .m] where m = #{a1, . . . , aq} (= number of

different letters in (a1, . . . , aq)).

Algorithmic Description

Goal: Determine the numerical pattern of a string.

Input: The string as a list string = (a1, . . . , aq).

Output: The numerical pattern as a list pattern = (n1, . . . , nq).

Initial value: pattern = empty list.

Auxiliary variables:

• n = current number, initial value = 0.

• assoc = list of processed letters.

The index i belongs to the letter assoc[i].

Initial value: assoc = empty list.

Procedure: Loop over the letters in string. The current letter is x.

If there is an i with x = assoc[i], then append i to pattern,

else increment n, append n to pattern, append x to assoc.

For a Perl program that implements this algorithm see the
web page http://www.staff.uni-mainz.de/pommeren/Cryptology

/Classic/1 Monoalph/PattPerl.html

1.10 Example of Cryptanalysis by Pattern Search

See the web page http://www.staff.uni-mainz.de/pommeren/Cryptology
/Classic/1 Monoalph/Puzzle.html

1.11 Known Plaintext Attack

See the web page http://www.staff.uni-mainz.de/pommeren/Cryptology
/Classic/1 Monoalph/knownplain.html

1.12 Early History of Cryptology

See the web page http://www.staff.uni-mainz.de/pommeren/Cryptology
/Classic/1 Monoalph/EarlyHist.html

http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/1_Monoalph/PattPerl.html
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/1_Monoalph/PattPerl.html
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/1_Monoalph/Puzzle.html
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/1_Monoalph/Puzzle.html
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/1_Monoalph/knownplain.html
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/1_Monoalph/knownplain.html
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/1_Monoalph/EarlyHist.html
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/1_Monoalph/EarlyHist.html

K. Pommerening, Classic Ciphers 15

1.13 Variants of Cryptographic Procedures

Some Definitions

Substitution: Letters or groups of letters are replaced by other ones.

Monoalphabetic substitution: Each letter is replaced by another letter
that is always the same.

Polyalphabetic substitution: Each letter is replaced—depending on its
position in the text—by another letter. (The most important method
of classical cryptography in the 20th century up to the sixties)

Monographic substitution: Letters are replaced by symbols one at a
time.

Polygraphic substitution: In each step one or more letters are replaced
by several symbols.

Homophonic substitution: For some plaintext letters or groups there are
several choices of ciphertext symbols.

A mathematical model uses a probability space Ω and considers en-
cryption functions of the type

fk : M × Ω −→ Σ∗.

This is called probabilistic encryption.

Transposition: The letters of the plaintext are permuted.

Codebook: Letter groups of various lengths (for example entire words)
are replaced by other ones according to a list. Since the Renaissance
this was in use under the denomination Nomenclator. It was the
most used encryption method even in the 20th Century, especially by
diplomats.

Source coding (superencrypted code): The plaintext is transformed
with a codebook, and the resulting “intermediate text” is encrypted
by some kind of substitution.

Book cipher: Plaintext words or letters are looked up in a certain book.
As ciphertext one takes the position of the word or letter in the book,
for example page number, line number, number of the word (or number
of the letter).

Block cipher: In each step a fixed number of letters is substituted at once.

Stream cipher: In each step a single letter is substituted, each time in
another way, depending on its position in the plaintext.

K. Pommerening, Classic Ciphers 16

Product cipher: A sequence of several transpositions and block substitu-
tions is applied one after the other (also called cipher cascade).

Polygraphic Substitution

For a fixed l in each step an l-gram (block of l letters) is encrypted at once.
As simplest nontrivial example we consider bigraphic substitution.

Here pairs of letters are encrypted together. The easiest description of the
cipher is by a large square of sidelength n = #Σ. An example for the stan-
dard alphabet:

a b c d . . .

a CA FN BL

b SK WM

c HP

d

.

With this table BA is encrypted as SK .
The earliest historical example was given by Porta in 1563. His bigram

table however contained strange symbols meeting the spirit of the time.
A picture is on the web page http://www.staff.uni-mainz.de/pommeren

/Cryptology/Classic/1 Monoalph/PortaBi.gif

Properties of the Polygraphic Substitution

1. The key space of a bigraphic substitution is the set S(Σ2) of all permu-
tations of the Cartesian product Σ × Σ. It contains the huge number
of n2! keys. (Of course one also could restrict the keys to a subspace.)
The effective keylength is

d(F) = log2(n2!) ≈ n2 · log2(n2) = 2 · n2 · log2(n).

For n = 26 this amounts to about 4500. Exhaustion surpasses all
present or future computer capacity.

2. Compared with a monoalphabetic (and monographic) substitution the
frequency distribution of single letters is flattened down. A statistical
analysis therefore must resort to bigram frequencies and is a lot harder.
Pattern recognition and search for probable words also is harder, but
not so much. Also more general attacks with known plaintext are fea-
sible.

3. We may interpret a polygraphic substitution of l-grams as a mono-
graphic substitution over the alphabet Σ̃ = Σl of l-grams. The larger

http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/1_Monoalph/PortaBi.gif
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/1_Monoalph/PortaBi.gif

K. Pommerening, Classic Ciphers 17

l, the more complicated is the cryptanalysis. However for the gen-
eral polygraphic substitution also the complexity of specifying the key
grows with nl, that is exponentially with l. Therefore this encryption
method is useful only with a restricted keyspace. That means we need
to fix a class of substitutions Σl −→ Σl whose description is much
shorter than the complete value table of nl entries.

A bigraphic example from history is the Playfair cipher, invented by
Wheatstone.

4. Polygraphic substitutions are the predecessors of modern block ci-
phers.

Codebooks

See the web page http://www.staff.uni-mainz.de/pommeren/Cryptology
/Classic/1 Monoalph/Codebook.html

http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/1_Monoalph/Codebook.html
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/1_Monoalph/Codebook.html

Chapter 2

Polyalphabetic Substitutions

2.1 Key Alphabets

The Idea of Polyalphabetic Cipher

A polyalphabetic cipher—like a monoalphabetic one—encrypts each letter
by a substitution that is defined by a permuted alphabet. However for each
letter another alphabet is used, depending on its position in the plaintext.

Thus polyalphabetic encryption breaks the invariants that led to suc-
cessful cryptanalysis of monoalphabetic substitutions:

• Letter frequencies

• l-gram frequencies

• Patterns

This method was considered unbreakable until the 19th Century, its vari-
ants that used cipher machines even until the begin of the computer era.
Nevertheless before cipher machines became available polyalphabetic sub-
stitution was rarely used because it requires concentrated attention by the
operator, and the ciphertext often is irreparably spoiled by encryption er-
rors.

The Key of a Monoalphabetic Substitution

The key of a monoalphabetic substitution over the alphabet Σ is a permu-
tation σ ∈ S(Σ). It has a unique description by the sequence of substituted
letters in the order of the alphabet, that is by the family (σ(s))s∈Σ.

Example for the standard alphabet Σ = {A, ..., Z}

1. representation by the permutation table:

18

K. Pommerening, Classic Ciphers 19

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

B C D F G H I J K M N W S T U V W X Y Z P A R O L E

2. or representation by the permuted alphabet alone:

B C D F G H I J K M N W S T U V W X Y Z P A R O L E

The term “monoalphabetic” reflects that this one (permuted) alphabet de-
fines the complete encryption function.

The Key of a Polyalphabetic Substitution

Now let us write several permuted alphabets below each other and apply
them in order: the first alphabet for the first plaintext letter, the second
alphabet for the second letter and so on. In this way we perform a polyal-
phabetic substitution. If the list of alphabets is exhausted before reaching
the end of the plaintext, then we restart with the first alphabet. This method
is called periodic polyalphabetic substitution.

Example for the standard alphabet with 5 permuted alphabets

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

K N Q T W Z C F I L O R U X A D G J M P S V Y B E H

L O R U X A D G J M P S V Y B E H K N Q T W Z C F I

A D G J M P S V Y B E H K N Q T W Z C F I L O R U X

U X A D G J M P S V Y B E H K N Q T W Z C F I L O R

S V Y B E H K N Q T W Z C F I L O R U X A D G J M P

Using these alphabets we encrypt

UNIVERSITAETMAINZ = plaintext

S J W X alphabet from line 1

Y N Q I alphabet from line 2

Y Y K alphabet from line 3

F Z U alphabet from line 4

E S Q alphabet from line 5

SYYFEJNYZSWQKUQXI = ciphertext

Classification of Polyalphabetic Substitutions

We classify polyalphabetic substitutions by four independent binary prop-
erties:

• Periodic (or repeated key)

K. Pommerening, Classic Ciphers 20

• Aperiodic (or running key)

depending on whether the alphabets repeat cyclically or irregularly.

• Independent alphabets

• Primary alphabet and accompanying secondary alphabets

where secondary alphabets derive from the primary alphabet by a fixed
recipe. In the example above we took simple cyclical shifts. A closer inspec-
tion reveals that the definition of the shifts is given by the keyword KLAUS.

• Progressive alphabet change

• Alphabet choice controlled by a key

depending on whether the alphabets are used one after the other in their
original order, or the order is changed by a key.

• Contextfree

• Contextsensitive

depending on whether the alphabets depend only on the position in the text,
or also on some adjacent plaintext or ciphertext letters.

In general we take a set of alphabets (only n! different alphabets are
possible at all), and use them in a certain order, periodically repeated or
not. Often one takes exactly n alphabets, each one beginning with a dif-
ferent letter. Then one can control the alphabet choice by a keyword that
is cyclically repeated, or by a long keytext that is at least as long as the
plaintext.

2.2 The Invention of Polyalphabetic Substitution

Polyalphabetic Encryption in Renaissance

See the web page http://www.staff.uni-mainz.de/pommeren/Cryptology
/Classic/2 Polyalph/Renaissance.html

The Trithemius Table (aka Vigenère Table)

This table is used for polyalphabetic substitution with the standard alphabet
and its cyclically shifted secondary alphabets. It has n rows. The first row
consists of the alphabet Σ. Each of the following rows has the alphabet
cyclically shifted one position further to the left. For the standard alphabet
this looks like this:

http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/2_Polyalph/Renaissance.html
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/2_Polyalph/Renaissance.html

K. Pommerening, Classic Ciphers 21

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

B C D E F G H I J K L M N O P Q R S T U V W X Y Z A

C D E F G H I J K L M N O P Q R S T U V W X Y Z A B

D E F G H I J K L M N O P Q R S T U V W X Y Z A B C

E F G H I J K L M N O P Q R S T U V W X Y Z A B C D

F G H I J K L M N O P Q R S T U V W X Y Z A B C D E

G H I J K L M N O P Q R S T U V W X Y Z A B C D E F

H I J K L M N O P Q R S T U V W X Y Z A B C D E F G

I J K L M N O P Q R S T U V W X Y Z A B C D E F G H

J K L M N O P Q R S T U V W X Y Z A B C D E F G H I

K L M N O P Q R S T U V W X Y Z A B C D E F G H I J

L M N O P Q R S T U V W X Y Z A B C D E F G H I J K

M N O P Q R S T U V W X Y Z A B C D E F G H I J K L

N O P Q R S T U V W X Y Z A B C D E F G H I J K L M

O P Q R S T U V W X Y Z A B C D E F G H I J K L M N

P Q R S T U V W X Y Z A B C D E F G H I J K L M N O

Q R S T U V W X Y Z A B C D E F G H I J K L M N O P

R S T U V W X Y Z A B C D E F G H I J K L M N O P Q

S T U V W X Y Z A B C D E F G H I J K L M N O P Q R

T U V W X Y Z A B C D E F G H I J K L M N O P Q R S

U V W X Y Z A B C D E F G H I J K L M N O P Q R S T

V W X Y Z A B C D E F G H I J K L M N O P Q R S T U

W X Y Z A B C D E F G H I J K L M N O P Q R S T U V

X Y Z A B C D E F G H I J K L M N O P Q R S T U V W

Y Z A B C D E F G H I J K L M N O P Q R S T U V W X

Z A B C D E F G H I J K L M N O P Q R S T U V W X Z

Trithemius used it progressively, that is he used the n alphabets from
top to down one after the other for the single plaintext letters, with cyclic
repetition.

Note that this procedure involves no key and therefore is not an
encryption in the proper sense. Its security is only by obscurity.

Notwithstanding this weakness even Trithemius’s method results in a cru-
cial improvement over the monoalphabetic substitution: Each letter is en-
crypted to each other the same number of times in the mean. The frequency
distribution of the ciphertext is perfectly uniform.

The Bellaso Cipher (aka Vigenère Cipher)

Even Vigenère himself attributes this cipher to Bellaso. It uses the
Trithemius table but with the alphabet choice controlled by a keyword:
for each plaintext letter choose the row that begins with this letter. This
method uses a key and therefore is a cipher in the proper sense.

K. Pommerening, Classic Ciphers 22

As an example take the keyword MAINZ. Then the 1st, 6th, 11th, . . .
plaintext letter is encrypted with the “M row”, the 2nd, 7th, 12th, . . . with
the “A row” and so on. Note that this results in a periodic Caesar addition
of the keyword:

p o l y a l p h a b e t i c

M A I N Z M A I N Z M A I N

B O T L Z X P P N A Q T Q P

In general the Bellaso cipher uses a group structure on the alphabet
Σ. For the key k = (k0, . . . , kl−1) ∈ Σl we have

Encryption: ci = ai ∗ ki mod l

Decryption: ai = ci ∗ k−1
i mod l

The first one who described this cipher algebraically as an addition appar-
ently was the French scholar Claude Comiers in his 1690 book using a 18
letter alphabet. Lacking a suitable formal notation his description is some-
what long-winded. Source:

Joachim von zur Gathen: Claude Comiers: The first arithmetical
cryptography. Cryptologia 27 (2003), 339 - 349.

2.3 Tools for Polyalphabetic Substitution

See the web page http://www.staff.uni-mainz.de/pommeren/Cryptology
/Classic/2 Polyalph/Tools.html

2.4 Mathematical Description of Periodic Polyal-
phabetic Substitution

The General Case

In general a periodic polyalphabetic cipher has a key space K ⊆ S(Σ)l,
consisting of sequences of l permutations of the alphabet Σ. The key k =
(σ0, . . . , σl−1) defines the encryption function fk: Σr −→ Σr given by

a0 a1 . . . al−1 al . . . ai . . . ar−1

↓ ↓ ↓ ↓ ↓
σ0a0 σ1a1 . . . σl−1al−1 σ0al . . . σi mod lai

The componentwise encryption formula for c = fk(a) ∈ Σr is

ci = σi mod l(ai),

and the formula for decryption

ai = σ−1
i mod l(ci).

http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/2_Polyalph/Tools.html
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/2_Polyalph/Tools.html

K. Pommerening, Classic Ciphers 23

Effective Key Length

Bellaso Cipher

The primary alphabet is the standard alphabet, and we assume the crypt-
analyst knows it. The key is chosen as word (or passphrase) ∈ Σl. Therefore

#K = nl,

d(F) = l · log2(n).

For n = 26 this amounts to ≈ 4.70 · l. To avoid exhaustion l should be
about 10 (pre-computer age), or about 20 (computer age). However there
are far more efficient attacks against this cipher than exhaustion, making
these proposals for the key lengths obsolete.

Disk Cipher

The key consists of two parts: a permutation ∈ S(Σ) as primary alphabet,
and a keyword ∈ Σl. Therefore

#K = n! · nl,
d(F) = log2(n!) + l · log2(n) ≈ (n+ l) · log2(n)

For n = 26 this amounts to ≈ 4.70 · l + 88.38.
If the enemy knows the primary alphabet, say be capturing a cipher disk,

the effective key length reduces to that of the Bellaso cipher.

A More General Case

For a periodic polyalphabetic cipher that uses l independent alphabets,

K = S(Σ)l,

d(F) = log2((n!)l) ≈ nl · log2(n).

For n = 26 this is about 88.38 · l.

Another View

An l-periodic polyalphabetic substitution is an l-gram substitution, or block
cipher of length l, given by the product map

(σ0, . . . , σl−1): Σl = Σ× · · · × Σ −→ Σ× · · · × Σ = Σl,

that is, a monoalphabetic substitution over the alphabet Σl. In particular
the Bellaso cipher is the shift cipher over Σl, identified with (Z/nZ)l.

For Σ = F2 the Bellaso cipher degenerates to the simple XOR on Fl2.

K. Pommerening, Classic Ciphers 24

2.5 The Cipher Disk Algorithm

Mathematical Notation

Take the alphabet Σ = {s0, . . . , sn−1}, and interpret (or code) it as the
additive group of the ring Z/nZ. The key (σ, k) ∈ S(Σ) × Σl of a disk
cipher consists of a primary alphabet (represented by the permutation σ)
and a keyword k = (k0, . . . , kl−1) ∈ Σl. Our notation for the corresponding
encryption function is

fσ,k: Σ∗ −→ Σ∗

Special case: The Bellaso cipher with keyword k is fε,k where ε ∈ S(Σ)
denotes the identity permutation.

The Alphabet Table

We arrange the alphabets for the polyalphabetic substitution in form of the
usual table:

s0 s1 s2 . . . sn−1

t0 t1 t2 . . . tn−1

t1 t2 t3 . . . t0
.
tn−1 t0 t1 . . . tn−2

where ti = σsi for 0 ≤ i ≤ n− 1.
Note that whenever we refer to an alphabet table we implicitely use an

order on the alphabet Σ. This order manifests itself by indexing the letters
as s0, . . . , sn−1.

The Encryption Function

Now we encrypt a text a = (a0, a1, a2, . . .) ∈ Σr using this notation. Let
ai = sq and ki = tp as letters of the alphabet. Then we read the ciphertext
letter ci off from row p and column q of the table:

ci = tp+q = σsp+q = σ(sp + sq) [sums in Z/nZ].

We have

ki = tp = σ(sp), sp = σ−1(ki), hence ci = σ(ai + σ−1(ki)).

If we denote by fσ the monoalphabetic substitution corresponding to σ, then
this derivation proves:

Theorem 1 The disk cipher fσ,k is the composition (or “superencryption”)
of the Bellaso encryption fε,k′, where k′ = f−1

σ (k), with the monoalphabetic
substitution fσ,

fσ,k = fσ ◦ fε,k′

K. Pommerening, Classic Ciphers 25

Algorithm

The naive straightforward algorithm for the disk cipher is

• Take the next plaintext letter.

• Take the next alphabet.

• Get the next ciphertext letter.

From Theorem 1 we derive an algorithm that is a bit more efficient:

1. Take k′ = f−1
σ (k), in coordinates k′i = σ−1(ki) for 0 ≤ i < l.

2. Add a and (the periodically extended) k′ over Z/nZ, and get b, in
coordinates bj = aj + k′j mod l

3. Take c = fσ(b) ∈ Σr, in coordinates cj = σ(bj).

A Perl program implementing this algorithm is on the web page
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Perl/

porta.pl, the corresponding program for decryption on http://www.

staff.uni-mainz.de/pommeren/Cryptology/Classic/Perl/portadec.pl.
They can be called online from the pages http://www.staff.uni-mainz.

de/pommeren/Kryptologie/Klassisch/2 Polyalph/portaenc.html and
http://www.staff.uni-mainz.de/pommeren/Kryptologie/Klassisch/

2 Polyalph/portadec.html

2.6 Analysis of Periods

Kasiski’s approach

Already in the 16th Century Porta and the Argentis occa-
sionally broke polyalphabetic encryptions by guessing the key or
a probable word. For some more historical bits see the web
page http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/

2 Polyalph/AnaPer.html

An attack with known plaintext is easy against a disk cipher as soon as
the primary alphabet is compromised, for example by a lost cipher disk. It
is trivial against the Bellaso cipher that uses the standard alphabet. In
contrast it is quite difficult against ciphers that use independent alphabets.

In 1863 the Prussian Major F. W. Kasiski published a solution that
immediately demolished the belief in the security of periodic polyalphabetic
ciphers. In fact Babbage had found this method ten years before but never
published it. Therefore it is appropriate to credit the method to Kasiski.

The solution proceeds in three steps:

1. Determine the period l.

http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Perl/porta.pl
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Perl/porta.pl
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Perl/portadec.pl
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Perl/portadec.pl
http://www.staff.uni-mainz.de/pommeren/Kryptologie/Klassisch/2_Polyalph/portaenc.html
http://www.staff.uni-mainz.de/pommeren/Kryptologie/Klassisch/2_Polyalph/portaenc.html
http://www.staff.uni-mainz.de/pommeren/Kryptologie/Klassisch/2_Polyalph/portadec.html
http://www.staff.uni-mainz.de/pommeren/Kryptologie/Klassisch/2_Polyalph/portadec.html
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/2_Polyalph/AnaPer.html
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/2_Polyalph/AnaPer.html

K. Pommerening, Classic Ciphers 26

2. Arrange the ciphertext in rows of length l. Then the columns each are
encrypted by a (different) monoalphabetic substitution.

3. Break the monoalphabetic columns.

Step 3, that is cryptanalyzing the monoalphabetically encrypted columns,
faces the complication that the columns don’t represent connected mean-
ingful texts. Pattern search is pointless. However frequency analysis makes
sense.

There are some simplifications for dependent alphabets:

• Adjusting the frequency curves. This works when the primary alphabet
is known, see Sections 2.7 and 2.8.

• Symmetry of position when the primary alphabet is unknown (not
treated here, but see Chapter 5). This method, proposed by Kerck-
hoffs, uses regularities in the alphabet table to infer further entries
from already known entries, for example by completing the diagonals
in the alphabet table of a disk cipher.

Especially simple is the situation with Bellaso’s cipher, as soon as the
period is known: Each column is Caesar encrypted. Therefore we need to
identify only one plaintext letter in each column.

How to Determine the Period

Three approaches to determining the period of a periodic polyalphabetic
cipher are

1. Exhaustion: Try l = 1, 2, 3, . . . one after each other. The correct l
reveals itself by the appropriate frequency distribution of the letters
in each column. As tools use some statistical “goodness of fit” tests.
We’ll study appropriate methods in Chapter 3.

2. Search for repetitions, see next subsection. This is an instance of the
general method “pattern search”.

3. Coincidence analysis after Friedman, Kullback, and Sinkov. This
is also a subject of Chapter 3, and is an instance of the general method
“statistical analysis”.

In contrast to the exhaustion approach the other two methods immediately
identify the situation where there is no period.

K. Pommerening, Classic Ciphers 27

Search for Repetitions

We start with three observations:

1. If a plaintext is encrypted using l alphabets in cyclic order, and if a
sequence of letters occurs k times in the plaintext, than this sequence
occurs in the ciphertext about k/l times encrypted with the same
sequence of alphabets.

2. In each of these occurrences where the sequence is encrypted the same
way the ciphertext contains a repeated pattern in a distance that is a
multiple of l, see Figure 2.1.

3. Not every repeated pattern in the ciphertext necessarily arises in this
way. It could be by accident, see Figure 2.2. However the probability
of this event is noticeably smaller.

An assessment of this probability is related to the birthday paradox of prob-
ability theory, and is contained in Appendix C. It was published in

K. Pommerening: Kasiski’s Test: Couldn’t the repetitions be by
accident? Cryptologia 30 (2006), 346-352.

key key . . . key

? ?
...the... ...the...plaintext

-� distance = multiple of l

Figure 2.1: Repetition in ciphertext

A Perl program that searches for repetitions is on the web page
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Perl/

kasiski.pl

For online use see the web form http://www.staff.uni-mainz.de/

pommeren/Kryptologie/Klassisch/2 Polyalph/kasiski1.html

2.7 Cryptanalysis of a Polyalphabetic Ciphertext

(for a German plaintext)

http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Perl/kasiski.pl
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Perl/kasiski.pl
http://www.staff.uni-mainz.de/pommeren/Kryptologie/Klassisch/2_Polyalph/kasiski1.html
http://www.staff.uni-mainz.de/pommeren/Kryptologie/Klassisch/2_Polyalph/kasiski1.html

K. Pommerening, Classic Ciphers 28

GREENGREENGREENGREENGREENGREENGREENGREENGREENGREENGREENGREEN

THENSASCOLLECTEVERYTHINGMENTALITYISLARGELYAHOLDOVERFROMTHECO

ZYIRFGJGSYRVGXRBVVCGNZRKZKEXEYOKCMFRRVKRRPELBRUSZRXWVSZZYIGB

GREENGREENGREENGREENGREENGREENGREENGREENGREENGREENGREEN

LDWARWHENAVOYEURISTICINTERESTINTHESOVIETUNIONWASTHENORM

RUAEECYIRNBFCIHXZWXVIZRXRXVWXVTKLIFUMMIGAEMSACRWXUKESVZ

6 6

? ??

6

accidental

Figure 2.2: True and accidental repetitions

Finding the Period by Searching Repetitions

http://www.staff.uni-mainz.de/pommeren/Cryptology/

Classic/2 Polyalph/Kasiski.html

Column Analysis and Rearrangement

http://www.staff.uni-mainz.de/pommeren/Cryptology/

Classic/2 Polyalph/Columns.html and http://www.staff.uni-mainz.de/

pommeren/Cryptology/Classic/2 Polyalph/Rearrang.html

2.8 Rearranging the Columns

The Problem

The formula for the disk cipher from Theorem 1 was fσ,k = fσ ◦ fε,k′ where
k′ = f−1

σ (k). However we didn’t use this formula in our analysis but rather a
similar one of the type fσ,k = g ◦fσ where g should describe the shifts in the
alphabets and g−1 the rearrangement. What we did was first rearrange the
shifts in the different columns, and then solve the resulting monoalphabetic
ciphertext. Note that for this method to work in general the primary alpha-
bet must be known. Unfortunately there is no useful general interpretation
of the formula g = fσ ◦ fε,k′ ◦ f−1

σ when σ is unknown.
We’ll analyze the situation, first for an example.

Example

We take the standard alphabet Σ = A...Z, and consider an alphabet table.

http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/2_Polyalph/Kasiski.html
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/2_Polyalph/Kasiski.html
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/2_Polyalph/Columns.html
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/2_Polyalph/Columns.html
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/2_Polyalph/Rearrang.html
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/2_Polyalph/Rearrang.html

K. Pommerening, Classic Ciphers 29

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Q W E R T Z U I O P A S D F G H J K L Y X C V B N M

W E R T Z U I O P A S D F G H J K L Y X C V B N M Q

E R T Z U I O P A S D F G H J K L Y X C V B N M Q W

...

M Q W E R T Z U I O P A S D F G H J K L Y X C V B N

Phrased in terms of permutations the top row, Row 0, the standard alphabet,
corresponds to the identical permutation ε ∈ S(Σ). The next row, Row 1,
the primary alphabet, corresponds to the permutation σ ∈ S(Σ). Row 2
corresponds to σ ◦ τ , where τ is the alphabet shift

τ(A) = B, τ(B) = C, . . . , τ(Z) = A

Row i corresponds to σ ◦ τ i−1. For the concrete example we have

σ(A) = Q, σ(B) = W, . . .

and thus
σ ◦ τ(A) = σ(B) = W, σ ◦ τ(B) = σ(C) = E, . . .

On the other hand

τ ◦ σ(A) = τ(Q) = R, τ ◦ σ(B) = τ(W) = X, . . .

Shifts in the Primary Alphabet

Recall the alphabet table in the general case

s0 s1 s2 . . . sn−1

t0 t1 t2 . . . tn−1

t1 t2 t3 . . . t0
.
tn−1 t0 t1 . . . tn−2

where ti = σsi for 0 ≤ i ≤ n− 1, and σ is the permutation that defines the
primary alphabet.

Identify as usual the alphabet Σ = {s0, . . . , sn−1} with Z/nZ, the inte-
gers modn, via i 7→ σi and take indices mod n. Mathematical expressions
for the shifts in the original and primary alphabets are

• τ = shift by 1 in the original alphabet, τ(si) = si+1.

• τk = shift by k in the original alphabet, τk(si) = si+k.

• στσ−1 = shift by 1 in the primary alphabet,

ti
σ−1

7→ si
τ7→ si+1

σ7→ ti+1

K. Pommerening, Classic Ciphers 30

• στkσ−1 = (στσ−1)k = shift by k in the primary alphabet.

The alphabet table, interpreted as list of permutations, is the orbit of
σ ∈ S(Σ) under iterated right translation by τ (or under the cyclic subgroup
〈τ〉 ⊆ S(Σ) generated by τ).

The “naive” shift that we performed in Section 2.7 shifted the single
letters of the primary alphabet by a certain number of positions in the
standard alphabet—we performed τ i ◦ σ for some value i. Why was this
successful? Under what conditions are the naively shifted primary alphabets
again rows of the alphabet table?

Decimated alphabets

We take the ordering of the alphabets into account and let T1 = (t0, . . . , tn−1)
be the ordered primary alphabet where ti = σsi. The secondary alphabets
then are Ti = (ti−1, . . . , tn−1, t0, . . . , ti−2) for i = 2, . . . , n. They correspond
to the permutations σ ◦ τ i−1, that is Ti = (σsi−1, σsi, . . .).

The primary alphabet used in the example of Section 2.7 was of a special
kind: It had ti = s3i mod 26. The corresponding formula for the general case
is

ti = ski mod n,

and ti for i = 0, . . . , n − 1 runs through all elements of Σ if and only if k
and n are relative prime.

Definition. Let the alphabet Σ be linearly ordered as (s0, . . . , sn−1), and
let gcd(k, n) = 1. The (ordered) alphabet T = (t0, . . . , tn−1) is called
decimated alphabet of order k (of Σ with the given linear order
relation) if there is an index p ∈ {0, . . . , n−1} such that tp+i = ski mod n

for i = 0, . . . , n− 1.

That means, beginning with tp = s0 we take each k-th letter from Σ.
If the primary alphabet is decimated, so are all the secondary alphabets;

we get them all by varying the index p.
Now when we apply the shift τ to the (ordered) primary and secondary

alphabets T1, . . . , Tn we get new alphabets fτ (T1), . . . , fτ (Tn); note that we
interpret the n-tuples Ti as texts and apply τ elementwise. The question we
want to answer is whether the fτ (Ti) belong to the collection of the Ti. The
answer involves the normalizer N(〈τ〉) of the subgroup 〈τ〉 ≤ S(Σ).

Theorem 2 (Decimated alphabets) Let the alphabet Σ be linearly
ordered as (s0, . . . , sn−1). Let the (ordered) primary alphabet T1 =
(t0, . . . , tn−1) be defined by ti = σsi where σ ∈ S(Σ), and let T2, . . . , Tn
be the corresponding ordered secondary alphabets. Then the following state-
ments are equivalent:

(i) There is a j ∈ {1, . . . , n} with fτ (T1) = Tj.

K. Pommerening, Classic Ciphers 31

(ii) fτ permutes the {T1, . . . , Tn}.
(iii) T1 is a decimated alphabet of Σ.
(iv) σ ∈ N(〈τ〉).

Proof. “(i) =⇒ (iv)”: fτ (T1) = Tj means that τ ◦ σ = σ ◦ τ j . Then
σ−1 ◦ τ ◦ σ ∈ 〈τ〉 or σ ∈ N(〈τ〉).

“(iv) =⇒ (iii)”: By conjugation σ defines an automorphism of the cyclic
group 〈τ〉. These automorphisms are known, the following Lemma 1 gives
σ ◦ τ ◦ σ−1 = τk for some k, relative prime with n. The letter s0 occurs
somewhere in T1, so let s0 = tp. Then σsp = tp = s0 and

tj+p = σsj+p = στ jsp = τ jk(σsp) = τ jks0 = sjk for j = 0, . . . , n− 1,

where as usual we take the indices mod n.
“(iii) =⇒ (iv)”: Let p and k as in the definition. For any i we have

τkσsp+i = τktp+i = τkski = ski+k = sk(i+1) = tp+i+1 = σsp+i+1 = στsp+i.

From this we conclude σ ◦ τ = τk ◦ σ or σ ◦ τ ◦ σ−1 ∈ 〈τ〉.
“(iv) =⇒ (ii)”: We have σ−1 ◦τ ◦σ = τk

′
where k′k ≡ 1 (mod n) whence

τ ◦ σ = σ ◦ τk′ . The permuted alphabet Ti corresponds to the permutation
σ◦τ i−1. Therefore fτTi corresponds to τ ◦σ◦τ i−1 = σ◦τk′+i−1. We conclude
fτTi = Tk′+i.

“(ii) =⇒ (i)” is the restriction to a special case. 3

Lemma 1 Let G = 〈g〉 be a finite cyclic group of order m. Then the auto-
morphisms of G are the power maps g 7→ gk where k is relatively prime to
m. In other words, the automorphism group AutG is isomorphic with the
multiplicative group (Z/mZ)×.

Proof. Let h be an automorphism of G. Then h(g) = gk for some k ∈ Z.
This k uniquely defines h on all of G, and k is uniquely determined by h up
to multiples of Ord(g) = m. The power map g 7→ gk is bijective if and only
if k is relatively prime to m. 3

2.9 Summary

The canonical method of cryptanalyzing the disk cipher fσ,k proceeds in
three steps:

1. Determine the period l.

2. Rearrange the ciphertext in rows of length l.

K. Pommerening, Classic Ciphers 32

3. Reconstruct the monoalphabets of the columns.

Note that the effort is essentially independent of the key length. However
the success probability decreases with the period length, because

• The probability of finding non-accidental repetitions decreases.

• Finding useful frequency distributions in the columns becomes harder.

Some special cases have special facilities:

• For a Bellaso cipher or more generally for a disk cipher with a deci-
mated alphabet or even more generally for a disk cipher with a known
primary alphabet we may rearrange the monoalphabets of the columns
and are left with a large monoalphabetic ciphertext.

• Known plaintext gives the plaintext equivalents of single letters in a
few columns that may be extended to other columns by symmetry of
position when the alphabets are related, for example for a disk cipher
(not treated here, but see Chapter 5).

These findings result in two recommendations for the use of polyalpha-
betic ciphers:

• The larger the period, the better the security.

• Independent alphabets more reliably protect from attacks.

Both of these recommendations make polyalphabetic ciphers more cumber-
some in routine use, and therefore in history were adopted only after many
failures.

Chapter 3

Some Statistical Properties
of Languages

In this chapter we study certain statistical properties of texts and languages.
These help to answer questions such as:

• Does a given text belong to a certain language? Can we derive an
algorithm for automatically distinguishing valid plaintext from random
noise? This is one of the central problems of cryptanalysis.

• Do two given texts belong to the same language?

• Can we decide these questions also for encrypted texts? Which prop-
erties of texts are invariant under certain encryption procedures? Can
we distinguish encrypted plaintext from random noise?

• Is a given ciphertext monoalphabetically encrypted? Or polyalphabet-
ically with periodic repetition of alphabets? If so, what is the period?

• How to adjust the alphabets in the columns of a periodic cipher? Or of
several ciphertexts encrypted with the same key and correctly aligned
in depth?

To get useful information on these questions we define some statistical
reference numbers and analyze the distributions of these numbers. The main
methods for determining reference values are:

• Exact calculation. This works for artificial languages with exact
descriptions and for simple distributions, but for natural languages it
is hopeless.

• Modelling. We try to build a simplified model of a language, based
on letter frequencies etc. and hope that the model on the one hand
approximates the statistical properties of the language closely enough,

33

K. Pommerening, Classic Ciphers 34

and on the other hand is simple enough that it allows the calculation
of the relevant statistics. The two most important models are:

– the computer scientific model that regards a language as a fixed
set of strings with certain statistical properties,

– the stochastic model that regards a language as a finite stationary
Markov process. This essentially goes back to Shannon in the
1940s after at least 20 years of naive but successful use by the
Friedman school.

• Simulation. We take a large sample of texts from a language and
determine the characteristic reference numbers by counting. In this
way we find empirical approximations to the distributions and their
characteristic properties.

The main results of this section go back to Friedman, Kullback, and
Sinkov in the 1920s and 1930s. However the statistical methodology has
since developed and now provides a uniform conceptual framework for sta-
tistical tests and decisions.

For a systematic treatment of the first two questions above a good ref-
erence is [8, 9]. An elementary but mathematically sound introduction to
probability and statistics is [10], whereas [16] and [25] use an elementary
“naive” approach to probability theory.

3.1 Recognizing Plaintext: Friedman’s Most-
Frequent-Letters Test

We begin with the first question: Does a given text belong to a certain lan-
guage? Friedman gave a quite simple procedure for distinguishing valid
text from random noise that works surprisingly well, even for short texts.
Besides it makes a smooth introduction to statistical test theory.

Friedman’s Procedure

Assume we are given a string of letters and want to decide whether it is a
part of a meaningful text (in a given language, say English), or whether it
is random gibberish. Our first contact with this problem was the exhaustion
attack against the simple shift cipher that produced 26 strings, exactly one of
which represented the correct solution. Cherry-picking it was easy by visual
inspection. But for automating this decision procedure we would prefer a
quantitative criterion.

Such a criterion was proposed by Friedman in Riverbank Publication
No. 16 from 1918 [7]. The procedure is

K. Pommerening, Classic Ciphers 35

1. Identify a set of most frequent letters from the target language. For
English take ETOANIRSHD that make up 73.9% of an average English
text but only 10/26 ≈ 38.5% of a random text.

2. Count the cumulative frequencies of these most-frequent letters for
each of the candidate strings.

3. Pick the string with the highest score. If this doesn’t work, also con-
sider the next highest scores.

Example. For the Caesar example in Section 1.3 the scores are in Ta-
ble 3.1. We immediately see that the correct solution CAESAR has the
highest score (even if this is not a genuine English word).

Table 3.1: Friedman scores for the exhausion of a shift cipher

FDHVDU 3 OMQEMD 3 XVZNVM 1

GEIWEV 3 PNRFNE 4 <--- YWAOWN 3

HFJXFW 1 QOSGOF 3 ZXBPXO 1

IGKYGX 1 RPTHPG 3 AYCQYP 1

JHLZHY 2 SQUIQH 3 BZDRZQ 2

KIMAIZ 3 TRVJRI 4 <--- CAESAR 5 <===

LJNBJA 2 USWKSJ 2 DBFTBS 3

MKOCKB 1 VTXLTK 2 ECGUCT 2

NLPDLC 2 WUYMUL 0

The example shows that Friedman’s procedure seems to work well even
for quite short strings. To confirm this observation we analyze the distribu-
tion of the Most-Frequent-Letters scores—in short MFL scores—for strings
of natural languages and for random strings. First we consider this task from
a theoretic viewpoint, then we also perform some empirical evaluations.

The distribution of MFL Scores

Consider strings of length r over an alphabet Σ whose letters are indepen-
dently drawn with certain probabilities, the letter s ∈ Σ with probability
ps. LetM⊆ Σ be a subset and p =

∑
s∈M ps be the cumulative probability

of the letters in M. The MFL score of a string a = (a1, . . . , ar) ∈ Σr with
respect to M is

NM(a) = #{i | ai ∈M}.

To make the scores for different lengths comparable we also introduce the
MFL rate

νM(a) =
NM(a)

r
.

K. Pommerening, Classic Ciphers 36

The MFL rate defines a function

νM : Σ∗ −→ Q.

(Set νM(∅) = 0 for the empty string ∅ of length 0.)
The distribution of scores is binomial, that is the probability that a

string a ∈ Σr contains exactly k letters from M is given by the binomial
distribution

P (a ∈ Σr |NM(a) = k) = Br,p(k) =

(
r

k

)
· pk · (1− p)r−k.

Random strings. We take the 26 letter alphabet A...Z and pick a subset
M of 10 elements. Then p = 10/26 ≈ 0.385, and this is also the
expected value of the MFL rate νM(a) for a ∈ Σ∗. For strings of
length 10 we get the two middle columns of Table 3.2.

English strings. Assuming that the letters of an English string are inde-
pendent is certainly only a rough approximation to the truth, but the
best we can do for the moment, and, as it turns out, not too bad. Then
we takeM = {ETOANIRSHD} and p = 0.739 and get the rightmost two
columns of Table 3.2.

Table 3.2: Binomial distribution for r = 10. The columns headed “Total”
contain the accumulated probabilities.

p = 0.385 (Random) p = 0.739 (English)

Score Coefficient Probability Total Probability Total

0 B10,p(0) 0.008 0.008 0.000 0.000
1 B10,p(1) 0.049 0.056 0.000 0.000
2 B10,p(2) 0.137 0.193 0.001 0.001
3 B10,p(3) 0.228 0.422 0.004 0.005
4 B10,p(4) 0.250 0.671 0.020 0.024
5 B10,p(5) 0.187 0.858 0.067 0.092
6 B10,p(6) 0.097 0.956 0.159 0.250
7 B10,p(7) 0.035 0.991 0.257 0.507
8 B10,p(8) 0.008 0.999 0.273 0.780
9 B10,p(9) 0.001 1.000 0.172 0.951
10 B10,p(10) 0.000 1.000 0.049 1.000

A Statistical Decision Procedure

What does this table tell us? Let us interpret the cryptanalytic task as a
decision problem: We set a threshold value T and decide:

K. Pommerening, Classic Ciphers 37

• A string with score ≤ T is probably random. We discard it.

• A string with score > T could be true plaintext. We keep it for further
examination.

There are two kinds of possible errors in this decision:

1. A true plaintext has a low score. We miss it.

2. A random string has a high score. We keep it.

Example. Looking at Table 3.2 we are tempted to set the threshold value
at T = 4. Then (in the long run) we’ll miss 2.4% of all true plaintexts
because the probability for an English 10 letter text string having an
MFL score ≤ 4 is 0.024. On the other hand we’ll discard only 67.1%
of all random strings and erroneously keep 32.9% of them.

The lower the threshold T , the more unwanted random strings will be se-
lected. But the higher the threshold, the more true plaintext strings will
be missed. Because the distributions of the MFL scores for “Random” and
“English” overlap there is no clear cutpoint that always gives the correct
decision.

This is a typical situation for statistical decision problems (or tests). The
statistician usually bounds one of the two errors by a fixed amount, usually
5% or 1%, and calls this the error of the first kind, denoted by α. (The
complementary value 1 − α is called the sensitivity of the test.) Then she
tries to minimize the other error, the error of the second kind, denoted
by β. The complementary value 1 − β is called the power (or specifity)
of the test. Friedman’s MFL-method, interpreted as a statistical test (for
the “null hypothesis” of English text against the “alternative hypothesis”
of random text), has a power of ≈ 67% for English textstrings of length 10
and α = 2.4%. This α-value was chosen because it is the largest one below
5% that really occurs in the sixth column of Table 3.2.

To set up a test the statistician faces two choices. First she has to choose
between “first” and “second” kind depending on the severity of the errors
in the actual context. In our case she wants to bound the number of missed
true plaintexts at a very low level—a missed plaintext renders the complete
cryptanalysis obsolete. On the other hand keeping too many random strings
increases the effort of the analysis, but this of somewhat less concern.

The second choice is the error level α. By these two choices the statisti-
cian adapts the test to the context of the decision problem.

Remark. We won’t discuss the trick of raising the power by exhausting the
α-level, randomizing the decision at the threshold value.

K. Pommerening, Classic Ciphers 38

Note. There is another (“Bayesian”) way to look at the decision problem.
The predictive values give the probabilities that texts are actually
what we decide them to be. If we decide “random” for texts with MFL
score ≤ 4, we’ll be correct for about 671 of 1000 random texts and err
for 24 of 1000 English texts. This makes 695 decisions for random of
which 671 are correct. The predictive value of our “random” decision
is 96.5% ≈ 671/695. The decision “English” for an MFL score > 4
will be correct for 976 of 1000 English texts and false for 329 of 1000
random texts. Hence the predictive value of the decision “English” is
about 75% ≈ 976/1305. That means that if we pick up texts (of length
10) with a score of at least 5, then (in the long run) one out of four
selected texts will be random.

Other Languages: German and French

Table 3.3: Distribution of MFL scores for r = 10

p = 0.751 (German) p = 0.791 (French)

Score Probability Total Probability Total

0 0.000 0.000 0.000 0.000
1 0.000 0.000 0.000 0.000
2 0.000 0.000 0.000 0.000
3 0.003 0.003 0.001 0.001
4 0.016 0.019 0.007 0.008
5 0.058 0.077 0.031 0.039
6 0.145 0.222 0.098 0.137
7 0.250 0.471 0.212 0.350
8 0.282 0.754 0.301 0.651
9 0.189 0.943 0.253 0.904
10 0.057 1.000 0.096 1.000

German: The ten most frequent letters are ENIRSATDHU. They make up
75.1% of an average German text.

French: The ten most frequent letters are EASNTIRULO. They make up
79.1% of an average French text.

With these values we supplement Table 3.2 by Table 3.3.
As before for English we get as conclusions for textstrings of length 10:

German: With a threshold of T = 4 and α = 1.9% the MFL-test has a
power of 67%. The predictive value for “German” is 75% ≈ 981/1310.

K. Pommerening, Classic Ciphers 39

French: With a threshold of T = 5 and α = 3.9% the MFL-test has a
power of 86%. The predictive value for “French” is 87% ≈ 961/1103.

Textstrings of length 20

Table 3.4: Distribution of MFL scores for r = 20

Random English German French
Score Prob Total Prob Total Prob Total Prob Total

0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000
2 0.005 0.005 0.000 0.000 0.000 0.000 0.000 0.000
3 0.017 0.022 0.000 0.000 0.000 0.000 0.000 0.000
4 0.045 0.067 0.000 0.000 0.000 0.000 0.000 0.000
5 0.090 0.157 0.000 0.000 0.000 0.000 0.000 0.000
6 0.140 0.297 0.000 0.000 0.000 0.000 0.000 0.000
7 0.175 0.472 0.000 0.000 0.000 0.000 0.000 0.000
8 0.178 0.650 0.001 0.001 0.001 0.001 0.000 0.000
9 0.148 0.798 0.004 0.006 0.003 0.004 0.001 0.001

10 0.102 0.900 0.013 0.019 0.010 0.013 0.003 0.004
11 0.058 0.958 0.034 0.053 0.026 0.040 0.010 0.013
12 0.027 0.985 0.072 0.125 0.060 0.100 0.028 0.041
13 0.010 0.996 0.125 0.250 0.111 0.211 0.064 0.105
14 0.003 0.999 0.178 0.428 0.168 0.379 0.121 0.226
15 0.001 1.000 0.201 0.629 0.202 0.581 0.184 0.410
16 0.000 1.000 0.178 0.807 0.191 0.772 0.217 0.627
17 0.000 1.000 0.119 0.925 0.135 0.907 0.193 0.820
18 0.000 1.000 0.056 0.981 0.068 0.975 0.122 0.942
19 0.000 1.000 0.017 0.998 0.022 0.997 0.049 0.991
20 0.000 1.000 0.002 1.000 0.003 1.000 0.009 1.000

The distribution is given in Table 3.4. We conclude:

English: With a threshold of T = 10 and α = 1.9% the MFL-test has a
power of 90% and a predictive value of 91% ≈ 981/1081.

German: With a threshold of T = 11 and α = 4.0% the MFL-test has a
power of 96% and a predictive value of 96% ≈ 960/1002.

French: With a threshold of T = 12 and α = 4.1% the MFL-test has a
power of 98.5% and a predictive value of 98.5% ≈ 959/974.

K. Pommerening, Classic Ciphers 40

3.2 Empirical Results on MFL Scores

The power calculations for the tests—not the tests themselves!—relied on
the independency of the letters in a string. This assumption is clearly false
for natural languages. Therefore getting experimental results for the distri-
butions of the MFL scores makes sense. The description of the experiments
is in Appendix D

The empirical values for English amount to a power of 68% (instead of
67%) and a predictive value of 75% (75%), a power of 63% (theory: 67%)
and a predictive value of 75% (75%) for German, and a power of 87% (86%)
and a predictive value of 88% (87%) for French.

3.3 Application to the Cryptanalysis of the Bel-
laso Cipher

The Friedman procedure doesn’t need contiguous plaintext. It also works
when we pick out isolated letters from a meaningful text. In particular it
works in a (semi-) automated approach to adjusting the columns of a Bel-
laso ciphertext.

As an example we consider the ciphertext

UMHOD BLRHT SCWWJ NHZWB UWJCP ICOLB AWSWK CLJDO WWJOD L

We assume a Bellaso cipher with period 4. (The Kasiski analysis yields
a single significant repetition WWJ at a distance of 28.) The four columns
(written horizontally) are

UDHWHUPLSLWD MBTWZWIBWJWL HLSJWJCAKDJ ORCNBCOWCOO

For an exhaustion attack we complete the alphabets (i. e. we increment the
letters step by step) and count the MFL scores for letter combinations in
each row, see Table 3.5.

We pick up the most promising result for each column:

Column 1: RAETERMIPITA

Column 2: ETLOROATOBOD

Column 3: PTARERKISLR

Column 4: ADOZNOAIOAA or EHSDRSEMSEE

Only for column 4 we have more than one choice. However the first choice
yields an ugly “plaintext”. We drop it and keep

Col 1: RAETERMIPITA

Col 2: ETLOROATOBOD

Col 3: PTARERKISLR

Col 4: EHSDRSEMSEE

K. Pommerening, Classic Ciphers 41

Table 3.5: MFL scores for the example

UDHWHUPLSLWD 5 MBTWZWIBWJWL 2 HLSJWJCAKDJ 4 ORCNBCOWCOO 6

VEIXIVQMTMXE 5 NCUXAXJCXKXM 2 IMTKXKDBLEK 4 PSDOCDPXDPP 5

WFJYJWRNUNYF 3 ODVYBYKDYLYN 4 JNULYLECMFL 2 QTEPDEQYEQQ 5

XGKZKXSOVOZG 3 PEWZCZLEZMZO 3 KOVMZMFDNGM 3 RUFQEFRZFRR 5

YHLALYTPWPAH 5 QFXADAMFANAP 6 LPWNANGEOHN 7 SVGRFGSAGSS 6

ZIMBMZUQXQBI 2 RGYBEBNGBOBQ 4 MQXOBOHFPIO 5 TWHSGHTBHTT 8*

AJNCNAVRYRCJ 6 SHZCFCOHCPCR 5 NRYPCPIGQJP 3 UXITHIUCIUU 5

BKODOBWSZSDK 6 TIADGDPIDQDS 9* OSZQDQJHRKQ 5 VYJUIJVDJVV 2

CLPEPCXTATEL 5 UJBEHEQJERET 7 PTARERKISLR 8* WZKVJKWEKWW 1

DMQFQDYUBUFM 2 VKCFIFRKFSFU 3 QUBSFSLJTMS 4 XALWKLXFLXX 1

ENRGREZVCVGN 6 WLDGJGSLGTGV 3 RVCTGTMKUNT 5 YBMXLMYGMYY 0

FOSHSFAWDWHO 8* XMEHKHTMHUHW 6 SWDUHUNLVOU 5 ZCNYMNZHNZZ 4

GPTITGBXEXIP 5 YNFILIUNIVIX 6 TXEVIVOMWPV 4 ADOZNOAIOAA10*

HQUJUHCYFYJQ 2 ZOGJMJVOJWJY 2 UYFWJWPNXQW 1 BEPAOPBJPBB 3

IRVKVIDZGZKR 5 APHKNKWPKXKZ 3 VZGXKXQOYRX 2 CFQBPQCKQCC 0

JSWLWJEAHALS 6 BQILOLXQLYLA 3 WAHYLYRPZSY 4 DGRCQRDLRDD 7

KTXMXKFBIBMT 3 CRJMPMYRMZMB 2 XBIZMZSQATZ 4 EHSDRSEMSEE10*

LUYNYLGCJCNU 2 DSKNQNZSNANC 8* YCJANATRBUA 6 FITESTFNTFF 7

MVZOZMHDKDOV 5 ETLOROATOBOD10* ZDKBOBUSCVB 3 GJUFTUGOUGG 2

NWAPANIELEPW 7 FUMPSPBUPCPE 2 AELCPCVTDWC 4 HKVGUVHPVHH 4

OXBQBOJFMFQX 2 GVNQTQCVQDQF 3 BFMDQDWUEXD 4 ILWHVWIQWII 5

PYCRCPKGNGRY 3 HWORURDWRERG 8* CGNEREXVFYE 5 JMXIWXJRXJJ 2

QZDSDQLHOHSZ 7 IXPSVSEXSFSH 7 DHOFSFYWGZF 4 KNYJXYKSYKK 2

RAETERMIPITA10* JYQTWTFYTGTI 5 EIPGTGZXHAG 5 LOZKYZLTZLL 2

SBFUFSNJQJUB 3 KZRUXUGZUHUJ 2 FJQHUHAYIBH 5 MPALZAMUAMM 3

TCGVGTOKRKVC 4 LASVYVHAVIVK 5 GKRIVIBZJCI 4 NQBMABNVBNN 5

K. Pommerening, Classic Ciphers 42

From this scheme we read the solution columnwise:

Repeat the last order. Errors make it impossible to read.

Exercise. What was the encryption key used in this example?

Remark. Friedman in his Riverbank Publication No. 16 [7] uses the MLF
method also for polyalphabetic ciphers with non-standard, but known,
primary alphabets.

3.4 Recognizing Plaintext: Sinkov’s Log-Weight
Test

The MFL-test is simple and efficient. Sinkov in [25] proposed a more refined
test that uses the information given by all single letter frequencies, not just
by separating the letters into two classes. We won’t explore the power of
this method but treat it only as a motivation for Section 3.5.

As in Section 3.1 we assign a probability ps to each letter s of the alphabet
Σ. We enumerate the alphabet as (s1, . . . , sn) and write pi := psi . For a string
a = (a1, . . . , ar) ∈ Σr we denote by Ni(a) = #{j | aj = si} the multiplicity
of the letter si in a. Then for an n-tuple k = (k1, . . . , kn) ∈ Nn of natural
numbers the probability for a string a to have multiplicities exactly given
by k follows the multinomial distribution:

P (a ∈ Σr |Ni(a) = ki for all i = 1, . . . , n) =
r!

k1! · · · kn!
· pk1

1 · · · p
kn
n .

The Log-Weight (LW) Score

A heuristic derivation of the LW-score of a string a ∈ Σr considers the “null
hypothesis” (H0): a belongs to a given language with letter probabilities pi,
and the “alternative hypothesis” (H1): a is a random string. The probabili-
ties for a having k as its set of multiplicities if (H1) or (H0) is true, are (in
a somewhat sloppy notation)

P (k |H1) =
r!

k1! · · · kn!
· 1

nr
, P (k |H0) =

r!

k1! · · · kn!
· pk1

1 · · · p
kn
n .

The quotient of these two values, the “likelihood ratio”

λ(k) =
P (k |H0)

P (k |H1)
= nr · pk1

1 · · · p
kn
n ,

makes a good score for deciding between (H0) and (H1).

K. Pommerening, Classic Ciphers 43

Usually one takes the reciprocal value, that is H1 in the numera-
tor, and H0 in the denominator. We deviate from this convention
because we want to have the score large for true texts and small
for random texts.

For convenience one considers the logarithm (to any base) of this number:

log λ(k) = r log n+
n∑
i=1

ki · log pi.

(We assume all pi > 0, otherwise we would omit si from our alphabet.)
Noting that the summand r log n is the same for all a ∈ Σr one considers

log λ(k)− r log n =

n∑
i=1

ki · log pi =

r∑
j=1

log paj .

Because 0 < pi < 1 the summands are negative. Adding a constant doesn’t
affect the use of this score, so finally we define Sinkov’s Log-Weight (LW)
score as

S1(a) :=
n∑
i=1

ki · log(1000 ·pi) =
r∑
j=1

log(1000 ·paj) = r · log 1000 +
r∑
j=1

log paj .

The numbers log(1000 ·pi) are the “log weights”. More frequent letters have
higher weights. Table 3.6 gives the weights for the English alphabet with
base-10 logarithms (so log 1000 = 3). The MFL-method in contrast uses the
weights 1 for ETOANIRSHD, and 0 else.

Note that the definition of the LW score doesn’t depend on its heuristic
motivation. Just take the weights given in Table 3.6 and use them for the
definition of S1.

Examples

We won’t analyze the LW-method in detail, but rework the examples from
Section 3.1. The LW scores for the Caesar example are in Table 3.7.

The correct solution stands out clearly, the order of the non-solutions is
somewhat permuted compared with the MFL score.

For the period-4 example the LW scores are in Tables 3.8 to 3.11. The
method unambiguously picks the correct solution except for column 3 where
the top score occurs twice.

In summary the examples show no clear advantage of the LW-method
over the MFL-method, notwithstanding the higher granularity of the infor-
mation used to compute the scores.

As for MFL scores we might define the LW rate as the quotient of the
LW score be the length of the string. This makes the values for strings of
different lengths comparable.

K. Pommerening, Classic Ciphers 44

Table 3.6: Log weights of the letters for English (base-10 logarithms)

s A B C D E F G

1000ps 82 15 28 43 127 22 20

Log weight 1.9 1.2 1.4 1.6 2.1 1.3 1.3

s H I J K L M N

1000ps 61 70 2 8 40 24 67

Log weight 1.8 1.8 0.3 0.9 1.6 1.4 1.8

s O P Q R S T U

1000ps 75 19 1 60 63 91 28

Log weight 1.9 1.3 0.0 1.8 1.8 1.9 1.4

s V W X Y Z

1000ps 10 23 1 20 1

Log weight 1.0 1.4 0.0 1.3 0.0

Table 3.7: LW scores for the exhausion of a shift cipher

FDHVDU 8.7 OMQEMD 8.4 XVZNVM 5.2

GEIWEV 9.7 PNRFNE 10.1 <--- YWAOWN 9.7

HFJXFW 6.1 QOSGOF 8.2 ZXBPXO 4.4

IGKYGX 6.6 RPTHPG 9.4 AYCQYP 7.2

JHLZHY 6.8 SQUIQH 6.8 BZDRZQ 4.6

KIMAIZ 7.8 TRVJRI 8.6 CAESAR 10.9 <===

LJNBJA 7.1 USWKSJ 7.6 DBFTBS 9.0

MKOCKB 7.7 VTXLTK 7.3 ECGUCT 9.5

NLPDLC 9.3 WUYMUL 8.5

Exercise. Give a more detailed analysis of the distribution of the
LW scores for English and for random texts (with “English”
weights). You may use the Perl script LWscore.pl in the directory
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/

Perl/.

Table 3.12 gives log weights for German and French.

http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Perl/LWscore.pl

K. Pommerening, Classic Ciphers 45

Table 3.8: LW scores for column 1 of a period 4 cipher

UDHWHUPLSLWD 18.7 DMQFQDYUBUFM 13.9 MVZOZMHDKDOV 14.5

VEIXIVQMTMXE 14.5 ENRGREZVCVGN 17.4 NWAPANIELEPW 20.4 <--

WFJYJWRNUNYF 15.4 FOSHSFAWDWHO 19.9 OXBQBOJFMFQX 10.5

XGKZKXSOVOZG 11.0 GPTITGBXEXIP 15.9 PYCRCPKGNGRY 16.9

YHLALYTPWPAH 19.1 HQUJUHCYFYJQ 12.3 QZDSDQLHOHSZ 13.9

ZIMBMZUQXQBI 10.2 IRVKVIDZGZKR 13.9 RAETERMIPITA 21.7 <==

AJNCNAVRYRCJ 16.7 JSWLWJEAHALS 17.9 SBFUFSNJQJUB 13.8

BKODOBWSZSDK 16.2 KTXMXKFBIBMT 13.9 TCGVGTOKRKVC 16.7

CLPEPCXTATEL 18.5 LUYNYLGCJCNU 16.6

Table 3.9: LW scores for column 2 of a period 4 cipher

MBTWZWIBWJWL 15.0 VKCFIFRKFSFU 16.2 ETLOROATOBOD 21.6 <==

NCUXAXJCXKXM 10.5 WLDGJGSLGTGV 16.4 FUMPSPBUPCPE 17.2

ODVYBYKDYLYN 16.8 XMEHKHTMHUHW 17.7 GVNQTQCVQDQF 11.3

PEWZCZLEZMZO 13.2 YNFILIUNIVIX 17.4 HWORURDWRERG 20.1 <--

QFXADAMFANAP 16.3 ZOGJMJVOJWJY 11.4 IXPSVSEXSFSH 16.5

RGYBEBNGBOBQ 16.3 APHKNKWPKXKZ 13.1 JYQTWTFYTGTI 16.3

SHZCFCOHCPCR 17.3 BQILOLXQLYLA 14.5 KZRUXUGZUHUJ 11.7

TIADGDPIDQDS 18.2 CRJMPMYRMZMB 14.7 LASVYVHAVIVK 17.0

UJBEHEQJERET 17.1 DSKNQNZSNANC 16.6

Table 3.10: LW scores for column 3 of a period 4 cipher

HLSJWJCAKDJ 13.3 QUBSFSLJTMS 14.5 ZDKBOBUSCVB 13.6

IMTKXKDBLEK 14.3 RVCTGTMKUNT 16.7 AELCPCVTDWC 17.0

JNULYLECMFL 15.8 SWDUHUNLVOU 17.1 BFMDQDWUEXD 13.6

KOVMZMFDNGM 14.0 TXEVIVOMWPV 14.8 CGNEREXVFYE 16.2

LPWNANGEOHN 18.7 <- UYFWJWPNXQW 11.6 DHOFSFYWGZF 15.0

MQXOBOHFPIO 14.5 VZGXKXQOYRX 8.2 EIPGTGZXHAG 14.7

NRYPCPIGQJP 13.6 WAHYLYRPZSY 15.5 FJQHUHAYIBH 14.6

OSZQDQJHRKQ 10.1 XBIZMZSQATZ 10.0 GKRIVIBZJCI 13.3

PTARERKISLR 18.7 <- YCJANATRBUA 16.8

K. Pommerening, Classic Ciphers 46

Table 3.11: LW scores for column 4 of a period 4 cipher

ORCNBCOWCOO 18.0 XALWKLXFLXX 10.3 GJUFTUGOUGG 14.8

PSDOCDPXDPP 15.1 YBMXLMYGMYY 13.5 HKVGUVHPVHH 15.1

QTEPDEQYEQQ 12.4 ZCNYMNZHNZZ 11.3 ILWHVWIQWII 15.8

RUFQEFRZFRR 14.6 ADOZNOAIOAA 18.5 JMXIWXJRXJJ 7.6

SVGRFGSAGSS 17.1 BEPAOPBJPBB 14.9 KNYJXYKSYKK 11.4

TWHSGHTBHTT 18.7 <- CFQBPQCKQCC 10.3 LOZKYZLTZLL 12.4

UXITHIUCIUU 16.1 DGRCQRDLRDD 16.1 MPALZAMUAMM 15.6

VYJUIJVDJVV 11.0 EHSDRSEMSEE 20.4 <= NQBMABNVBNN 15.1

WZKVJKWEKWW 11.7 FITESTFNTFF 18.4

Table 3.12: Log weights of the letters for German and French (base-10 loga-
rithms)

s A B C D E F G

German 1.8 1.3 1.4 1.7 2.2 1.2 1.5

French 1.9 1.0 1.5 1.6 2.2 1.1 1.0

s H I J K L M N

German 1.6 1.9 0.5 1.2 1.5 1.4 2.0

French 0.8 1.8 0.5 0.0 1.8 1.4 1.9

s O P Q R S T U

German 1.5 1.0 0.0 1.9 1.8 1.8 1.6

French 1.7 1.4 1.0 1.8 1.9 1.9 1.8

s V W X Y Z

German 1.0 1.2 0.0 0.0 1.0

French 1.2 0.0 0.6 0.3 0.0

K. Pommerening, Classic Ciphers 47

3.5 Recognizing Plaintext: The Log-Weight
Method for Bigrams

In the last four sections we used only the single letter frequencies of a natu-
ral language. In other words, we treated texts as sequences of independent
letters. But a characteristic aspect of every natural language is how letters
are combined as bigrams (letter pairs). We may hope to get good criteria
for recognizing a language by evaluating the bigrams in a text. Of course
this applies to contiguous text only, in particular it is useless for the polyal-
phabetic example of Sections 3.3 and 3.4.

In analogy with the LW score we define a Bigram Log-Weight (BLW)
score for a string. Let pij be the probability (or average relative frequency)
of the bigram sisj in the base language. Because these numbers are small
we multiply them by 10000.

Tables containing these bigram frequencies for English, German, and
French are in http://www.staff.uni-mainz.de/pommeren/Cryptology

/Classic/8 Transpos/Bigrams.html

In contrast to the single letter case we cannot avoid the case pij = 0:
some letter pairs never occur as bigrams in a meaningful text. Therefore we
count the frequencies kij of the bigrams sisj in a string a ∈ Σr, and define
the BLW-score by the formula

S2(a) :=

n∑
i,j=1

kij · wij where wij =

{
log(10000 · pij) if 10000 · pij > 1,

0 otherwise.

Note. We implicitly set log 0 = 0. This convention is not as strange as it
may look at first sight: For pij = 0 we’ll certainly have kij = 0, and
setting 0 · log 0 = 0 is widespread practice.

To calculate the BLW score we go through the bigrams atat+1 for
t = 1, . . . , r − 1 and add the log weight wij = log(10000 · pij) of each
bigram. This approach is somewhat naive because it implicitly considers
the bigrams—even the overlapping ones!—as independent. This criticism
doesn’t mean that we are doing something mathematically wrong, but only
that the usefulness of the score might be smaller than expected.

We prepare matrices for English, German, and French that contain
the relative frequencies of the bigrams in the respective language. These
are in the files eng rel.csv, ger rel.csv, fra rel.csv in the direc-
tory http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/

Files/ as comma-separated tables. The corresponding bigram log-weights
are in the files eng blw.csv, ger blw.csv, fra blw.csv. Programs that
compute BLW scores for English, German, or French are BLWscE.pl,
BLWscD.pl, and BLWscF.pl in the Perl directory.

As an example we compute the scores for the Caesar example, see
Table 3.13. The correct solution is evident in all three languages.

http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/8_Transpos/Bigrams.html
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/8_Transpos/Bigrams.html
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Files/eng_rel.csv
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Files/ger_rel.csv
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Files/fra_rel.csv
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Files/eng_blw.csv
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Files/ger_blw.csv
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Files/fra_blw.csv
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Perl/BLWscE.pl
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Perl/BLWscD.pl
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Perl/BLWscF.pl

K. Pommerening, Classic Ciphers 48

Table 3.13: BLW scores for the exhaustion of a Caesar cipher

BLW scores English German French

FDHVDU 1.4 3.1 2.2

GEIWEV 5.8 <--- 7.3 <=== 4.3

HFJXFW 0.9 0.3 0.0

IGKYGX 2.2 2.1 1.3

JHLZHY 0.5 1.9 0.3

KIMAIZ 5.9 <--- 5.2 4.9

LJNBJA 1.1 2.4 0.9

MKOCKB 2.7 4.2 0.8

NLPDLC 3.0 2.8 1.4

OMQEMD 3.5 3.8 3.6

PNRFNE 3.6 4.7 3.6

QOSGOF 5.8 <--- 4.0 3.4

RPTHPG 4.5 2.6 2.7

SQUIQH 2.3 0.6 6.3 <---

TRVJRI 4.1 4.3 4.9

USWKSJ 3.3 3.7 2.0

VTXLTK 1.3 2.0 1.1

WUYMUL 3.1 2.9 2.7

XVZNVM 0.6 1.3 1.0

YWAOWN 5.5 2.3 0.0

ZXBPXO 0.0 0.0 0.0

AYCQYP 3.2 0.0 0.3

BZDRZQ 1.0 2.1 1.1

CAESAR 7.7 <=== 7.5 <=== 8.4 <===

DBFTBS 4.7 3.5 0.6

ECGUCT 5.5 3.6 5.5

K. Pommerening, Classic Ciphers 49

3.6 Empirical Results on BLW Scores

The heuristic motivation of the BLW score, like for all the scores in this
chapter, relies on independence assumptions that are clearly violated by
natural languages. Therefore again it makes sense to get empirical results
by analyzing a large sample of concrete texts.

The empirical results for the 5%-level of the error of the first kind are as
follows, see Appendix D.

English. We take the threshold value T = 11 for English texts. Then 86
of 2000 English scores are ≤ T , the error of the first kind is α =
86/2000 = 4.2%. For random texts 1964 of 2000 scores are ≤ T , the
power is 1964/2000 = 99.5%. There are 36 random scores and 1914
English scores > T , the predictive value for English is 1914/1950 =
98.2%.

German. We take the threshold value T = 12 for German texts. Then 84
of 2000 German scores are ≤ T , the error of the first kind is α =
84/2000 = 4.2%. For random texts 1991 of 2000 scores are ≤ T , the
power is 1991/2000 = 99.6%. There are 9 random scores and 1916
German scores > T , the predictive value for German is 1916/1925 =
99.5%.

French. We take the threshold value T = 11 for French texts. Then 58 of
2000 French scores are ≤ T , the error of the first kind is α = 58/2000 =
2.9%. For random texts 1967 of 2000 scores are ≤ T , the power is
1967/2000 = 98.3%. There are 33 random scores and 1942 French
scores > T , the predictive value for French is 1942/1975 = 98.3%.

The BLW score is significantly stronger than the MFL score.

3.7 Coincidences of Two Texts

The first six sections of this chapter introduced efficient methods for recog-
nizing plaintext in comparison with noise. These methods break down for
encrypted texts because they ignore properties that remain invariant un-
der encryption. One such invariant property—at least for monoalphabetic
substitution—is the equality of two letters, no matter what the concrete
value of these letters is.

This is the main idea that we work out in the next sections: Look for
identical letters in one or more texts, or in other words, for coincidences.

K. Pommerening, Classic Ciphers 50

Definition

Let Σ be a finite alphabet. Let a = (a0, . . . , ar−1) and b = (b0, . . . , br−1) ∈ Σr

be two texts of the same length r ≥ 1. Then

κ(a, b) :=
1

r
·#{j | aj = bj} =

1

r
·
r−1∑
j=0

δajbj

is called coincidence index of a and b (where δ = Kronecker symbol).
For each r ∈ N1 this defines a map

κ : Σr × Σr −→ Q ⊆ R.

The scaling factor 1
r makes results for different lengths comparable.

A Perl program is in the Web: http://www.staff.uni-mainz.de/

pommeren/Cryptology/Classic/Perl/kappa.pl.

Remarks

1. Always 0 ≤ κ(a, b) ≤ 1.

2. κ(a, b) = 1⇐⇒ a = b.

3. By convention κ(∅, ∅) = 1 (where ∅ denotes the empty string by abuse
of notation).

4. Note that up to scaling the coincidence index is a converse of the
Hamming distance that counts non-coincidences.

Example 1: Two English Texts

We compare the first four verses (text 1) of the poem “If ...” by Rudyard
Kipling and the next four verses (text 2). (The lengths differ, so we crop the
longer one.)

IFYOU CANKE EPYOU RHEAD WHENA LLABO UTYOU ARELO OSING THEIR

IFYOU CANMA KEONE HEAPO FALLY OURWI NNING SANDR ISKIT ONONE

||||| ||| |

SANDB LAMIN GITON YOUIF YOUCA NTRUS TYOUR SELFW HENAL LMEND

TURNO FPITC HANDT OSSAN DLOOS EANDS TARTA GAINA TYOUR BEGIN

| |

OUBTY OUBUT MAKEA LLOWA NCEFO RTHEI RDOUB TINGT OOIFY OUCAN

NINGS ANDNE VERBR EATHE AWORD ABOUT YOURL OSSIF YOUCA NFORC

|

WAITA NDNOT BETIR EDBYW AITIN GORBE INGLI EDABO UTDON TDEAL

http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Perl/kappa.pl
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Perl/kappa.pl

K. Pommerening, Classic Ciphers 51

EYOUR HEART ANDNE RVEAN DSINE WTOSE RVEYO URTUR NLONG AFTER

| |

INLIE SORBE INGHA TEDDO NTGIV EWAYT OHATI NGAND YETDO NTLOO

THEYA REGON EANDS OHOLD ONWHE NTHER EISNO THING INYOU EXCEP

|

KTOOG OODNO RTALK TOOWI SEIFY OUCAN DREAM ANDNO TMAKE DREAM

TTHEW ILLWH ICHSA YSTOT HEMHO LDONI FYOUC ANTAL KWITH CROWD

| | || |

SYOUR MASTE RIFYO UCANT HINKA NDNOT MAKET HOUGH TSYOU RAIMI

SANDK EEPYO URVIR TUEOR WALKW ITHKI NGSNO RLOOS ETHEC OMMON

| |

FYOUC ANMEE TWITH TRIUM PHAND DISAS TERAN DTREA TTHOS ETWOI

TOUCH IFNEI THERF OESNO RLOVI NGFRI ENDSC ANHUR TYOUI FALLM

| | |

MPOST ORSAS THESA MEIFY OUCAN BEART OHEAR THETR UTHYO UVESP

ENCOU NTWOR THYOU BUTNO NETOO MUCHI FYOUC ANFIL LTHEU NFORG

|| ||

OKENT WISTE DBYKN AVEST OMAKE ATRAP FORFO OLSOR WATCH THETH

IVING MINUT EWITH SIXTY SECON DSWOR THOFD ISTAN CERUN YOURS

| | |

INGSY OUGAV EYOUR LIFEF ORBRO KENAN DSTOO PANDB UILDE MUPWI

ISTHE EARTH ANDEV ERYTH INGTH ATSIN ITAND WHICH ISMOR EYOUL

| |

THWOR NOUTT OOLS

LBEAM ANMYS ON

|

In these texts of length 562 we find 35 coincidences, the coincidence index
is 35

562 = 0.0623.

Invariance

The coincidence index of two texts is an invariant of polyalphabetic substi-
tution (the keys being equal):

Proposition 1 (Invariance) Let f : Σ∗ −→ Σ∗ be a polyalphabetic encryp-
tion function. Then

κ(f(a), f(b)) = κ(a, b)

for all a, b ∈ Σ∗ of the same length.

Note that Proposition 1 doesn’t need any assumptions on periodicity or
on relations between the alphabets used. It only assumes that the encryption
function uses the same alphabets at the corresponding positions in the texts.

K. Pommerening, Classic Ciphers 52

Mean Values

For a fixed a ∈ Σr we determine the mean value of κ(a, b) taken over all
b ∈ Σr:

1

nr
·
∑
b∈Σr

κ(a, b) =
1

nr
·
∑
b∈Σr

1

r
·
r−1∑
j=0

δajbj


=

1

rnr
·
r−1∑
j=0

[∑
b∈Σr

δajbj

]
︸ ︷︷ ︸

nr−1

=
1

rnr
· r · nr−1 =

1

n
,

because, if bj = aj is fixed, there remain nr−1 possible values for b.
In an analogous way we determine the mean value of κ(a, fσ(b) for fixed

a, b ∈ Σr over all permutations σ ∈ S(Σ):

1

n!
·
∑

σ∈S(Σ)

κ(a, fσ(b)) =
1

n!
· 1

r

∑
σ∈S(Σ)

#{j | σbj = aj}

=
1

rn!
·#{(j, σ) | σbj = aj}

=
1

rn!
·
r−1∑
j=0

#{σ | σbj = aj}

=
1

rn!
· r · (n− 1)! =

1

n
,

because exactly (n− 1)! permutations map aj to bj .
Note that this conclusion also works for a = b.
This derivation shows:

Proposition 2 (i) The mean value of κ(a, b) over all texts b ∈ Σ∗ of equal
length is 1

n for all a ∈ Σ∗.
(ii) The mean value of κ(a, b) over all a, b ∈ Σr is 1

n for all r ∈ N1.
(iii) The mean value of κ(a, fσ(b)) over all monoalphabetic substitutions

with σ ∈ S(Σ) is 1
n for each pair a, b ∈ Σ∗ of texts of equal length.

(iv) The mean value of κ(fσ(a), fτ (b)) over all pairs of monoalphabetic
substitutions, with σ, τ ∈ S(Σ), is 1

n for each pair a, b ∈ Σ∗ of texts of equal
length.

Interpretation

• For a given text a and a “random” text b of the same length κ(a, b) ≈
1
n .

K. Pommerening, Classic Ciphers 53

• For “random” texts a and b of the same length κ(a, b) ≈ 1
n .

• For given texts a and b of the same length and a “random” monoal-
phabetic substitution fσ we have κ(a, fσ(b)) ≈ 1

n . This remark justifies
treating a nontrivially monoalphabetically encrypted text as random
with respect to κ and plaintexts.

• For given texts a and b of the same length and two “random” monoal-
phabetic substitutions fσ, fτ we have κ(fσ(a), fτ (b)) ≈ 1

n .

• The same holds for “random” polyalphabetic substitutions because
counting the coincidences is additive with respect to arbitrary decom-
positions of texts.

Values that significantly differ from these mean values are suspicious for
the cryptanalyst, they could have a non-random cause. For more precise
statements we should assess the variances (or standard deviations) or, more
generally, the distribution of κ-values in certain “populations” of texts.

Variance

First fix a ∈ Σr and vary b over all of Σr. Using the mean value 1
n we

calculate the variance:

VΣr(κ, a) =
1

nr
·
∑
b∈Σr

κ(a, b)2 − 1

n2

=
1

nr
·
∑
b∈Σr

1

r
·
r−1∑
j=0

δajbj

2

− 1

n2

Evaluating the square of the sum in brackets we get the quadratic terms

r−1∑
j=0

δ2
ajbj

=
r−1∑
j=0

δajbj = r · κ(a, b) because δajbj = 0 or 1

∑
b∈Σr

r−1∑
j=0

δ2
ajbj

= r ·
∑
b∈Σr

κ(a, b) = r · nr · 1

n
= r · nr−1

and the mixed terms

2 ·
r−1∑
j=0

r−1∑
k=j+1

δajbjδakbk where δajbjδakbk =

{
1 if aj = bj and ak = bk

0 else

K. Pommerening, Classic Ciphers 54

If we fix two letters bj and bk, we are left with nr−2 different b’s that give
the value 1. The total sum over the mixed terms evaluates as

∑
b∈Σr

2 ·
r−1∑
j=0

r−1∑
k=j+1

δajbjδakbk

 = 2 ·
r−1∑
j=0

r−1∑
k=j+1

∑
b∈Σr

δajbjδakbk︸ ︷︷ ︸
nr−2

Substituting our intermediary results we get

VΣr(κ, a) =
1

nrr2

(
r · nr−1 + r · (r − 1) · nr−2

)
− 1

n2

=
1

rn
+
r − 1

rn2
− 1

n2
=

1

rn
− 1

rn2
=

1

r

(
1

n
− 1

n2

)
Next we let a and b vary and calculate the variance of κ:

VΣr(κ) =
1

n2r

∑
a,b∈Σr

κ(a, b)2 − 1

n2

=
1

nr

∑
a∈Σr

(
1

nr

∑
b∈Σr

κ(a, b)2

)
︸ ︷︷ ︸

1
r

(
1
n
− 1

n2

)
+ 1

n2

− 1

n2

=
1

r

(
1

n
− 1

n2

)
+

1

n2
− 1

n2
=

1

r

(
1

n
− 1

n2

)
We have shown:

Proposition 3 (i) The mean value of κ(a, b) over all texts b of equal length
r ∈ N1 is 1

n with variance 1
r

(
1
n −

1
n2

)
for all a ∈ Σr.

(ii) The mean value of κ(a, b) over all a, b ∈ Σr is 1
n with variance

1
r

(
1
n −

1
n2

)
for all r ∈ N1.

For the 26 letter alphabet A. . . Z we have the mean value 1
26 ≈ 0.0385,

independently from the text length r. The variance is ≈ 0.03370
r , the standard

deviation ≈ 0.19231√
r

. From this we get the second row of Table 3.14.

Table 3.14: Standard deviations and 95% quantiles of κ for random text pairs
of length r

r 10 40 100 400 1000 10000

Std dev 0.0608 0.0304 0.0192 0.0096 0.0061 0.0019

95% quantile 0.1385 0.0885 0.0700 0.0543 0.0485 0.0416

K. Pommerening, Classic Ciphers 55

For statistical tests (one-sided in this case) we would like to know the 95%
quantiles. If we take the values for a normal distribution as approximations,
that is “mean value + 1.645 times standard deviation”, we get the values in
the third row of Table 3.14. These raw estimates show that the κ-statistic in
this form is weak in distinguishing “meaningful” texts from random texts,
even for text lengths of 100 letters, and strong only for texts of several
thousand letters.

Distinguishing meaningful plaintext from random noise is evidently not
the main application of the κ-statistic. The next section will show the true
relevancy of the coincidence index.

3.8 Empirical Values for Natural Languages

Empirical Observations

Some additional explicit examples are on the web page
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/

3 Coincid/EmpNat.html These examples show some tendencies that will
be empirically or mathematically founded later in this section:

• The typical coincidence index of two German texts is about 0.08.

• The typical coincidence index of two English texts is about 0.06.

• The typical coincidence index of a German and an English text is
about 0.06 to 0.07.

• The typical coincidence index of a plaintext and ciphertext is about
0.03 to 0.05, that is near the “random” value 1

26 ≈ 0.0385. The same
is true for two independent ciphertexts.

• If the same key is used for two polyalphabetic ciphertexts this fact re-
veals itself by a coincidence index that resembles that of two plaintexts.

This latter statement is the first application of coincidence counts. No matter
whether the encryption is periodic or not—if we get several ciphertexts en-
crypted in the same way, we can arrange them in parallel rows (“in depth”)
and get monoalphabetically encrypted columns that eventually can be de-
crypted.

Historical Example

The Polish cryptanalyst Rejewski was the first who successfully broke early
military versions of the German cipher machine Enigma, see Chapter 6.
He detected that ciphertexts were “in phase” by coincidence counts. It is
unknown whether he knew Friedman’s approach, or whether he found it

http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/3_Coincid/EmpNat.html
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/3_Coincid/EmpNat.html

K. Pommerening, Classic Ciphers 56

for himself. Friedman’s early publications were not classified and published
even in France.

For example Rejewski noted that the two ciphertexts

RFOWL DOCAI HWBGX EMPTO BTVGG INFGR OJVDD ZLUWS JURNK KTEHM

RFOWL DNWEL SCAPX OAZYB BYZRG GCJDX NGDFE MJUPI MJVPI TKELY

besides having the initial six letters identical also had a suspicious number
of coincidences between the remaining 44 letters (5/44 ≈ 0.114).

Exercise. How many coincidences among 44 letters would you expect for
independently encrypted texts?

Rejewski assumed that the first six letters denoted a “message key”
that was identical for the two messages, and from this, that the Enigma
operators prefixed their messages by a six letter message key. (Later on he
even detected that in fact they used a repeated three letter key.)

Source : F. L. Bauer: Mathematik besiegte in Polen die
unvernünftig gebrauchte ENIGMA. Informatik Spektrum 1.
Dezember 2005, 493–497.]

Empirical Results on the Kappa Distribution

We want to learn more about the distribution of coincidence indices κ(a, b)
for English texts (or text chunks) a and b. To this end we again perform
experiments whose results are in Appendix D.

Applications

To test whether a text a belongs to a certain language we would take one (or
maybe several) fixed texts of the language and would test a against them.
Because the values for natural languages are quite similar this test would
only make sense for testing against random. This test is much weaker then
the MFL, LW and BLW tests.

Also adjusting the columns of a disk cipher could be tested this way:
If two alphabets are relatively shifted, the corresponding columns behave
like random texts with respect to each other. If the alphabets are properly
adjusted, the columns represent meaningful texts encrypted by the same
monoalphabetic substitution, therefore they belong to the same language
and show the typical coincidence index—up to statistical noise. Note that
we need quite long columns for this test to work in a sensible way!

In the following sections we’ll see some better tests for these problems.
The main application of the coincidence index in its pure form is detecting
identically encrypted polyalphabetic ciphertexts. Moreover it is the basis of
some refined methods.

K. Pommerening, Classic Ciphers 57

3.9 Autoincidence of a Text

Introduction

For the cryptanalysis of periodic polyalphabetic ciphers the following con-
struction is of special importance: Let a ∈ Σ∗, and let a(q) and a(−q) be the
cyclic shifts of a by q positions to the right resp. to the left. That is

a = a0 a1 a2 . . . aq−1 aq aq+1 . . . ar−1

a(q) = ar−q ar−q+1 ar−q+2 . . . ar−1 a0 a1 . . . ar−q−1

a(−q) = aq aq+1 aq+2 . . . a2q−1 a2q a2q+1 . . . aq−1

Clearly κ(a, a(q)) = κ(a, a(−q)).

Definition. For a text a ∈ Σ∗ and a natural number q ∈ N the number
κq(a) := κ(a, a(q)) is called the q-th autocoincidence index of a.

Note. This is not a common notation. Usually this concept is not given an
explicit name.

Example. We shift a text by 6 positions to the right:

COINCIDENCESBETWEENTHETEXTANDTHESHIFTEDTEXT <-- original text

EDTEXTCOINCIDENCESBETWEENTHETEXTANDTHESHIFT <-- shifted by 6

| | | | | | <-- 6 coincidences

Properties

The q-th autocoincidence index κq defines a map

κq : Σ∗ −→ Q.

Clearly κq(a) = κr−q(a) for a ∈ Σr and 0 < q < r, and κ0 is a constant map.

Application

Take a ciphertext c that is generated by a periodic polyalphabetic substi-
tution. If we determine κq(c), we encounter two different situations: In the
general case q is not a multiple of the period l. Counting the coincidences
we encounter letter pairs that come from independent monoalphabetic sub-
stitutions. By the results of Section 3.7 we expect an index κq(c) ≈ 1

n .
In the special case where l|q however we encounter the situation

σ0a0 σ1a1 . . . σ0aq σ1aq+1 . . .
σ0a0 σ1a1 . . .

K. Pommerening, Classic Ciphers 58

where the letters below each other come from the same monoalphabetic sub-
stitution. Therefore they coincide if and only if the corresponding plaintext
letters coincide. Therefore we expect an index κq(c) near the coincidence
index κM that is typical for the plaintext language M .

More precisely for a polyalphabetic substitution f of period l, plaintext
a, and ciphertext c = f(a):

1. For l not a divisor of q or r − q we expect κq(c) ≈ 1
n .

2. For l|q and q small compared with r we expect κq(c) ≈ κq(a), and this
value should be near the typical coincidence index κM .

This is the second application of coincidence counts, detecting the period of
a polyalphabetic substitution by looking at the autocoincidence indices of
the ciphertext. Compared with the search for repetitions after Kasiski this
method also takes account of repetitions of length 1 or 2. In this way we
make much more economical use of the traces that the period leaves in the
ciphertext.

Example

We want to apply these considerations to the autocoincidence analy-
sis of a polyalphabetic ciphertext using the Perl program coinc.pl from
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Perl/.
We start with the cryptogram that we already have solved in Chapter 2 by
repetition analysis:

00 05 10 15 20 25 30 35 40 45

0000 AOWBK NLRMG EAMYC ZSFJO IYYVS HYQPY KSONE MDUKE MVEMP JBBOA

0050 YUHCB HZPYW MOOKQ VZEAH RMVVP JOWHR JRMWK MHCMM OHFSE GOWZK

0100 IKCRV LAQDX MWRMH XGTHX MXNBY RTAHJ UALRA PCOBJ TCYJA BBMDU

0150 HCQNY NGKLA WYNRJ BRVRZ IDXTV LPUEL AIMIK MKAQT MVBCB WVYUX

0200 KQXYZ NFPGL CHOSO NTMCM JPMLR JIKPO RBSIA OZZZC YPOBJ ZNNJP

0250 UBKCO WAHOO JUWOB CLQAW CYTKM HFPGL KMGKH AHTYG VKBSK LRVOQ

0300 VOEQW EALTM HKOBN CMVKO BJUPA XFAVK NKJAB VKNXX IJVOP YWMWQ

0350 MZRFB UEVYU ZOORB SIAOV VLNUK EMVYY VMSNT UHIWZ WSYPG KAAIY

0400 NQKLZ ZZMGK OYXAO KJBZV LAQZQ AIRMV UKVJO CUKCW YEALJ ZCVKJ

0450 GJOVV WMVCO ZZZPY WMWQM ZUKRE IWIPX BAHZV NHJSJ ZNSXP YHRMG

0500 KUOMY PUELA IZAMC AEWOD QCHEW OAQZQ OETHG ZHAWU NRIAA QYKWX

0550 EJVUF UZSBL RNYDX QZMNY AONYT AUDXA WYHUH OBOYN QJFVH SVGZH

0600 RVOFQ JISVZ JGJME VEHGD XSVKF UKXMV LXQEO NWYNK VOMWV YUZON

0650 JUPAX FANYN VJPOR BSIAO XIYYA JETJT FQKUZ ZZMGK UOMYK IZGAW

0700 KNRJP AIOFU KFAHV MVXKD BMDUK XOMYN KVOXH YPYWM WQMZU EOYVZ

0750 FUJAB YMGDV BGVZJ WNCWY VMHZO MOYVU WKYLR MDJPV JOCUK QELKM

http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Perl/coinc.pl

K. Pommerening, Classic Ciphers 59

0800 AJBOS YXQMC AQTYA SABBY ZICOB XMZUK POOUM HEAUE WQUDX TVZCG

0850 JJMVP MHJAB VZSUM CAQTY AJPRV ZINUO NYLMQ KLVHS VUKCW YPAQJ

0900 ABVLM GKUOM YKIZG AVLZU VIJVZ OGJMO WVAKH CUEYN MXPBQ YZVJP

0950 QHYVG JBORB SIAOZ HYZUV PASMF UKFOW QKIZG ASMMK ZAUEW YNJAB

1000 VWEYK GNVRM VUAAQ XQHXK GVZHU VIJOY ZPJBB OOQPE OBLKM DVONV

1050 KNUJA BBMDU HCQNY PQJBA HZMIB HWVTH UGCTV ZDIKG OWAMV GKBBK

1100 KMEAB HQISG ODHZY UWOBR ZJAJE TJTFU K

The Autocoincidence Indices

This is the sequence of autocoincidence indices of our cryptogram
κ1 κ2 κ3 κ4 κ5 κ6 κ7 κ8

0.0301 0.0345 0.0469 0.0354 0.0371 0.0354 0.0822 0.0416
κ9 κ10 κ11 κ12 κ13 κ14 κ15 κ16

0.0265 0.0309 0.0416 0.0389 0.0327 0.0787 0.0460 0.0345
κ17 κ18 κ19 κ20 κ21 κ22 κ23 κ24

0.0460 0.0309 0.0327 0.0309 0.0769 0.0318 0.0309 0.0327
κ25 κ26 κ27 κ28 κ29 κ30 κ31 κ32

0.0318 0.0309 0.0416 0.0875 0.0477 0.0416 0.0442 0.0354
κ33 κ34 κ35 κ36

0.0318 0.0389 0.0610 0.0371
The period 7 stands out, as it did with the period analysis after Kasiski
in the last chapter. This is also clearly seen in the graphical representation,
see Figure 3.1.

0 10 20 30 40

0.03

0.04

0.05

0.06

0.07

0.08

Figure 3.1: Autocoincidence spectrum of a sample ciphertext

The values other than at multiples of 7 fluctuate around the “random”
value 1

26 ≈ 0.0385 as expected. The values in the peaks fluctuate around the
typical coincidence index near 0.08 of the plaintext language German, for
which we gave empirical evidence in the last section. This effect has an easy
explanation.

K. Pommerening, Classic Ciphers 60

The Autocoincidence Spectrum

To analyze the effect seen in Figure 3.1, let c be the ciphertext from a
polyalphabetic encryption of a text a ∈ M with period l. What values can
we expect for the κq(c)?

c = c0 . . . cq−1 | cq . . . cr−1

c(q) = cr−q . . . cr−1 | c0 . . . cr−q−1

expected coinc.: q · κM if l|r − q, | (r − q) · κM if l|q,
q · κΣ∗ else | (r − q) · κΣ∗ else

Adding these up we get the following expected values for the autocoin-
cidence spectrum:

1. case, l|r

κq(c) ≈

{
q·κM+(r−q)·κM

r = κM if l|q,
q·κΣ∗+(r−q)·κΣ∗

r = κΣ∗ else.

2. case, l 6 | r

κq(c) ≈


q·κΣ∗+(r−q)·κM

r if l|q,
q·κM+(r−q)·κΣ∗

r if l|r − q,
κΣ∗ else.

In particular for q << r

κq(c) ≈

{
κM if l|q,
κΣ∗ else.

This explains the autocoincidence spectrum that we observed in the exam-
ple. Typical autocoincidence spectra are shown in Figures 3.2 and 3.3.

Since in the second case the resulting image may be somewhat blurred,
one could try to calculate autocoincidence indices not by shifting the text
cyclically around but by simply cutting off the ends.

Definition. The sequence (κ1(a), . . . , κr−1(a)) of autocoincidence indices
of a text a ∈ Σr of length r is called the autocoincidence spectrum
of a.

Note. that this notation too is not common in the literature, but seems
adequate for its evident cryptanalytical importance.

Exercise 1. Determine the autocoincidence spectrum of the ciphertext that
you already broke by a KASISKI analysis. Create a graphical repre-
sentation of it using graphic software of your choice.

Exercise 2. Cryptanalyze the ciphertext

K. Pommerening, Classic Ciphers 61

0

1/n

κ
M

l 2l0 rr-l

Figure 3.2: Text length is multiple of period

0

1/n

κ
M

l 2l0 rr-l

Figure 3.3: Text length not multiple of period

K. Pommerening, Classic Ciphers 62

ECWUL MVKVR SCLKR IULXP FFXWL SMAEO HYKGA ANVGU GUDNP DBLCK

MYEKJ IMGJH CCUJL SMLGU TXWPN FQAPU EUKUP DBKQO VYTUJ IVWUJ

IYAFL OVAPG VGRYL JNWPK FHCGU TCUJK JYDGB UXWTT BHFKZ UFSWA

FLJGK MCUJR FCLCB DBKEO OUHRP DBVTP UNWPZ ECWUL OVAUZ FHNQY

XYYFL OUFFL SHCTP UCCWL TMWPB OXNKL SNWPZ IIXHP DBSWZ TYJFL

NUMHD JXWTZ QLMEO EYJOP SAWPL IGKQR PGEVL TXWPU AODGA ANZGY

BOKFH TMAEO FCFIH OTXCT PMWUO BOK

3.10 The Inner Coincidence Index of a Text

Definition

Let a ∈ Σr (r ≥ 2) be a text, and (κ1(a), . . . , κr−1(a)) be its autocoincidence
spectrum. Then the mean value

ϕ(a) :=
1

r − 1
[κ1(a) + · · ·+ κr−1(a)]

is called the (inner) coincidence index of a.
It defines a map

ϕ : Σ(≥2) −→ Q.

See the Perl program phi.pl from http://www.staff.uni-mainz.de/

pommeren/Cryptology/Classic/Perl/.

Another description

Pick up the letters from two random positions of a text a. How many “twins”
will you find? That means the same letter s ∈ Σ at the two positions, or a
“coincidence”?

Let ms = ms(a) = #{j | aj = s} be the number of occurrences of s in a.
Then the answer is

ms · (ms − 1)

2
times. Therefore the total number of coincidences is∑

s∈Σ

ms · (ms − 1)

2
=

1

2
·
∑
s∈Σ

m2
s −

1

2
·
∑
s∈Σ

ms =
1

2
·
∑
s∈Σ

m2
s −

r

2

We count these coincidences in another way by the following algorithm:
Let zq be the number of already found coincidences with a distance of q for
q = 1, . . . , r − 1, and initialize it as zq := 0. Then execute the nested loops

for i = 0, . . . , r − 2 [loop through the text a]
for j = i+ 1, . . . , r − 1 [loop through the remaining text]

if ai = aj [coincidence detected]
increment zj−i [with distance j − i]
increment zr+i−j [and with distance r + i− j]

http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Perl/phi.pl

K. Pommerening, Classic Ciphers 63

After running through these loops the variables z1, . . . , zr−1 have values
such that

Lemma 2 (i) z1 + · · ·+ zr−1 =
∑

s∈Σms · (ms − 1).
(ii) κq(a) =

zq
r for q = 1, . . . , r − 1.

Proof. (i) We count all coincidences twice.
(ii) κq(a) = 1

r ·#{j |aj+q = aj} by definition (where the indices are taken
mod r). 3

The Kappa-Phi Theorem

Theorem 3 (Kappa-Phi Theorem) The inner coincidence index of a
text a ∈ Σ∗ of length r ≥ 2 is the proportion of coincidences among all
letter pairs of a.

Proof. The last term of the equation

ϕ(a) =
κ1(a) + · · ·κr−1(a)

r − 1
=
z1 + · · ·+ zr−1

r · (r − 1)

=

∑
s∈Σms · (ms − 1)

r · (r − 1)
=

∑
s∈Σ

ms·(ms−1)
2

r·(r−1)
2

has the total number of coincidences in its numerator, and the total number
of letter pairs in its denominator. 3

Corollary 1 The inner coincidence index may be expressed as

ϕ(a) =
r

r − 1
·
∑
s∈Σ

(ms

r

)2
− 1

r − 1

Proof. This follows via the intermediate step

ϕ(a) =

∑
s∈Σm

2
s − r

r · (r − 1)

3

Note that this corollary provides a much faster algorithm for determin-
ing ϕ(a). The definition formula needs r − 1 runs through a text of length
r, making r · (r− 1) comparisons. The above algorithm reduces the costs to
r·(r−1)

2 comparisons. Using the formula of the corollary we need only one
pass through the text, the complexity is linear in r. For a Perl program
implementing this algorithm see the Perl script coinc.pl on the web page
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Perl/

http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Perl/coinc.pl

K. Pommerening, Classic Ciphers 64

Corollary 2 The inner coincidence index of a text is invariant under
monoalphabetic substitution.

Proof. The number of letter pairs is unchanged. 3

3.11 The Distribution of the Inner Coincidence
Index

First we calculate the exact mean value of the inner coincidence index ϕ(a)
for a ∈ Σr. Then we determine empirical values for mean value and variance
for English, German, and random texts by simulation, as we did for κ.

The exact value of the variance leads to a somewhat more complicated
calculation. We omit it.

Mean Value

We calculate the mean value of the letter frequencies ms(a) over a ∈ Σr

for each s ∈ Σ. Because of the symmetry in s all these values are identical,
therefore we have

n ·
∑
a∈Σr

ms(a) =
∑
s∈Σ

∑
a∈Σr

ms(a) =
∑
a∈Σr

∑
s∈Σ

ms(a)︸ ︷︷ ︸
r

= r · nr

This gives the mean value

1

nr

∑
a∈Σr

ms(a) =
r

n

for each letter s ∈ Σ.
Next we calculate the mean value of κq(a) over a ∈ Σr. We treat the

indices of the letters of the texts a as elements of the cyclic additive group
Z/nZ. Then we have∑

a∈Σr

κq(a) =
∑
a∈Σr

1

r
#{j ∈ Z/nZ | aj+q = aj}

=
1

r

∑
j∈Z/nZ

∑
a∈Σr

δaj+q ,aj

=
1

r

∑
j∈Z/nZ

#{a ∈ Σr | aj+q = aj}︸ ︷︷ ︸
nr−1

= nr−1

K. Pommerening, Classic Ciphers 65

because in the underbraced count for a we may choose r − 1 letters freely,
and then the remaining letter is fixed. This gives the mean value

1

nr

∑
a∈Σr

κq(a) =
1

n

for each q = 1, . . . , r − 1.
Now for ϕ. We use the additivity of the mean value.

1

nr

∑
a∈Σr

ϕ(a) =
1

r − 1

[
1

nr

∑
a∈Σr

κ1(a) + · · ·+ 1

nr

∑
a∈Σr

κr−1(a)

]

=
1

r − 1
· (r − 1) · 1

n
=

1

n

We have shown:

Proposition 4 The mean values of the q-th autocoincidence index for q =
1, . . . , r − 1 and of the inner coincidence index over a ∈ Σr each are 1

n .

And for the letter frequencies we have:

Corollary 3 The sum of the letter frequencies ms(a) over a ∈ Σr is∑
a∈Σr

ms(a) = r · nr−1

for all letters s ∈ Σ.

Corollary 4 The sum of the squares ms(a)2 of the letter frequencies over
a ∈ Σr is ∑

a∈Σr

ms(a)2 = r · (n+ r − 1) · nr−2

for all letters s ∈ Σ.

Proof. By the Kappa-Phi Theorem we have

∑
t∈Σ

[∑
a∈Σr

ms(a)2 −
∑
a∈Σr

ms(a)

]
= r · (r − 1) ·

∑
a∈Σr

ϕ(a) = r · (r − 1) · nr−1

Substituting the result of the previous corollary and using the symmetry of
the sum of squares with respect to s we get

n·
∑
a∈Σr

ms(a)2 =
∑
t∈Σ

∑
a∈Σr

ms(a)2 = r·(r−1)·nr−1+rn·nr−1 = r·nr−1·(r−1+n)

Dividing by n we get the above formula. 3

K. Pommerening, Classic Ciphers 66

Empirical Results

For empirical results on the distribution of the inner coincidence index ϕ for
English, German, and random texts we again refer to Appendix D.

Applications

To which questions from the introduction do these results apply?
We can decide whether a text is from a certain language. This includes

texts that are monoalphabetically encrypted because ϕ is invariant under
monoalphabetic substitution. And we can recognize a monoalphabetically
encrypted ciphertext.

For both of these decision problems we calculate the coincidence index
ϕ(a) of our text a and decide “belongs to language” or “is monoalphabeti-
cally encrypted”—depending on our hypothesis—if ϕ(a) reaches or surpasses
the 95% quantile of ϕ for random texts of the same length—if we are willing
to accept an error rate of the first kind of 5%.

For a text of 100 letters the threshold for ϕ is about 0.0451 by Ta-
ble D.12. Tables D.10 and D.11 show that English or German texts surpass
this threshold with high probability: For both languages the test has a power
of nearly 100%.

It makes sense to work with the more ambitious “significance level” of
1% = bound for the error of the first kind. For this we set the threshold to
the 99% quantile of the ϕ distribution for random texts. Our experiment for
texts of length 100 gives the empirical value of 0.0473, failing the empirical
minimum for our 2000 English 100 letter texts, and sitting far below the
empirical minimum for German. Therefore even at the 1%-level the test has
a power of nearly 100%.

The Phi Distribution for 26 Letter Texts

Since the ϕ test performs so excellently for 100 letter texts we dare to look at
26 letter texts—a text length that occurs in the Meet-in-the-Middle attack
against rotor machines.

The results are in Appendix D.
The decision threshold on the 5%-level is 0.0585. For English texts the

test has a power of only 50%, for German, near 75%. So we have a method
to recognize monoalphabetic ciphertext that works fairly well for texts as
short as 26 letters.

3.12 Sinkov’s Formula

Let’s apply the approximative formulas for κq(c) from Section 3.9 to the
coincidence index of a periodically polyalphabetically encrypted text c =

K. Pommerening, Classic Ciphers 67

f(a) with a ∈M of length r. In the case l|r we get:

ϕ(c) =
1

r − 1
· [κ1(c) + · · ·+ κr−1(c)]

≈ 1

r − 1
·
[
(
r

l
− 1) · κM + (r − r

l
) · κΣ∗

]
=

r − l
r − 1

· 1

l
· κM +

r(l − 1)

l(r − 1)
· κΣ∗

≈ 1

l
· κM +

l − 1

l
· κΣ∗ ,

since r
l − 1 summands scatter around κM , the other r− r

l ones around κΣ∗ .
In the same way for l 6 | r we get:

ϕ(c) ≈ 1

r − 1
·
[
r − 1

l
· q · κΣ∗ + (r − q) · κM

r

+
r − 1

l
· q · κM + (r − q) · κΣ∗

r
+ (r − 1) · (1− 2

l
) · κΣ∗

]
=

1

l
· r · κΣ∗ + r · κM

r
+ (1− 2

l
) · κΣ∗

=
1

l
· κM +

l − 1

l
· κΣ∗ ,

that is the same approximative formula in both cases. Note that this is a
weighted mean.

ϕ(c) ≈ 1

l
· κM +

l − 1

l
· κΣ∗

For the example M = “German” and l = 7 we therefore expect

ϕ(c) ≈ 1

7
· 0.0762 +

6

7
· 0.0385 ≈ 0.0439,

and this is in accordance with the empirical value from the former example.
In general Table 3.15 and Figure 3.4 show the connection between period
and expected coincidence index for a polyalphabetically encrypted German
text. The situation for English is even worse.

If we solve the above formula for the period length l, we get Sinkov’s
formula:

l · ϕ(c) ≈ κM + (l − 1) · κΣ∗ ,

l · [ϕ(c)− κΣ∗] ≈ κM − κΣ∗ ,

l ≈ κM − κΣ∗

ϕ(c)− κΣ∗
.

K. Pommerening, Classic Ciphers 68

Table 3.15: Coincidence index and period length (for German)

period 1 2 3 4 5
Coinc. index 0.0762 0.0574 0.0511 0.0479 0.0460

6 7 8 9 10
0.0448 0.0439 0.0432 0.0427 0.0423

period 10 20 30 40 50
Coinc index 0.0423 0.0404 0.0398 0.0394 0.0393

60 70 80 90 100
0.0391 0.0390 0.0390 0.0389 0.0389

2 4 6 8 10

0.045

0.05

0.055

0.06

0.065

0.07

0.075

Figure 3.4: Coincidence index and period length (for German)

K. Pommerening, Classic Ciphers 69

Remark. There are “more exact” versions of this formula. But these don’t
give better results due to the variation of ϕ(c) and the numerical in-
stability of the small denominator.

For our sample cryptanalysis we get

l ≈ 0.0762− 0.0385

0.0440− 0.0385
≈ 6.85.

This is also evidence for 7 being the length of the period.
The problem with Sinkov’s formula is the lack of numerical stability:

the larger the period, the closer the coincidence index is to the value for
random texts, as the table shows, that is, the closer the denominator in the
formula is to 0.

Therefore the autocoincidence spectrum usually yields a better guess of
the period. In fact Sinkov himself in his book [25] uses “his” formula—
or rather the English equivalents of Table 3.15 and Figure 3.4—only for
distinguishing between monoalphabetic and polyalphabetic ciphertexts. For
determining the period he gives a very powerful test, see Section 3.13.

3.13 Sinkov’s Test for the Period

We want to test a pretended period l whether it is the real period. We write
the text in rows of width l and consider the columns.

• If l is the correct period, each column is monoalphabetically encrypted
and has its coincidence index near the coincidence index of the plain-
text language.

• Otherwise the columns are random garbage and have coincidence in-
dices near the random value 1

n . Or rather near the value for a polyal-
phabetic ciphertext of period (the true) l.

Maybe the columns are quite short, thus their coincidence indices are diffuse
and give no clear impression. However we can put all the indices together
without bothering about the different monoalphabets, and get a much more
precise value, based on all the letters of the text.

Definition For a text a ∈ Σ∗ and l ∈ N1 the mean value

ϕ̄l(a) :=
1

l
·
l−1∑
i=0

ϕ(aiai+lai+2l . . .)

is called the Sinkov statistic of a of order l.

Note that ϕ̄1 = ϕ.
A Perl program, phibar.pl, is in http://www.staff.uni-mainz.de/

Cryptology/Classic/Perl/.

http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Perl/phibar.pl

K. Pommerening, Classic Ciphers 70

Example

Let us again examine the ciphertext from Section 3.9. We get the values:

ϕ̄1(a) 0.0442 ϕ̄7(a) 0.0829 ϕ̄13(a) 0.0444
ϕ̄2(a) 0.0439 ϕ̄8(a) 0.0443 ϕ̄14(a) 0.0839
ϕ̄3(a) 0.0440 ϕ̄9(a) 0.0427 ϕ̄15(a) 0.0432
ϕ̄4(a) 0.0438 ϕ̄10(a) 0.0421 ϕ̄16(a) 0.0439
ϕ̄5(a) 0.0430 ϕ̄11(a) 0.0426 ϕ̄17(a) 0.0444
ϕ̄6(a) 0.0435 ϕ̄12(a) 0.0432 ϕ̄18(a) 0.0419

The period 7 is overwhelmingly evident. The values other than at the
multiples of 7 are in almost perfect compliance with a (German) ciphertext
of period around 7.

A Short Ciphertext

Our example ciphertext was quite long, and it is no surprise that the sta-
tistical methods perform very well. To get a more realistic picture let us
examine the following ciphertext of length 148:

MDJJL DSKQB GYMZC YKBYT ZVRYU PJTZN WPZXS KCHFG EFYFS ENVFW

KORMX ZQGYT KEDIQ WRVPM OYMQV DQWDN UBQQM XEQCA CXYLP VUOSG

EJYDS PYYNA XOREC YJAFA MFCOF DQKTA CBAHW FYJUI LXBYA DTT

The Kasiski test finds no reptitions of length 3 or more. It finds 16
repetitions of length 2 and no eye-catching pattern. The common factors 10
or 20 could be a hint at the correct period, but repetitions of length 2 are
not overly convincing.

Repetition: DS SK GY YM CY BY YT TZ
Distance: 98 28 47 60 100 125 40 8

Repetition: GE FY OR MX QW DQ AC YJ
Distance: 60 94 60 31 12 50 40 21

The coincidence index of the text is 0.0386 and doesn’t distinguish the
ciphertext from random text. The first 40 values of the autocoincidence
spectrum are

κ1 κ2 κ3 κ4 κ5 κ6 κ7 κ8

0.0270 0.0203 0.0541 0.0405 0.0405 0.0338 0.0405 0.0676

κ9 κ10 κ11 κ12 κ13 κ14 κ15 κ16

0.0270 0.0473 0.0270 0.0676 0.0405 0.0473 0.0541 0.0541

κ17 κ18 κ19 κ20 κ21 κ22 κ23 κ24

0.0203 0.0203 0.0608 0.0473 0.0473 0.0135 0.0541 0.0270

κ25 κ26 κ27 κ28 κ29 κ30 κ31 κ32

0.0338 0.0405 0.0541 0.0811 0.0338 0.0338 0.0405 0.0203

κ33 κ34 κ35 κ36 κ37 κ38 κ39 κ40

0.0068 0.0473 0.0473 0.0270 0.0405 0.0066 0.0203 0.0473

K. Pommerening, Classic Ciphers 71

Values above 0.06 occur for shifts of 8, 12, 19, 28, the latter being the
largest one. This makes a diffuse picture, giving slight evidence for a period
of 28. Finally let’s try Sinkov’s test. It gives as its first 40 values:

ϕ̄1 ϕ̄2 ϕ̄3 ϕ̄4 ϕ̄5 ϕ̄6 ϕ̄7 ϕ̄8

0.0386 0.0413 0.0386 0.0492 0.0421 0.0441 0.0433 0.0471

ϕ̄9 ϕ̄10 ϕ̄11 ϕ̄12 ϕ̄13 ϕ̄14 ϕ̄15 ϕ̄16

0.0330 0.0505 0.0265 0.0591 0.0333 0.0486 0.0444 0.0410

ϕ̄17 ϕ̄18 ϕ̄19 ϕ̄20 ϕ̄21 ϕ̄22 ϕ̄23 ϕ̄24

0.0280 0.0395 0.0439 0.0589 0.0357 0.0264 0.0476 0.0548

ϕ̄25 ϕ̄26 ϕ̄27 ϕ̄28 ϕ̄29 ϕ̄30 ϕ̄31 ϕ̄32

0.0507 0.0359 0.0444 0.0488 0.0368 0.0622 0.0312 0.0323

ϕ̄33 ϕ̄34 ϕ̄35 ϕ̄36 ϕ̄37 ϕ̄38 ϕ̄39 ϕ̄40

0.0091 0.0294 0.0429 0.0611 0.0541 0.0307 0.0256 0.0542

The values for 12, 20, 30, and 36 stand somewhat out, followed by the
values for 24, 37, and 40, then 10 and 25—again there is no clear favorite.
Let’s discuss the candidate values for the period and rate each criterion as
“good”, “weak”, or “prohibitive”.

K. Pommerening, Classic Ciphers 72

Period? Pros and cons

8 ϕ(c) should be slightly larger (weak).
Only 3 repetition distances are multiples of 8 (weak).
κ8 and κ16 are good, κ40 is weak, κ24 and κ32 are prohibitive.
ϕ̄8 is weak, ϕ̄16 and ϕ̄32 are prohibitive, ϕ̄24 and ϕ̄40 are good.

10 ϕ(c) should be slightly larger (weak).
7 repetition distances are multiples of 10 (good).
κ10, κ20, and κ40 are weak, κ30 is prohibitive.
ϕ̄10, ϕ̄20, ϕ̄30, and ϕ̄40 are good.

12 ϕ(c) should be slightly larger (weak).
4 repetition distances are multiples of 12 (good).
κ12 is good, κ24 and κ36 are prohibitive.
ϕ̄12, ϕ̄24, and ϕ̄36 are good.

19 0 repetition distances are multiples of 19 (prohibitive).
κ19 is good, κ38 is prohibitive.
ϕ̄19 and ϕ̄38 are prohibitive.

20 6 repetition distances are multiples of 20 (good).
κ20 and κ40 are weak.
ϕ̄20 and ϕ̄40 are good.

24 0 repetition distances are multiples of 24 (prohibitive).
κ24 is prohibitive.
ϕ̄24 is good.

28 Only 1 repetition distance is a multiple of 28 (weak).
κ28 is good.
ϕ̄28 is weak.

30 3 repetition distances are multiples of 30 (good).
κ30 is prohibitive.
ϕ̄30 is good.

36 0 repetition distances are multiples of 36 (prohibitive).
κ36 is prohibitive.
ϕ̄36 is good.

37 0 repetition distances are multiples of 37 (prohibitive).
κ37 is prohibitive.
ϕ̄37 is good.

To assess these findings let us score the values “good” as +1, “weak” as
0, and “prohibitive” as −1. Note that 3 repetitions for period 8 are weaker
than 3 repetitions for period 30. The candidates 19, 24, 36, and 37 have
negative weights, the candidates 8 and 28, zero weights. We skip them in
the first round. Positive weights have 10 (3 of 9), 12 (3 of 8), 20 (3 of 5), and
30 (1 of 3). We rank them by their relative weights: 20 with score 0.6 = 3/5,
then 12 with score 0.375, then 10 and 30 with scores 0.333.

The most promising approach to further cryptanalysis starts from the
hypothetical period 20, see Section 3.15.

K. Pommerening, Classic Ciphers 73

3.14 Kullback’s Cross-Product Sum Statistic

For a decision whether two texts a ∈ Σr, b ∈ Σq belong to the same language
we could consider ϕ(a||b), the coincidence index of the concatenated string
a||b. It should approximately equal the coincidence index of the language,
or—in the negative case—be significantly smaller. This index evaluates as

(q + r)(q + r − 1) · ϕ(a||b) =
∑
s∈Σ

[ms(a) +ms(b)] [ms(a) +ms(b)− 1]

=
∑
s∈Σ

ms(a)2 +
∑
s∈Σ

ms(b)
2 + 2 ·

∑
s∈Σ

ms(a)ms(b)− r − q

In this expression we consider terms depending on only one of the texts
as irrelevant for the decision problem. Omitting them we are left with the
“cross-product sum” ∑

s∈Σ

ms(a)ms(b)

From another viewpoint we could consider the “Euclidean distance” of a
and b in the n-dimensional space of single letter frequencies

d(a, b) =
∑
s∈Σ

[ms(a)−ms(b)]
2 =

∑
s∈Σ

ms(a)2+
∑
s∈Σ

ms(b)
2−2·

∑
s∈Σ

ms(a)ms(b)

and this also motivates considering the cross-product sum. It should be large
for texts from the same language, and small otherwise.

Definition

Let Σ be a finite alphabet. Let a ∈ Σr and b ∈ Σq be two texts of lengths
r, q ≥ 1. Then

χ(a, b) :=
1

rq
·
∑
s∈Σ

ms(a)ms(b),

where ms denotes the frequency of the letter s in a text, is called cross-
product sum of a and b.

For each pair r, q ∈ N1 this defines a map

χ : Σr × Σq −→ Q.

A Perl program, chi.pl, is in http://www.staff.uni-mainz.de/Cryptology/

Classic/Perl/.
Transforming a and b by the same monoalphabetic substitution permutes

the summands of χ(a, b). Therefore χ is invariant under monoalphabetic
substitution.

Lemma 3 Always χ(a, b) ≤ 1. Equality holds if and only if a and b consist
of repetitions of the same single letter.

http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Perl/chi.pl

K. Pommerening, Classic Ciphers 74

Proof. We use the Cauchy-Schwartz inequality:

χ(a, b)2 =

(∑
s∈Σ

ms(a)

r

ms(b)

q

)2

≤
∑
s∈Σ

(
ms(a)

r

)2

·
∑
s∈Σ

(
ms(b)

q

)2

≤
∑
s∈Σ

ms(a)

r
·
∑
s∈Σ

ms(b)

q
= 1

Equality holds if and only if

• ms(a) = c ·ms(b) for all s ∈ Σ with a fixed c ∈ R,

• and all ms(a)
r and ms(b)

q are 0 or 1.

These two conditions together are equivalent with both of a and b consisting
of only one—the same—repeated letter. 3

Considering the quantity ψ(a) := χ(a, a) =
∑

sms(a)2/r2 doesn’t make
much sense for Corollary 1 of the Kappa-Phi-Theorem gives a linear (more
exactly: affine) relation between ψ and ϕ:

Lemma 4 For all a ∈ Σr, r ≥ 2,

ϕ(a) =
r

r − 1
· ψ(a)− 1

r − 1

Side Remark: Cohen’s Kappa

In statistical texts one often encounters a related measure of coincidence
between two series of observations: Cohen’s kappa. It combines Friedman’s
kappa and Kullback’s chi. Let a = (a1, . . . , ar), b = (b1, . . . , br) ∈ Σr be
two texts over the alphabet Σ (or two series of observations of data of some
type). Then consider the matrix of frequencies

mst(a, b) = #{i | ai = s, bi = t} for s, t ∈ Σ.

Its row sums are

ms(a) = #{i | ai = s} =
∑
t∈Σ

mst(a, b),

its column sums are

mt(b) = #{i | bi = t} =
∑
s∈Σ

mst(a, b),

its diagonal sum is∑
s∈Σ

mss(a, b) =
∑
s∈Σ

#{i | ai = bi = s} = #{i | ai = bi}.

K. Pommerening, Classic Ciphers 75

The intermediate values from which Cohen’s kappa is calculated are

p0 =
1

r
·
∑
s∈Σ

mss(a, b) = κ(a, b) and pe =
1

r2
·
∑
s∈Σ

ms(a)ms(b) = χ(a, b)

Cohen’s kappa is defined for a 6= b by

K(a, b) :=
p0 − pe
1− pe

=
κ(a, b)− χ(a, b)

1− χ(a, b)

If a and b are random strings with not necessarily uniform letter probabilities
ps, then K is asymptotically normally distributed with expectation 0 and
variance

p0 · (1− p0)

r · (1− p0)2

Therefore its use is convenient for large series of observations—or large
strings—but in cryptanalysis we mostly have to deal with short strings,
and considering κ and χ separately may retain more information.

Mean Values

For a fixed a ∈ Σr we determine the mean value of κ(a, b) taken over all
b ∈ Σq:

1

nq
·
∑
b∈Σq

χ(a, b) =
1

nq
·
∑
b∈Σq

[
1

rq
·
∑
s∈Σ

ms(a)ms(b)

]

=
1

rqnq
·
∑
s∈Σ

ms(a)
∑
b∈Σq

ms(b)︸ ︷︷ ︸
q·nq−1

=
1

rqnq
· r · q · nq−1 =

1

n

where we used the corollary of Proposition 4.
In an analogous way we determine the mean value of χ(a, fσ(b)) for fixed

a, b ∈ Σr over all permutations σ ∈ S(Σ):

1

n!
·
∑

σ∈S(Σ)

χ(a, fσ(b)) =
1

rqn!
·
∑

σ∈S(Σ)

∑
s∈Σ

ms(a)ms(fσ(b))

As usual we interchange the order of summation, and evaluate the sum∑
σ∈S(Σ)

ms(fσ(b)) =
1

n
·
∑
t∈Σ

∑
σ∈S(Σ)

mt(fσ(b))

=
1

n
·
∑

σ∈S(Σ)

∑
t∈Σ

mt(fσ(b))︸ ︷︷ ︸
q

=
1

n
· n! · q = (n− 1)! · q

K. Pommerening, Classic Ciphers 76

using the symmetry with respect to s. Therefore

1

n!
·
∑

σ∈S(Σ)

χ(a, fσ(b)) =
1

rqn!
·
∑
s∈Σ

ms(a) ·
∑

σ∈S(Σ)

ms(fσ(b))

=
1

rqn!
· r · (n− 1)! · q =

1

n

Note that this conclusion also holds for a = b.
This derivation shows:

Proposition 5 (i) The mean value of χ(a, b) over all texts b ∈ Σ∗ of a fixed
length q is 1

n for all a ∈ Σ∗.
(ii) The mean value of χ(a, b) over all a ∈ Σr and b ∈ Σq is 1

n for all
r, q ∈ N1.

(iii) The mean value of χ(a, fσ(b)) over all monoalphabetic substitutions
with σ ∈ S(Σ) is 1

n for each pair a, b ∈ Σ∗.
(iv) The mean value of χ(fσ(a), fτ (b)) over all pairs of monoalphabetic

substitutions, with σ, τ ∈ S(Σ), is 1
n for each pair a, b ∈ Σ∗.

Interpretation

• For a given text a and a “random” text b we have χ(a, b) ≈ 1
n .

• For “random” texts a and b we have χ(a, b) ≈ 1
n .

• For given texts a and b and a “random” monoalphabetic substitution
fσ we have χ(a, fσ(b)) ≈ 1

n . This remark justifies treating a nontrivially
monoalphabetically encrypted text as random with respect to χ and
plaintext.

• For given texts a and b and two “random” monoalphabetic substitu-
tions fσ, fτ we have χ(fσ(a), fτ (b)) ≈ 1

n .

Empirical Results

The results are in Tables D.16, D.17, and D.18. We see that χ—in contrast
with the coincidence index κ—performs extremely well, in fact in our exper-
iments it even completely separates English and German texts from random
texts of length 100. It is a test with power near 100% and error probability
near 0%. The χ test even distinguishes between English and German texts
at the 5% error level with a power of almost 75%. For this assertion compare
the 95% quantile for English with the first quartile for German.

The results for 26 letter texts are in Tables D.19, D.20, and D.21. The
χ-test is quite strong even for 26 letters: At the 5% error level its power is
around 91% for English, 98% for German.

K. Pommerening, Classic Ciphers 77

3.15 Adjusting the Columns of a Disk Cipher

As a last application in this chapter we look at the problem: How to adjust
the alphabets in the columns of a disk cipher? From Chapter 2 we know
that this works only when the primary alphabet is known.

Imagine a ciphertext from a disk cipher whose period l we know already.
Write the ciphertext in rows of length l. Then the columns are monoalpha-
betically encrypted, each with (in most cases) another alphabet. By Propo-
sition 5 (iv) we expect a χ-value of about 1

n for each pair of columns. Since
the alphabets for the columns are secondary alphabets of a disk cipher they
differ only by a relative shift in the alphabet. There are 26 different possible
shifts. These can be checked by exhaustion: We try all 26 possibilities (in-
cluding the trivial one, bearing in mind that two columns can have the same
alphabet). The perfect outcome would be 25 values near 1

n , and one outcome
around the coincidence index of the plaintext language, clearly indicating
the true alphabet shift. The experimental results of Section D.5 give hope
that real outcome should approximate the ideal one in a great number of
cases.

Example 1

Let us try out this idea for the ciphertext from Section 3.9. We are pretty
sure that the period is 7. (And we also adjusted the columns by visual
inspection in Chapter 2.) The first two columns are

ARCYPMEAZKRWKHZLRXTRTMYYRLMTVYCMRBZZKOLKKTKOTCUKKOMVBLYUYYZALR

OEKWZMWZZRYZOOTUYURMTYYSOZEKLYVUYBYTZYKOVMYYMZMZVYROKYTYMUWZ

PZTZLSPLYLZVYYYBYMQMWWRXZYOKKMYZTZAKQZZT

OMZYYDMYPQMHMFKAMMAACDNNZPIMYZHCJSCNCJQMMYLEMMPNNPZYSNYHPNMOAM

CAJMPZIVNMPADAHNKFNNAHNVFJHFXNYPNSYFMKNFMDNPZFGJMVMCMXYZZMQC

MSYIMVAMKZOANZVSZFKMYEMQHZQMNDPMHDMKIYJF

Using the Perl script adjust.pl we get the results

Shift: 0 1 2 3 4 5 6
χ: 0.0499 0.0365 0.0348 0.0285 0.0320 0.0341 0.0298

7 8 9 10 11 12 13 14
0.0416 0.0307 0.0421 0.0402 0.0448 0.0799 0.0495 0.0373

15 16 17 18 19 20 21 22
0.0375 0.0293 0.0330 0.0276 0.0307 0.0306 0.0316 0.0352

23 24 25
0.0338 0.0461 0.0529

The result is clear without ambiguity: The correct shift is 12. Going
through all 7× 6/2 = 21 pairs of columns we use the Perl script coladj.pl
and get results in Table 3.16 that are consistent with each other and with
the results of Chapter 2.

http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Perl/adjust.pl
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Perl/coladj.pl

K. Pommerening, Classic Ciphers 78

Table 3.16: The optimal alphabet shifts for 7 columns

Column: 0 1 2 3 4 5

1 12
2 4 18
3 15 3 11
4 10 24 6 21
5 24 12 20 9 14
6 3 17 25 14 19 5

Example 2

The best guess for the period of the short ciphertext of Section 3.13 was
l = 20. Therefore we consider 20 columns of lengths 8 or 7:

M D J J L D S K Q B G Y M Z C Y K B Y T

Z V R Y U P J T Z N W P Z X S K C H F G

E F Y F S E N V F W K O R M X Z Q G Y T

K E D I Q W R V P M O Y M Q V D Q W D N

U B Q Q M X E Q C A C X Y L P V U O S G

E J Y D S P Y Y N A X O R E C Y J A F A

M F C O F D Q K T A C B A H W F Y J U I

L X B Y A D T T

We have to assume the primary alphabet as known in order to know how to
shift the columns, that is, how to identify the distance of the secondary
alphabets of two columns relative to each other. The primary alphabet
is QWERTZUABCDFGHIJKLMNOPSVXY, the complete alphabet table is in Ta-
ble 3.17.

The method from Example 1 gives 20×19/2 = 190 proposals for optimal
shifts between columns. However even for the first columns we already get
inconsistent results. We face a complex optimization problem. Instead of
continuing with the next columns we better would follow a proposal by
Sinkov: Pick up the highest χ-values and try to build clusters of fitting
columns. But also this approach fails. After several hours off the track we
try to understand why.

Let us imagine a plaintext of the same length, written in rows of length
20, columns of length 7 or 8. Take two columns that each have one letter
twice and five or six single letters. Shifting the alphabets in such a way that
the “twins” become identical letters, they contribute a summand of

4

49
≈ 0.0818 for lengths 7/7,

4

56
≈ 0.0714 for 8/7,

4

64
≈ 0.0625 for 8/8,

K. Pommerening, Classic Ciphers 79

Table 3.17: The alphabet table used in the example

a b c d e f g h i j k l m n o p q r s t u v w x y z

Q W E R T Z U A B C D F G H I J K L M N O P S V X Y

W E R T Z U A B C D F G H I J K L M N O P S V X Y Q

E R T Z U A B C D F G H I J K L M N O P S V X Y Q W

R T Z U A B C D F G H I J K L M N O P S V X Y Q W E

T Z U A B C D F G H I J K L M N O P S V X Y Q W E R

Z U A B C D F G H I J K L M N O P S V X Y Q W E R T

U A B C D F G H I J K L M N O P S V X Y Q W E R T Z

A B C D F G H I J K L M N O P S V X Y Q W E R T Z U

B C D F G H I J K L M N O P S V X Y Q W E R T Z U A

C D F G H I J K L M N O P S V X Y Q W E R T Z U A B

D F G H I J K L M N O P S V X Y Q W E R T Z U A B C

F G H I J K L M N O P S V X Y Q W E R T Z U A B C D

G H I J K L M N O P S V X Y Q W E R T Z U A B C D F

H I J K L M N O P S V X Y Q W E R T Z U A B C D F G

I J K L M N O P S V X Y Q W E R T Z U A B C D F G H

J K L M N O P S V X Y Q W E R T Z U A B C D F G H I

K L M N O P S V X Y Q W E R T Z U A B C D F G H I J

L M N O P S V X Y Q W E R T Z U A B C D F G H I J K

M N O P S V X Y Q W E R T Z U A B C D F G H I J K L

N O P S V X Y Q W E R T Z U A B C D F G H I J K L M

O P S V X Y Q W E R T Z U A B C D F G H I J K L M N

P S V X Y Q W E R T Z U A B C D F G H I J K L M N O

S V X Y Q W E R T Z U A B C D F G H I J K L M N O P

V X Y Q W E R T Z U A B C D F G H I J K L M N O P S

X Y Q W E R T Z U A B C D F G H I J K L M N O P S V

Y Q W E R T Z U A B C D F G H I J K L M N O P S V X

K. Pommerening, Classic Ciphers 80

to the χ-value. If accidentally there is another common letter, these values
rise to

5

49
≈ 0.1020 for lengths 7/7,

5

56
≈ 0.0893 for 8/7,

5

64
≈ 0.0781 for 8/8.

And therefore we’ll get many false alarms that will make the task of finding
the correct solution very time-consuming. An experiment with plaintext
comfirms this. Here all shifts should be 0, however we found the maximal
χ-value for a shift of 0 in less then 20% of all cases.

To get better chances for success we need some known plaintext or more
ciphertext or luck. We had luck and got more ciphertext. The following two
messages b and c,

AWYFN DHZPE PENES YGAVO YHGAD VTNLL TFKKH FHGYT DOGJI HJHHB

OOYFV EWDSJ MOIFY DRTLA BRRFE ZQGYQ AVYCH BQZPR RZTTH IONZE

SCEFH EFJBJ RNRWE TGVZR EYIIQ IZRWT OLGOC ICLFS EMYAH E

LIGJC KTNLF KBMZH XYWFB UWVPC RNYAJ WEVKV BRVPN PXYOT KVGLE

MBVHE WFZSM UOWFI EYXLB XRRKC XKGPT YONFY DKZLU CXRDC YJWZT

UWPDS VZWNU KORLK WUXUO WVHFL IEGXJ ZUKGC YJVDN EFYDK GJZON

BYXEV EWQSD MMHSS GJ

could be encrypted with the same key. Number 1 and 2 have a coincidence
index κ(a, b) ≈ 0.0411 only. But κ(a, c) ≈ 0.0811, κ(b, c) ≈ 0.1027. For
both b and c the period 20 is confirmed by the Sinkov statistic and also by
the autocoincidence spectrum. Therefore we align all three messages below
each other with rows of length 20. From bad experience we know we should
proceed very thoughtfully. Therefore we first look at the letter frequencies
in the single columns (of lengths 22 to 25). The columns 2, 3, and 12 contain
a letter in 7 exemplars. We try to adjust these columns in such a way that
the most frequent letters match. For column 3 relative to column 2 we get a
χ-value of 0.1072 for a shift of 14, the next χ-value being 0.0608. If we write
the columns as rows, the result looks like this

Column 02: JRYDQYCBYGGIYEIYGVYWNPHYH

Column 03: JYFIQDOYFAJFCFIAJPOFFDFDS

shifted: RHYEIXBHYPRYVYEPRCBYYXYXD

In both cases the most frequent letter with 7 occurrences is Y. For column
12 we get the optimal shift 22 relative to column 2 with a χ-value of 0.1273,
the next χ-value being 0.0836. This also looks good and gives the result

Column 02: JRYDQYCBYGGIYEIYGVYWNPHYH

Column 12: MZRMYRANKYRTRGMVVRRRKX

shifted: IWYIPYRJGPYQYBINNYYYGO

K. Pommerening, Classic Ciphers 81

Also in the shifted column 12 the letter Y occurs 7 times. If we are right,
comparing columns 3 and 12 should lead to the same result. Indeed the
optimal shift is 8 with χ ≈ 0.1109, the next χ-value being 0.0727.

This makes us confident that we are on the right track, and encourages
us to set Y it to plaintext e. We continue our task under the hypothesis that
columns 2, 3, and 12 match with the given shifts as

...

JRYDQYCBYGGIYEIYGVYWNPHYH

RHYEIXBHYPRYVYEPRCBYYXYXD

...

IWYIPYRJGPYQYBINNYYYGO

...

We take this text fragment as cluster “A” and try to match further columns.
First we take columns where the most frequent letters occur 6 or 5 times.

A vs 5: Optimal shift is 15 with chi = 0.0906 (next is 0.0683)

A vs 8: Optimal shift is 8 with chi = 0.1092 (next is 0.0758)

A vs 14: Optimal shift is 16 with chi = 0.1092 (next is 0.0859)

A vs 0: Optimal shift is 23 with chi = 0.0878 (next is 0.0817)

A vs 5: Optimal shift is 0 with chi = 0.0809 (next is 0.0619)

A vs 9: Optimal shift is 21 with chi = 0.0966 (next is 0.0663)

The most convincing match is with column 8, therefore we join it to our
cluster, forming cluster “B”:

...

JRYDQYCBYGGIYEIYGVYWNPHYH

RHYEIXBHYPRYVYEPRCBYYXYXD

...

BHNRLWGRYPYRKCYJYYYWUE

...

IWYIPYRJGPYQYBINNYYYGO

...

Looking at the distribution of letters the Y stands out by far—that is no sur-
prise because we picked columns with the most frequent letters and matched
these. As a more meaningful check we transform our cluster to (presumed)
plaintext; this means decrypting the fragments with the secondary alphabet
that transforms e to Y, that is PSVXYQWERTZUABCDFGHIJKLMNO. This gives
the supposed plaintext fragment (to be read top down):

...

uiepfeonerrtehtercegyases

K. Pommerening, Classic Ciphers 82

isehtdnseaiecehaioneededp

...

nsyiwgrieaeivoeueeeglh

...

tgetaeiuraefentyyeeerz

...

This looks promising. Trying to extend this cluster by a formal procedure is
dangerous because there could be columns with a most frequent (plaintext)
letter other then e. Instead we look at neighboring columns, say at column
4 that should give a readable continuation of columns 2 and 3, in particular
extending the digraph th in a meaningful way. The proposed shift should
have a Y (for e) as 15th letter, or maybe a P (for a), or an R (for i).

Cluster B versus column 4 yields the optimal shift 3 with χ ≈ 0.0753, the
15th letter being R (for i). The next best values are χ ≈ 0.0664 for a shift
of 12, the 15th letter then being G (for r), and χ ≈ 0.0604 for a shift of 25,
the 15th letter being Y (for e). To decide between these possible solutions
we decrypt the shifted columns and get the proposed cleartext columns

zoeiaetpbswhvvivrrmwhezye

ixnrjncykbfqeereaavfqnihn

vkaewaplxosdrrernnisdavua

Joining them to columns 3 and 4 the first one looks somewhat inauspicuous
but possible, the second one looks awkward, the third one looks best and is
our first choice. This gives the three adjacent columns

uiepfeonerrtehtercegyases

isehtdnseaiecehaioneededp

vkaewaplxosdrrernnisdavua

and the new cluster “C” of (monoalphabetic) ciphertext, comprising columns
2, 3, 4, 8, 12:

...

JRYDQYCBYGGIYEIYGVYWNPHYH

RHYEIXBHYPRYVYEPRCBYYXYXD

KZPYLPDUMCHXGGYGBBRHXPKJP

...

BHNRLWGRYPYRKCYJYYYWUE

...

IWYIPYRJGPYQYBINNYYYGO

...

Note that for joining further columns we must not work with the (proposed)
plaintext columns because the transformation between plaintext and cipher-
text is not a simple shift.

Comparing the adjacent columns with cluster C we obtain

K. Pommerening, Classic Ciphers 83

C vs 1: Optimal shift is 1 with chi = 0.0642 (next is 0.0632)

C vs 5: Optimal shift is 15 with chi = 0.0844 (next is 0.0686)

C vs 7: Optimal shift is 20 with chi = 0.0676 (next is 0.0621)

C vs 9: Optimal shift is 6 with chi = 0.0695 (next is 0.0653)

C vs 11: Optimal shift is 5 with chi = 0.0695 (next is 0.0638)

C vs 13: Optimal shift is 23 with chi = 0.0684 (next is 0.0588)

The best value seems that for column 13, so let’s try this one first (skipping
the dead end via column 5). The new cluster D is

...

JRYDQYCBYGGIYEIYGVYWNPHYH uiepfeonerrtehtercegyases

RHYEIXBHYPRYVYEPRCBYYXYXD isehtdnseaiecehaioneededp

KZPYLPDUMCHXGGYGBBRHXPKJP vkaewaplxosdrrernnisdavua

...

BHNRLWGRYPYRKCYJYYYWUE nsyiwgrieaeivoeueeeglh

...

IWYIPYRJGPYQYBINNYYYGO tgetaeiuraefentyyeeerz

EPJVIYDYHBBWXLEHDHAICY hauctepesnngdwhspsmtoe

...

This looks good, and detecting the two th’s between the cleartext columns
12 and 13 we try column 14 next.

D vs 14: Optimal shift is 16 with chi = 0.0945 (next is 0.0793)

If we rely on this result, we get the next cluster E:

K. Pommerening, Classic Ciphers 84

...

JRYDQYCBYGGIYEIYGVYWNPHYH uiepfeonerrtehtercegyases

RHYEIXBHYPRYVYEPRCBYYXYXD isehtdnseaiecehaioneededp

KZPYLPDUMCHXGGYGBBRHXPKJP vkaewaplxosdrrernnisdavua

...

BHNRLWGRYPYRKCYJYYYWUE nsyiwgrieaeivoeueeeglh

...

IWYIPYRJGPYQYBINNYYYGO tgetaeiuraefentyyeeerz

EPJVIYDYHBBWXLEHDHAICY hauctepesnngdwhspsmtoe

PBDCAPHBYCIYIPYCIPPEPC anpomasneotetaeotaahao

...

Good! Let’s continue with column 15:

E vs 15: Optimal shift is 0 with chi = 0.0719 (next is 0.0574)

Joining the resulting “cleartext” to columns 12, 13, 14 gives the disturbing
result

tgetaeiuraefentyyeeerz

hauctepesnngdwhspsmtoe

anpomasneotetaeotaahao

evkpceqeqhktjtdngdegeh

Therefore we dismiss this proposal. Unfortunately also the next best χ-
value gives no sensible result. On the other hand the shifts giving a possible
complement to the th have a quite small χ-value. Therefore we leave column
15 and retry column 1:

E vs 1: Optimal shift is 1 with chi = 0.0631 (next is 0.0577)

This would give us cluster F:

...

FXGRCKGYEIPPXDQNJEYPPEXGN qdriovrehtaadpfyuheaahdry

JRYDQYCBYGGIYEIYGVYWNPHYH uiepfeonerrtehtercegyases

RHYEIXBHYPRYVYEPRCBYYXYXD isehtdnseaiecehaioneededp

KZPYLPDUMCHXGGYGBBRHXPKJP vkaewaplxosdrrernnisdavua

...

BHNRLWGRYPYRKCYJYYYWUE nsyiwgrieaeivoeueeeglh

...

IWYIPYRJGPYQYBINNYYYGO tgetaeiuraefentyyeeerz

EPJVIYDYHBBWXLEHDHAICY hauctepesnngdwhspsmtoe

PBDCAPHBYCIYIPYCIPPEPC anpomasneotetaeotaahao

...

K. Pommerening, Classic Ciphers 85

The plaintext now begins with .quiv.... A dictionary search finds hits
such as “equivalent”, “equivocal”, and “a quiver”. We compare cluster F
with column 1 and look for shifts that make the first letter a (P in our
secondary alphabet) or e (Y). We have luck! The optimal shift gives e, so
we take this as our favourite solution:

F vs 0: Optimal shift is 7 with chi = 0.0717 (next is 0.0696)

and form the next cluster G:

YGCVHCYXIULYIRCCXHEHUHBCY erocsoedtlwetioodshslsnoe

FXGRCKGYEIPPXDQNJEYPPEXGN qdriovrehtaadpfyuheaahdry

JRYDQYCBYGGIYEIYGVYWNPHYH uiepfeonerrtehtercegyases

RHYEIXBHYPRYVYEPRCBYYXYXD isehtdnseaiecehaioneededp

KZPYLPDUMCHXGGYGBBRHXPKJP vkaewaplxosdrrernnisdavua

...

BHNRLWGRYPYRKCYJYYYWUE nsyiwgrieaeivoeueeeglh

...

IWYIPYRJGPYQYBINNYYYGO tgetaeiuraefentyyeeerz

EPJVIYDYHBBWXLEHDHAICY hauctepesnngdwhspsmtoe

PBDCAPHBYCIYIPYCIPPEPC anpomasneotetaeotaahao

...

Noting the fragments ciphe in “line” 4 (fourth column in the schema above)
and ipher in “line” 14, we cannot resist completing them as cipher.

G vs 5: Optimal shift is 11 with chi = 0.0708 (next is 0.0697)

G vs 19: Optimal shift is 21 with chi = 0.0775 (next is 0.0585)

Note that we now see how misleading our former results for column 5 were.
This is caused by the six a’s in this column that the χ-method tried to
associate with the e’s of other columns.

Adding both of these results in one step gives cluster H:

YGCVHCYXIULYIRCCXHEHUHBCY erocsoedtlwetioodshslsnoe

FXGRCKGYEIPPXDQNJEYPPEXGN qdriovrehtaadpfyuheaahdry

JRYDQYCBYGGIYEIYGVYWNPHYH uiepfeonerrtehtercegyases

RHYEIXBHYPRYVYEPRCBYYXYXD isehtdnseaiecehaioneededp

KZPYLPDUMCHXGGYGBBRHXPKJP vkaewaplxosdrrernnisdavua

YDLKHDYYYGEYVLRLZMZLYGRWW alsrolaaandaysesgtgsanecc

...

BHNRLWGRYPYRKCYJYYYWUE nsyiwgrieaeivoeueeeglh

...

IWYIPYRJGPYQYBINNYYYGO tgetaeiuraefentyyeeerz

EPJVIYDYHBBWXLEHDHAICY hauctepesnngdwhspsmtoe

PBDCAPHBYCIYIPYCIPPEPC anpomasneotetaeotaahao

...

YAYIAECJYDPVXLRIHYYJIZ emetmhouepacdwitseeutk

K. Pommerening, Classic Ciphers 86

We see that column 6 should start with l (U). And this is also the “χ-
optimal” solution:

H vs 6: Optimal shift is 10 with chi = 0.0734 (next is 0.0554)

And column 7 should start with e (Y):

H vs 7: Optimal shift is 20 with chi = 0.0647 (next is 0.0639)

We are not amused, also the next best χ is unwanted. However the shift that
gives e has a χ-value of 0.0639 that is acceptable. We fill in columns 6 and
7:

YGCVHCYXIULYIRCCXHEHUHBCY erocsoedtlwetioodshslsnoe

FXGRCKGYEIPPXDQNJEYPPEXGN qdriovrehtaadpfyuheaahdry

JRYDQYCBYGGIYEIYGVYWNPHYH uiepfeonerrtehtercegyases

RHYEIXBHYPRYVYEPRCBYYXYXD isehtdnseaiecehaioneededp

KZPYLPDUMCHXGGYGBBRHXPKJP vkaewaplxosdrrernnisdavua

YDLKHDYYYGEYVLRLZMZLYGRWW alsrolaaandaysesgtgsanecc

UYRHGCDIVIYHDPJIRACQJGYY leisroptctespautimofuree

YHUUCBYHIESHIXGEBPAIDPI esllonesthbstdrhnamtpat

BHNRLWGRYPYRKCYJYYYWUE nsyiwgrieaeivoeueeeglh

...

IWYIPYRJGPYQYBINNYYYGO tgetaeiuraefentyyeeerz

EPJVIYDYHBBWXLEHDHAICY hauctepesnngdwhspsmtoe

PBDCAPHBYCIYIPYCIPPEPC anpomasneotetaeotaahao

...

YAYIAECJYDPVXLRIHYYJIZ emetmhouepacdwitseeutk

It’s time, for easier reading, to arrange our findings in the right order
where ”columns” are columns:

equivalen...tha....e rdiskless...gan....m

oreeasily...eup....e ciphersli...tco....t

softworow...atm....m ovedalong...eea....h

eronpaper...ips....o denslats

theexacti...uen....u ltraonthe...rse....e

warisdeba...ano....p eatedasse...ent....a

tdecrypti...fge....c iphersadv...edt....d

oftheeuro...nwa....w oyears

duringthe...the....i shcontinu...yso....t

heenigmae...ypt....s sagessome...esa....e

layedafte...ema....e shadanupg...eth....u

ndseveral...roa....t oreduceth...zeo....k

eyspace

K. Pommerening, Classic Ciphers 87

Now its easy to complete the text: In the first row read equivalent

and complete column 9. In the fourth row read cipher slide and complete
column 10. Then read with in the first row and complete column 11. Then
in the last two rows we recognize the size of ... keyspace, this allows
us to complete column 15. Now in the first two rows we read cipher disk

and complete the remaining columns 16, 17, 18.
This is the final solution:

equivalentwithaciphe rdisklesselegantbutm

oreeasilymadeupisthe cipherslideitconsist

softworowsthatmaybem ovedalongsideeachoth

eronpaperstripsorwoo denslats

theexactinfluenceofu ltraonthecourseofthe

warisdebatedanoftrep eatedassessmentistha

tdecryptionofgermanc iphersadvancedtheend

oftheeuropeanwarbytw oyears

duringthewarthebriti shcontinuallysolvedt

heenigmaencryptedmes sagessometimesabitde

layedafterthemachine shadanupgradetheyfou

ndseveralapproachest oreducethesizeofthek

eyspace

3.16 Modeling a Language by a Markov Process

For deriving theoretical results a common model of language is the interpre-
tation of texts as results of Markov processes. This model was introduced
by Shannon in his fundamental papers published after World War II.

If we look at letter frequencies only, we define a Markov process of order
0. If we also incorporate bigram frequencies into our model, it becomes a
Markov process of order 1, if we include trigram frequencies, of order 2,
and so on.

In this section we want to derive theoretical expectation values for κ, ϕ,
and χ. For this the order of the Markov model is irrelevant.

Message Sources

Let the alphabet Σ be equipped with a probability distribution, assigning
the probability ps to the letter s ∈ Σ. In particular

∑
s∈Σ ps = 1. We call

(Σ, p) a message source and consider random variables X in Σ, that is
mappings X: Ω −→ Σ where Ω is a finite probability space with probability
measure P , such that P (X−1s) = ps for all s ∈ Σ.

Picking a letter of Σ at random from the message source is modeled as
evaluating X(ω) for some ω ∈ Ω. We calculate the expectation values of the
Kronecker symbols for random variables X,Y: Ω −→ Σ and letters s ∈ Σ

K. Pommerening, Classic Ciphers 88

where Y may belong to a message source (Σ, q) with a possibly different
probability distribution q = (qs)s∈Σ:

δsX(ω) =

{
1 if X(ω) = s

0 otherwise
δXY (ω) =

{
1 if X(ω) = Y (ω)

0 otherwise

Lemma 5 (i) E(δsX) = ps for all s ∈ Σ.
(ii) If X and Y are independent, then E(δXY) =

∑
s∈Σ psqs.

(ii) If X and Y are independent, then δsX and δsY are independent.

Proof. (i) Since δ takes only the values 0 and 1, we have

E(δsX) = 1 · P (X−1s) + 0 · P (Ω−X−1s) = P (X−1s) = ps.

(ii) In the same way, using the independence of X and Y ,

E(δX,Y) = 1 · P (ω |X(ω) = Y (ω)) + 0 · P (ω |X(ω) 6= Y (ω))

= P (X = Y) =
∑
s∈Σ

P (X−1s ∩ Y −1s)

=
∑
s∈Σ

P (X−1s) · P (Y −1s) =
∑
s∈Σ

psqs

(iii) δ−1
sX(1) = {ω |X(ω) = s} = X−1s, and δ−1

sX(0) = Ω−X−1s. The same
for Y . The assertion follows because P (X−1s∩Y −1s) = P (X−1s) ·P (Y −1s).
3

Picking a random text of length r is modeled by evaluating an r-tuple
of random variables at some ω. This leads to the following definition:

Definition. A message of length r from the message source (Σ, p) is a
sequence X = (X1, . . . , Xr) of random variables X1, . . . , Xr: Ω −→ Σ
such that P (X−1

i s) = ps for all i = 1, . . . , r and all s ∈ Σ.

Note. In particular the Xi are identically distributed. They are not neces-
sarily independent.

The Coincidence Index of Message Sources

Definition. Let Y = (Y1, . . . , Yr) be another message of length r from a
possibly different message source (Σ, q). Then the coincidence index
of X and Y is the random variable

KXY : Ω −→ R

defined by

KXY (ω) :=
1

r
·#{i = 1, . . . , r |Xi(ω) = Yi(ω)} =

1

r
·

r∑
i=1

δXi(ω),Yi(ω)

K. Pommerening, Classic Ciphers 89

We calculate its expectation under the assumption that each pair of Xi

and Yi is independent. From Lemma 5, using the additivity of E, we get

E(KXY) =
1

r
·

r∑
i=1

E(δXi,Yi) =
1

r
· r ·

∑
s∈Σ

psqs =
∑
s∈Σ

psqs

independently of the length r. Therefore it is adequate to call this expecta-
tion the coincidence index κLM of the two message sources L,M . We
have proven:

Theorem 4 The coincidence index of two message sources L = (Σ, p) and
M = (Σ, q) is

κLM =
∑
s∈Σ

psqs

Now we are ready to calculate theoretical values for the “typical” coin-
cidence indices of languages under the assumption that the model “message
source” fits their real behaviour:

Example 1, random texts versus any language M : Here all ps =
1/n, therefore κΣ∗ = n ·

∑
s∈Σ 1/n · qs = 1/n.

Example 2, English texts versus English: From Table 3.18 we get the
value 0.0653.

Example 3, German texts versus German: The table gives 0.0758.

Example 4, English versus German: The table gives 0.0664.

Note that these theoretical values for the real languages differ slightly
from the former empirical values. This is due to two facts:

• The model—as every mathematical model—is an approximation to
the truth.

• The empirical values underly statistical variations and depend on the
kind of texts that were evaluated.

The Cross-Product Sum of Message Sources

For a message X = (X1, . . . , Xr) from a message source (Σ, p) we define the
(relative) letter frequencies as random variables

MsX: Ω −→ R, MsX =
1

r
·

r∑
i=1

δsXi ,

K. Pommerening, Classic Ciphers 90

Table 3.18: Calculating theoretical values for coincidence indices

Letter s English German Square Square Product
ps qs p2

s q2
s psqs

A 0.082 0.064 0.006724 0.004096 0.005248
B 0.015 0.019 0.000225 0.000361 0.000285
C 0.028 0.027 0.000784 0.000729 0.000756
D 0.043 0.048 0.001849 0.002304 0.002064
E 0.126 0.175 0.015876 0.030625 0.022050
F 0.022 0.017 0.000484 0.000289 0.000374
G 0.020 0.031 0.000400 0.000961 0.000620
H 0.061 0.042 0.003721 0.001764 0.002562
I 0.070 0.077 0.004900 0.005929 0.005390
J 0.002 0.003 0.000004 0.000009 0.000006
K 0.008 0.015 0.000064 0.000225 0.000120
L 0.040 0.035 0.001600 0.001225 0.001400
M 0.024 0.026 0.000576 0.000676 0.000624
N 0.067 0.098 0.004489 0.009604 0.006566
O 0.075 0.030 0.005625 0.000900 0.002250
P 0.019 0.010 0.000361 0.000100 0.000190
Q 0.001 0.001 0.000001 0.000001 0.000001
R 0.060 0.075 0.003600 0.005625 0.004500
S 0.063 0.068 0.003969 0.004624 0.004284
T 0.091 0.060 0.008281 0.003600 0.005460
U 0.028 0.042 0.000784 0.001764 0.001176
V 0.010 0.009 0.000100 0.000081 0.000090
W 0.023 0.015 0.000529 0.000225 0.000345
X 0.001 0.001 0.000001 0.000001 0.000001
Y 0.020 0.001 0.000400 0.000001 0.000020
Z 0.001 0.011 0.000001 0.000121 0.000011

Sum 1.000 1.000 0.0653 0.0758 0.0664

K. Pommerening, Classic Ciphers 91

or more explicitly,

MsX(ω) =
1

r
·#{i |Xi(ω) = s} for all ω ∈ Ω.

We immediately get the expectation

E(MsX) =
1

r
·

r∑
i=1

E(δsXi) = ps.

Definition. Let X = (X1, . . . , Xr) be a message from the source (Σ, p), and
Y = (Y1, . . . , Yt), a message from the source (Σ, q). Then the cross-
product sum of X and Y is the random variable

XXY : Ω −→ R, XXY :=
1

rt
·
∑
s∈Σ

MsXMsY .

To calculate its expectation we assume that each Xi is independent of all
Yj , and each Yj is independent of all Xi. Under this assumption let us call
the messages X and Y independent. Then from Lemma 5 and the formula

XXY :=
1

rt
·
∑
s∈Σ

r∑
i=1

t∑
j=1

δsXiδsYj

we get

E(XXY) =
1

rt
·
∑
s∈Σ

r∑
i=1

t∑
j=1

E(δsXi)E(δsYj) =
∑
s∈Σ

psqs

again independently of the length r. Therefore we call this expectation the
cross-product sum χLM of the two message sources L,M . We have
proven:

Theorem 5 The cross-product sum of two message sources L = (Σ, p) and
M = (Σ, q) is

χLM =
∑
s∈Σ

psqs.

The Inner Coincidence Index of a Message Source

Let X = (X1, . . . , Xr) be a message from a source (Σ, p). In analogy with
Sections 3.10 and D.5 we define the random variables

ΨX ,ΦX: Ω −→ R

by the formulas

ΨX :=
∑
s∈Σ

M2
sX , ΦX :=

r

r − 1
·Ψx −

1

r − 1
.

K. Pommerening, Classic Ciphers 92

We try to calculate the expectation of ΨX first:

ΨX =
1

r2
·
∑
s∈Σ

(
r∑
i=1

δsXi

)2

=
1

r2
·
∑
s∈Σ

 r∑
i=1

δsXi +
r∑
i=1

∑
j 6=i

δsXiδsXj


since δ2

sXi
= δsXi . Taking the expectation value we observe that for a sensible

result we need the assumption that Xi and Xj are independent for i 6= j.

In the language of Markov chains this means that we assume
a Markov chain of order 0: The single letters of the messages
from the source are independent from each other.

Under this assumption we get

E(ΨX) =
1

r2
·
∑
s∈Σ

 r∑
i=1

ps +

r∑
i=1

∑
j 6=i

E(δsXi)E(δsXj)



=
1

r2
·


r∑
i=1

∑
s∈Σ

ps︸ ︷︷ ︸
1

+
∑
s∈Σ

p2
s ·

r∑
i=1

∑
j 6=i

1︸ ︷︷ ︸
r·(r−1)


=

1

r
+
r − 1

r
·
∑
s∈Σ

p2
s.

For ΦX the formula becomes a bit more elegant:

E(ΦX) =
r

r − 1
·

(
r − 1

r
·
∑
s∈Σ

p2
s +

1

r

)
− 1

r − 1
=
∑
s∈Σ

p2
s.

Let us call this expectation E(ΦX) the (inner) coincidence index of the
message source (Σ, p), and let us call (by abuse of language) the message
source of order 0 if its output messages are Markov chains of order 0 only.
(Note that for a mathematically correct definition we should have included
the “transition probabilities” into our definition of message source.) Then
we have proved

Theorem 6 The coincidence index of a message source L = (Σ, p) of order
0 is

ϕL =
∑
s∈Σ

p2
s.

K. Pommerening, Classic Ciphers 93

The assumption of order 0 is relevant for small text lengths and neglige-
able for large texts, because for “natural” languages dependencies between
letters affect small distances only. Reconsidering the tables in Section D.4
we note in fact that the values for texts of lengths 100 correspond to the
theoretical values, whereas for texts of lengths 26 the values are suspiciously
smaller. An explanation could be that repeated letters, such as ee, oo, rr,
are relatively rare and contribute poorly to the number of coincidences. This
affects the power of the ϕ-test in an unfriendly way.

On the other hand considering Sinkov’s test for the period in Sec-
tion 3.13 we note that the columns of a polyalphabetic ciphertext are dec-
imated excerpts from natural texts where the dependencies between letters
are irrelevant: The assumption of order 0 is justified for Sinkov’s test.

3.17 Stochastic Languages

The stochastic model of language as a stationary Markov process easily led
to useful theoretic results that fit well with empirical observations. On the
other hand it is far from the computer scientific model that regards a lan-
guage as a fixed set of strings with certain properties and that is intuitively
much closer to reality. In fact the Markov model may produce every string
in Σ∗ with a non-zero probability! (We assume that each letter s ∈ Σ has a
non-zero probability—otherwise we would throw it away.) Experience tells
us that only a very small portion of all character strings represent mean-
ingful texts in any natural language. Here we consider an alternative model
that respects this facet of reality, but otherwise is somewhat cumbersome.

Recall from Chapter 1 that a language is a subset M ⊆ Σ∗.

A Computer Theoretic Model

The statistical cryptanalysis of the monoalphabetic substitution relied on
the hypothesis—supported by empirical evidence—that the average relative
frequencies of the letters s ∈ Σ in texts of sufficient length from this language
approximate typical values ps. This is even true when we consider only fixed
positions j in the texts, at least for almost all j—the first letters of texts for
example usually have different frequencies.

Now we try to build a mathematical model of language that reflects this
behaviour. Let M ⊆ Σ∗ a language, and Mr := M ∩ Σr for r ∈ N the set of
texts of length r. The average frequency of the letter s ∈ Σ at the position
j ∈ [0 . . . r − 1] of texts in Mr is

µ
(r)
sj :=

1

#Mr
·
∑
a∈Mr

δsaj

(This sum counts the texts a ∈Mr with the letter s at position j.)

K. Pommerening, Classic Ciphers 94

Example Let M = Σ∗ Then

µ
(r)
sj :=

1

nr
·
∑
a∈Σr

δsaj =
1

n
for all s ∈ Σ, j = 1, . . . , r − 1,

because there are exactly nr−1 possible texts with fixed aj = s.

Definition

The language M ⊆ Σ∗ is called stochastic if there is at most a finite
exceptional set J ⊆ N of positions such that

ps := lim
r→∞

µ
(r)
sj

exists uniformly in j and is independent from j for all j ∈ N − J and all
s ∈ Σ.

The ps are called the letter frequencies of M and obviously coincide
with the limit values for the frequencies of the letters over the complete
texts.

Examples and Remarks

1. The exceptional set J for natural languages usually consists only
of the start position 0 and the end position. That is, the first and
last letters of texts may have different frequencies. For example
in English the letter “t” is the most frequent first letter instead
of “e”, followed by “a” and “o”. In German this is “d”, followed
by “w”, whereas “t” almost never occurs as first letter.

2. The language M = Σ∗ is stochastic.

3. Because always
∑

s∈Σ µ
(r)
sj = 1, also

∑
s∈Σ ps = 1.

Note that this notation is not standard in the literature.

Also note that we consider a theoretical model. For a natural language it
may not be well-defined whether a given text is meaningful or not, not even
if it is taken from a newspaper.

The Mean Coincidence Between Two Languages

Let L,M ⊆ Σ∗ two stochastic languages with letter frequencies qs and ps
for s ∈ Σ. We consider the mean value of the coincidences of texts of length
r:

κ
(r)
LM :=

1

#Lr
· 1

#Mr
·
∑
a∈Lr

∑
b∈Mr

κ(a, b)

K. Pommerening, Classic Ciphers 95

Theorem 7 The mean coincidence of the stochastic languages L and M is
asymptotically

lim
r→∞

κ
(r)
LM =

∑
s∈Σ

psqs

The proof follows.
Interpretation: The coincidence of sufficiently long texts of the same

length is approximately

κ(a, b) ≈
∑
s∈Σ

psqs

An Auxiliary Result

Lemma 6 Let M be a stochastic language. Then the average deviation for
all letters s ∈ Σ

1

r
·
r−1∑
j=0

(
µ

(r)
sj − ps

)
→ 0 for r →∞

Proof. Fix ε > 0, and let r large enough that

1. r ≥ 4 · #J
ε ,

2. |µ(r)
sj − ps| <

ε
2 for all j ∈ [0 . . . r]− J .

For j ∈ J we have |µ(r)
sj − ps| ≤ |µ

(r)
sj |+ |ps| ≤ 2. Therefore

1

r
·
r−1∑
j=0

|µ(r)
sj − ps| <

1

r
· 2 ·#J +

r −#J

r
· ε

2
≤ ε

2
+
ε

2
= ε.

3

Remark The mean frequency of s in texts of length r is

µ(r)
s =

1

r
·
r−1∑
j=0

µ
(r)
sj =

1

r
· 1

#Mr
·
∑
a∈Mr

δsaj

For this we get the limit

Corollary 5 limr→∞ µ
(r)
s = ps

K. Pommerening, Classic Ciphers 96

Proof of the Theorem

κ
(r)
LM =

1

#Lr ·#Mr
·
∑
a∈Lr

∑
b∈Mr

1

r
·
r−1∑
j=0

∑
s∈Σ

δsajδsbj


=

∑
s∈Σ

1

r
·
r−1∑
j=0

[
1

#Lr

∑
a∈Lr

δsaj

]
·

 1

#Mr

∑
b∈Mr

δsbj


=

∑
s∈Σ

1

r
·
r−1∑
j=0

[qs + εsj] · [ps + ηsj]

=
∑
s∈Σ

psqs +
ps
r
·
r−1∑
j=0

εsj +
qs
r
·
r−1∑
j=0

ηsj +
1

r
·
r−1∑
j=0

εsjηsj


The second and third summands converge to 0 by the lemma. The fourth
converges to 0 because |εsjηsj | ≤ 1. Therefore the sum converges to∑

s∈Σ psqs. 3

Chapter 4

Cylinder Ciphers

4.1 Introduction

See the web page http://www.staff.uni-mainz.de/pommeren

/Cryptology/Classic/4 Cylinder/Cylinder.html

4.2 Idea and History of Cylinder Ciphers

See the web page http://www.staff.uni-mainz.de/pommeren

/Cryptology/Classic/4 Cylinder/HistCyl.html

4.3 Mathematical Description of Cylinder Ciphers

This section assumes knowledge of the mathematical excursion to permuta-
tions in the Appendix to the Chapter on monoalphabetic ciphers.

Parameters

A cylinder cipher depends on the following parameters:

• The number n = #Σ of letters in the alphabet Σ

• The number q of disks, where q ≥ 1. If all disks are different, then
q ≤ (n− 1)!. [See below for an explanation why we don’t need to take
n! for the upper bound.]

– Each disk is characterized by a permutation τ ∈ S(Σ).

– Therefore the collection of disks can be described as a q-tuple
(T1, . . . , Tq) ∈ S(Σ)q.

Assume the disks are numbered from 1 to q.

• The number l of selected disks, where 1 ≤ l ≤ q

97

http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/4_Cylinder/Cylinder.html
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/4_Cylinder/Cylinder.html
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/4_Cylinder/HistCyl.html
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/4_Cylinder/HistCyl.html

K. Pommerening, Classic Ciphers 98

– The key is a sequence (τ0, . . . , τl−1) consisting of different mem-
bers of the q-tuple (T1, . . . , Tq), and described by the correspond-
ing sequence of numbers in [1 . . . q].

– The number of choices for the key is

#K = q · (q − 1) · · · (q − l + 1) =
q!

(q − l)!

some of which could coincide if some of the disks have identical
alphabets.

Examples

Jefferson cylinder: l = q = 36, #K = 36!, effective key length ≈ 138.

Bazeries cylinder: l = q = 20, #K = 20!, effective key length ≈ 61.

M-94: l = q = 25, #K = 25!, effective key length ≈ 84.

M-138-A: l = 30, q = 100, #K = 100!/70!, effective key length ≈ 190.

Encryption and Decryption

The cylinder cipher is polyalphabetic with period l, the number of disks on
the cylinder.

Attention: Don’t confuse the permutation τ ∈ S(Σ) written on the cir-
cumference of the disk with the permutation σ ∈ S(Σ) that defines
the substitution alphabet realized by the disk. We subsequently exam-
ine the relationship between these two permutations.

As usual identify the alphabet Σ (in a fixed order) with Z/nZ, the in-
tegers mod n. Then, using the first generatrix, encrypting a plaintext block
(a0, . . . , al−1) looks like this:

a0 . . . ai . . . al−1

τi(0)
...

Search entry x such that τi(x) = ai
τi(x+ 1) = ci corresponding cipher letter

...
τi(n− 1)

where the center column τi(0), . . . , τi(n − 1) represents the marking of the
i-th disk. Therefore

ci = τi(x+ 1) = τi(τ
−1
i ai + 1)

K. Pommerening, Classic Ciphers 99

The corresponding decryption function is

ai = τi(τ
−1
i ci − 1)

This derivation proves:

Theorem 8 (Cylinder Cipher Theorem) The relation between the per-
mutation τ ∈ S(Σ) written on the circumference of the disk and the permu-
tation σ ∈ S(Σ) that defines the substitution alphabet realized by the disk
using the first generatrix is given by the formulas

σ(a) = τ(τ−1a+ 1)

σ−1(c) = τ(τ−1c− 1)

Or in other words: σ is a cyclic permutation and τ is the cycle representation
of σ.

There are (n− 1)! different cycles of length n. As n different disk definitions
τ result in the same cyclic permutation σ we could make the restriction
q ≤ (n− 1)! for the number of possible different disks.

Corollary 6 Using the j-th generatrix the formulas become

σj(a) = τ(τ−1a+ j)

σ−1
j (c) = τ(τ−1c− j)

if we denote by σj the substitution by the j-th generatrix.

Example: Let Σ = {A, . . . ,Z}, and let the disk inscription be

τ = QWERTZUIOPASDFGHJKLYXCVBNM

Then σ is the permutation

a b c d e f g h i j k l m n o p q r s t u v w x y z

S N V F R G H J O K L Y Q M P A W T D Z I B E C X U

4.4 The Bazeries Cylinder

See the web page http://www.staff.uni-mainz.de/pommeren

/Cryptology/Classic/4 Cylinder/Bazeries.html

4.5 Cryptanalysis of Cylinder Ciphers

See the web page http://www.staff.uni-mainz.de/pommeren

/Cryptology/Classic/4 Cylinder/AnalysisCyl.html

http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/4_Cylinder/Bazeries.html
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/4_Cylinder/Bazeries.html
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/4_Cylinder/AnalysisCyl.html
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/4_Cylinder/AnalysisCyl.html

K. Pommerening, Classic Ciphers 100

4.6 Breaking the Bazeries Cylinder

See the web page http://www.staff.uni-mainz.de/pommeren

/Cryptology/Classic/4 Cylinder/deViaris.html

4.7 Consequences from Cryptanalysis

See the web page http://www.staff.uni-mainz.de/pommeren

/Cryptology/Classic/4 Cylinder/ConsCyl.html

4.8 Key Generators with Long Periods

See the web page http://www.staff.uni-mainz.de/pommeren

/Cryptology/Classic/4 Cylinder/LongPeriods.html

http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/4_Cylinder/deViaris.html
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/4_Cylinder/deViaris.html
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/4_Cylinder/ConsCyl.html
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/4_Cylinder/ConsCyl.html
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/4_Cylinder/LongPeriods.html
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/4_Cylinder/LongPeriods.html

Chapter 5

Rotor Machines

5.1 One-Rotor Ciphers

See the web page http://www.staff.uni-mainz.de/pommeren/Cryptology
/Classic/5 Rotor/OneRotor.html

5.2 Mathematical Description of Rotors

Identify the alphabet Σ with Z/nZ, the integers mod n. Let ρ be the monoal-
phabetic substitution that the rotor performs in its initial position. Moving
the rotor by one position forward the new substitution is

ρ(1)(a) = ρ(a− 1) + 1

Denote by τ the shift by 1 of the alphabet Σ = Z/nZ, that is τ(a) = a+ 1.
Then the formula looks like this:

ρ(1)(a) = τρτ−1(a)

By induction we immediately get part (i) of the following theorem:

Theorem 9 (The secondary alphabets of a rotor)

(i) If a rotor in its initial position performs the substitution with the pri-
mary alphabet ρ, then after rotation by t positions forward it performs
the substitution with the conjugate alphabet ρ(t) = τ tρτ−t. In particular
all secondary alphabets have the same cycle type.

(ii) The diagonals of the corresponding alphabet table each contain the
standard alphabet (cyclically wrapped around).

Proof. Assertion (i) is proved above. Assertion (ii) follows immediately by
interpreting it as a formula:

101

http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/5_Rotor/OneRotor.html
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/5_Rotor/OneRotor.html

K. Pommerening, Classic Ciphers 102

ρ(i)(j) = τ iρτ−i(j) = ρ(j − i) + i = ρ(i−1)(j − 1) + 1

3

The definition of “cycle type” is given in Appendix A.
The formula makes it obvious why—in contrast with the cipher disk—

for a rotor the (unpermuted) standard alphabet is completely useless: It
corresponds to the identity permutation, therefore all its conjugates are
identical.

In general the conjugate alphabet ρ(t) is identical with the primary al-
phabet ρ if and only if ρ is in the centralizer of the shift τ t. The designer of
a rotor might wish to avoid such wirings.

Examples.

1. If n is a prime number, then all the shifts τ t for t = 1, . . . , n− 1
are cycles of length n. Therefore all their centralizers are identical
to the cyclic group < τ > spanned by τ . If the designer avoids
these n trivial wirings, then all the n conjugated alphabets are
distinct.

2. If gcd(t, n) = d > 1, then τ t splits into d cycles of length n
d , τ t =

π1 · · ·πd, and centralizes all permutations of the type πs11 · · ·π
sd
d .

These are not in the cyclic group < τ > unless all exponents si
are congruent mod n

d .

3. In the case n = 26 the shifts τ t are cycles, if t is coprime with
26. However τ t splits into two cycles of length 13, if t is even. All
the powers τ t, t even, 2 ≤ t ≤ 24, span the same cyclic group
because 13 is prime. The permutation τ13 splits into 13 transpo-
sitions. For example τ2 centralizes the permutation (ACE . . . Y),
and τ13 centralizes the transposition (AB), where we denoted
the alphabet elements by the usual letters A, . . . , Z. Therefore in
wiring the rotors the designer should avoid the centralizers of τ2

and of τ13.

5.3 Cryptanalysis of One-Rotor Ciphers (with Un-
known Alphabet)

See the web page http://www.staff.uni-mainz.de/pommeren/Cryptology
/Classic/5 Rotor/Anal1Rot.html

http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/5_Rotor/Anal1Rot.html
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/5_Rotor/Anal1Rot.html

K. Pommerening, Classic Ciphers 103

5.4 Rotor Machines

General Description

Rotor machines are electromechanical devices that consist of several rotors in
series connection. Figure 5.1 gives an impression of the electric flow through
such a machine.

Input Rotors Output

…

…

…

…

Figure 5.1: Rotor machine circuit

With each input letter the rotors move in individual ways, some by
one position, some by several positions, some only after several steps. The
cryptographic security of a rotor machine depends on the number of rotors,
the multitude of different settings, and, in a crucial way, on the complexity
of the rotor movements.

Operating a Rotor Machine

The operator hits a key on the keyboard that corresponds to the next
plaintext letter. This action closes an electric circuit powering a light-
bulb that corresponds to the ciphertext letter. Or it powers a type bar
that prints the ciphertext letter. The rotors move according to their
control logic, in general before the circuit is closed. See the FAQ at
http://www.staff.uni-mainz.de/pommeren/Cryptology/FAQ.html.

Rotor machines are the state of the art in encryption during the period
from 1920 until 1970. The mystic and irregularly rotating wheelwork that
makes the desk tremble with each key hit looks very attractive and impresses
the general or diplomat who wants to buy security.

Mathematical Description

The following abstract model describes an idealized rotor machine. Concrete
historic machines each have their own peculiar details.

As before we identify the alphabet Σ with Z/nZ, the integers mod n. A
rotor machine has the following characteristic parameters:

http://www.staff.uni-mainz.de/pommeren/Cryptology/FAQ.html#Rotor
http://www.staff.uni-mainz.de/pommeren/Cryptology/FAQ.html

K. Pommerening, Classic Ciphers 104

• A set R ⊆ S(Σ) of p = #R rotors. Each of these defines a primary
alphabet, that is a permutation ρi ∈ S(Σ) that corresponds to the
wiring of the rotor.

• A choice ρ = (ρ1, . . . , ρq) ∈ S(Σ)q of q different rotors ρi ∈ R. There
are p · (p − 1) · · · (p − q + 1) choices if we assume that all rotors are
differently wired (q ≤ p). This choice serves as “primary key” and is
usually fixed for several messages, say for an entire day.

• A state vector z = (z1, . . . , zq) ∈ (Z/nZ)q that describes the current
rotor positions. The initial state z(0) serves as “secondary key” that
usually changes with each message. The number of different initial
states is nq. Sometimes it is convenient to map the states to Z/nqZ,
the integers modnq, using the representation of integers in base n.
The state vector z = (z1, . . . , zq) ∈ (Z/nZ)q then corresponds to the
integer ζ = z1 · nq−1 + · · ·+ zq.

• A state-transition function

g : N× Σq −→ Σq

that transforms the state at time i, z(i), to the state at time i + 1,
z(i+1) = g(i, z(i)), where “time” is discrete and simply counts the
plaintext letters. This function g represents the control logic and is
realized for example by more or less complex gear drives. In most ro-
tor machines the state-transition function is independent of the time
i.

• The substitution in state z:

σz := ρ
(zq)
q ◦ · · · ◦ ρ(z1)

1 where ρ
(zj)
j := τ zj ◦ ρj ◦ τ−zj

Ideally the map Σq −→ S(Σ), z 7→ σz would be injective, that is each state
defines a different substitution. Unfortunately no useful general results seem
to exist beyond the case q = 1 treated in Subsection 5.2.

Perl programs for encryption and decryption by rotor machines are in the
web directory http://www.staff.uni-mainz.de/pommeren/Cryptology/

Classic/Perl/ as rotmach.pl and rotdecr.pl.

The Key Space

By the description above a key of our idealized rotor machine consists of

• a choice of rotors

• an initial state

http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Perl/rotmach.pl
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Perl/rotdecr.pl

K. Pommerening, Classic Ciphers 105

Therefore the key space K has

#K = nq · p!

(p− q)!

elements. In a typical example (Hebern machine) we have p = q = 5,
n = 26, #K = 120 · 265 = 712882560, and the effective key length is
d(F) ≈ 29.4. That was good enough in 1920. Today, against an enemy
with a computer, this is much too little.

In fact the Hebern machine was not good enough even in 1920
because it allows attacks far more efficient than exhaustion.

Encryption and Decryption

The plaintext a = (a1, . . . , ar) ∈ Σr is encrypted by the formula

ci = σz(i)(ai)

At full length this formula reads

ci = τ z
(i)
q ◦ ρq ◦ τ z

(i)
q−1−z

(i)
q ◦ · · · ◦ τ z

(i)
1 −z

(i)
2 ◦ ρ1 ◦ τ−z

(i)
1 (ai)

Decryption follows the formula

ai = τ z
(i)
1 ◦ ρ(−1)

1 ◦ τ z
(i)
2 −z

(i)
1 ◦ · · · ◦ τ z

(i)
q −z

(i)
q−1 ◦ ρ(−1)

q ◦ τ−z
(i)
q (ci)

Technically for decryption we simply have to route the current through the
machine in the reverse direction, of course interchanging the keyboard and
lightbulbs. The sequence of states is identical for encryption and decryption.

The Rotor Machine as a Finite-State Automaton

Figure 5.2 shows an abstract model of a rotor machine.
Usually the state-transition function is independent of the step i. Then

it has the simpler form
g : Σq −→ Σq

This makes the states periodic as shown in the next subsection.

Periods of State Changes

Let M be a finite set with m = #M . We may think of the elements of M
as “states”. Consider a map (“state transition”)

g : M −→M.

K. Pommerening, Classic Ciphers 106

Mechanism

State sequence

I/O function

R, g

(z(i))i∈N

(σi)i∈N

Input stream

a
- Output stream

c
-

Key ρ, z(0)
6

Figure 5.2: Rotor machine as finite-state automaton

- - - - -x0 . . . xµ−1 xµ
= xµ+ν

. . . xµ+ν−1

��6
︷ ︸︸ ︷Preperiod ︷ ︸︸ ︷Period

Figure 5.3: Period and preperiod

For each element (“initial state”) x0 ∈ M we define a sequence (xi)i∈N
in M by the recursion formula xi = g(xi−1) for i ≥ 1. After a preperiod of
length µ this sequence becomes periodic with a period of ν, see Figure 5.3,
an explanation follows below.

Since M is finite there are smallest integers µ ≥ 0 and ν ≥ 1 such that
xµ+ν = xµ: Take for µ the smallest index such that the element xµ reappears
somewhere in the sequence, and for µ+ν the index where the first repetition
occurs. Then also

xi+ν = xi for i ≥ µ.

Obviously 0 ≤ µ ≤ m−1, 1 ≤ ν ≤ m, µ+ν ≤ m. The values x0, . . . , xµ+ν−1

are all distinct, and the values x0, . . . , xµ−1 never reappear in the sequence.

Definition: µ is called (length of the) preperiod, ν is called (length of
the) period.

5.5 The Control Logic of a Rotor Machine

We treat several approaches to rotor stepping. The first three are streamlined
versions of real control mechanisms that in practice are implemented in a
more complex way: the odometer, the gear drive with gaps, the gear drive
with different number of cogs. We also treat the ultimate mechanism: the

K. Pommerening, Classic Ciphers 107

pseudorandom stepping, and a historical one: the Hebern mechanism. For
the stepping of the Enigma we refer to Chapter 6.

The insight that an irregular movement is the essential ingredient for
a secure rotor machine is apparently due to Friedman after he broke he
Hebern machine. He himself, together with his collaborator Rowlett,
then in several steps developed the top-level rotor machine, the SIGABA.

Example 1: The Odometer Logic

The rotors step like in a mechanical counter or electricity meter. Assume
the rotors are mounted as in Figure 5.4. The rightmost rotor moves by one
position for each input letter. Each rotor, after completing one revolution,
by some kind of protrusion makes its left neighbor move by one position.

Rotor No.

-Input

1 2

. . .

q

-Output

Figure 5.4: Odometer logic

Using the identification of the states with the integers mod nq the se-
quence of states simply corresponds to the natural sequence of numbers
beginning with the initial state.

Remarks

1. In this example the rightmost rotor, rotor number q, is a “fast”
rotor, it moves with every step.

2. The leftmost rotor, number 1, is a “slow” rotor. It moves only
after nq−1 steps, that is almost never, or only for very long mes-
sages. For this reason it makes little sense to use more then three
rotors with odometer stepping. The effect of all additional rotors
together only amounts to a fixed substitution. In the best case
they could move once during encryption, effecting two different
fixed substitutions.

3. Of course we could also implement the converse stepping where
rotor 1 is fast and rotor q is slow.

4. The sequence of states has period nq.

K. Pommerening, Classic Ciphers 108

Example 2: Gaps

Figure 5.5 shows the principle of this control logic. For an implementation
we have several mechanical options, for example a pin wheel.

Drive

Figure 5.5: Gear drive with tooth gaps

A single wheel is characterized by a binary vector

u(j) = (uj0, . . . , uj,t−1) ∈ Ft2 for j = 0, . . . , t− 1

where t is the circumference of the wheel, not necessarily t = n. A 1 denotes
a cog, a 0, a gap. We may describe all the wheels together by a binary matrix

u =

u10 . . . u1,t−1
...

. . .
...

uq0 . . . uq,t−1

 ∈Mqt(F2)

The column vectors

u(i) = (u1i, . . . , uqi) ∈ Fq2 for i = 0, . . . , q − 1

apply one after the other from left to right, cyclically repeated. This gives a
sequence of period t for the states of the gear drive. The states of the rotors
generally have a much larger period.

In the simplest case this logic steps the rotor j

• by one position, if uji = 1,

• not at all, if uji = 0,

for the i-th plaintext letter. This gives the formula

z(i+1) = z(i) + u(i)

where addition is vector addition in (Z/nZ)q.
Another way to use gap wheels is turning them around a full turn in

each step. Then the each of the rotors moves a number of steps given by the
corresponding row sum in the matrix. This logic is equivalent with Example
3 below.

K. Pommerening, Classic Ciphers 109

Example 3: Different Gear Wheels

Each rotor is driven by its own gear wheel. These share a common axis and
make a full turn in each step. If wheel i has ni cogs, then rotor i moves by
ni positions. The states occur with a period of lcm(n1, . . . , nq).

The first models of Enigma (A and B) had a control like this.

Example 4: Pseudorandom Stepping

The rotor stepping is controlled by a (pseudo-) random generator, that is a
mechanism or an algorithm that generates numbers indinguishable from pure
random such as generated with the help of dice. This is easy for a computer
simulation. For an (electro-) mechanical rotor machine one can use a key
generating mechanism such as in one of the (later) Hagelin machines.

Friedman was the first to detect the weaknesses of a regular rotor step-
ping when he analyzed the then current rotor machines in the 1920’s. He
came up with the idea of an irregular stepping by a pseudorandom mech-
anism. First he tried a punched paper tape, but this proved not robust
enough. Then Rowlett had the idea of realizing the stepping control by
another set of rotors. Thus the American super rotor machine SIGABA was
invented.

For details see the book

Stephen J. Kelly: Big Machines. Aegean Park Press, Walnut
Creek 2001, ISBN 0-89412-290-8.

Example 5: The Hebern Machine

The Hebern machine has q = 5 rotors and uses the standard alphabet
with n = 26. The stepping follows an odometer logic, but with a complex
mechanism that doesn’t affect the neighboring rotor but another one, in
more detail:

• Rotors 2 and 4 don’t rotate at all. They are “stators”.

• Rotor 5 moves by 1 position with every step, it is a fast rotor.

• Rotor 1 moves by 1 position with each complete turn of rotor 5. It is
a “semi-fast” rotor.

• Rotor 3 moves by 1 position with each complete turn of rotor 1. It is
a slow rotor.

Moreover the rotors move in the other direction compared with the descrip-
tion in Section 5.2.

The equation for the state change—not yet the correct one!—is

g(z1, z2, z3, z4, z5) = (z1 + λ(z5), z2, z3 + λ(z1)λ(z5), z4, z5 + 1)

K. Pommerening, Classic Ciphers 110

where λ(x) = δx,25 is the Kronecker symbol. The states occur with period
263 = 17576.

Characteristic features:

• That the rotors 2 and 4 are static doesn’t harm the security of
the machine. By the odometer logic they would move only after
263 or 264 steps, that is only for extremely long messages.

• The stepping of rotor 1 (resp. 3) is induced by rotor 5 (resp. 1)
moving from position “N” to position “O”. The correct equation
for the state change is left as an exercise to the reader.

• The wiring between the keyboard and rotor 1 as well as from
rotor 5 to the light bulbs is irregular but static. It therefore is
assumed as known to the enemy. We may interpret this wiring as
two additional stators, one at each end of the rotor pack.

• For decryption there is a switch “direct/reverse” that inter-
changes input contacts and output contacts.

• The Hebern rotors are symmetric: they may be mounted with
their sides interchanged. This makes the number of possible pri-
mary keys larger by a factor of 25.

5.6 Historical Rotor Machines

See the web page http://www.staff.uni-mainz.de/pommeren/Cryptology
/Classic/5 Rotor/HistRot.html

5.7 Historical Data on Cryptanalysis

See the web page http://www.staff.uni-mainz.de/pommeren/Cryptology
/Classic/5 Rotor/AnalHist.html

5.8 Cryptanalysis of Rotor Machines

The cryptanalysis of rotor machines is complex and depends on the details
of the machine under examination. The book by Deavours and Kruh [4]
is a standard work and contains many elaborate examples. Here we only
depict some general ideas:

• Superimposition

• Meet-in-the-middle

• Isomorphs

http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/5_Rotor/HistRot.html
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/5_Rotor/HistRot.html
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/5_Rotor/AnalHist.html
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/5_Rotor/AnalHist.html

K. Pommerening, Classic Ciphers 111

Superimposition

Assume that the cryptanalyst got hold of several ciphertexts that are en-
crypted with the same key, then he may align them in such a way that he gets
monoalphabetically encrypted columns. Note that this is a ciphertext-only
attack. However it needs lots of messages.

Note that operators impede this attack by changing the key (or initial
position) for each message. Nevertheless in some scenarios they have to send
many messages, think of war. Then with high probability the cryptanalyst
will observe many ciphertexts that are produced by the same rotor posi-
tions, not necessarily at the same position in the text. She identifies these
concordances by extensive calculation of coincidence indices.

Identification of a Fast Rotor

Assume that the set of rotors is known but not their actual choice. Assume
that the last rotor at the output side steps by one position with each letter,
and that the other rotors move infrequently. The attacker has no known
plaintext.

Enumerate the rotors from 1 (= input rotor, slow) to q (= output rotor,
fast), and assume the current flows from left to right as in Figure 5.6.

Now assume we have a ciphertext section of length m where only rotor
q moved, and for simplicity use the indices 1 to m for this sequence of
ciphertext letters. The rotors 1 to q−1 together effect a constant substitution
µ.

Rotor No.

-Input

1

ai 7→
µ

. . .

q − 1

bi 7→

q

ci

Output

Figure 5.6: Identifying the fast rotor

Therefore this part of the encryption follows the schema

a1 7→ b1 := µ(a1) 7→ ρ
(z1)
q µ(a1) = c1

a2 7→ b2 := µ(a2) 7→ ρ
(z1+1)
q µ(a2) = c2

...
...

...

am 7→ bm := µ(am) 7→ ρ
(z1+m−1)
q µ(am) = cm

K. Pommerening, Classic Ciphers 112

Here b = (b1, . . . , bm) ∈ Σm is a monoalphabetic image of a = (a1, . . . , am).
We can also look at b “from the other side”:

b1 =
[
ρ(z1)
q

]−1
(c1)

b2 =
[
ρ(z1+1)
q

]−1
(c2)

...
...

bm =
[
ρ(z1+m−1)
q

]−1
(cm)

These formulas enable an exhaustion of the p choices for rotor q and of the
n choices for its initial position z1.

• A wrong choice of the rotor or its initial position makes b look as a
random text having coincidence index ϕ(b) ≈ 1

n .

• For the correct choice b is a monoalphabetically encrypted meaningful
text having coincidence index ϕ(b) ≈ κM , the coincidence index of the
plaintext language.

This observation may lead to the identification of the fast rotor and its state
for this section of the text at the price of n · p calculations of coincidence
indices of texts of length m. But note that the coincidence test for m = 26
has little power, it will miss most positive events.

Remarks

1. In principle the method works at each position of the text. Therefore
the very beginning of the text is worth a try.

2. In the unfavourable case one of the other rotors moved during the
encryption of them letters. Then the intermediate ciphertext b consists
of two different monoalphabetic pieces. With a bit of luck this also
leads to a somewhat conspicuous coincidence index.

Continuation of the Attack

As soon as the fast rotor is identified we can strip its effect off like a su-
perencryption. In this way the intermediate ciphertext (b1, . . . , bm) extends
to a ciphertext c′ ∈ Σr that is the result of encrypting the plaintext a by a
much simpler machine.

If for example the rotors move like an odometer, and if the ciphertext
is long enough (≈ n2), then in a similar way we can identify the next rotor
and strip its effect off.

Or we try to cryptanalyze the monoalphabetic parts of c′ that we expect
b rnc in number of length n plus one or two fragments of total length r mod n.

We also might first try to find the locations were the second rotor moves.

K. Pommerening, Classic Ciphers 113

Known Plaintext Attack

Assume we know or guess a piece of plaintext a = (a1, . . . , am), say a prob-
able word. An essential step is finding text chunks with identical numerical
patterns, also called isomorphs. Therefore this attack is known as Method
of Isomorphs. More generally looking at an intermediate step of an encryp-
tion algorithm from both sides, is called Meet-in-the-Middle.

Identification of a Fast Output Rotor

If we have a piece of known plaintext we may identify a fast rotor by sim-
ple pattern comparisons without calculating coincidence indices: Check if
the intermediate text (b1, . . . , bm) shows the same numerical pattern as
(a1, . . . , am).

Identification of a Fast Input Rotor

Known plaintext a = (a1, . . . , am) also allows the identification of the fast
rotor for a reverse odometer control where the left rotor is the fast one. In
this case we consider the situation of Figure 5.7.

Rotor No.

-Input

1

ai 7→
µ

2

bi

. . .

7→

q

ci

Output

Figure 5.7: Identifying a fast input rotor

This part of the encryption follows the schema

a1 7→ b1 := ρ
(z1)
1 (a1) 7→ µ(b1) = c1

a2 7→ b2 := ρ
(z1+1)
1 (a2) 7→ µ(b2) = c2

...
...

...

am 7→ bm := ρ
(z1+m−1)
1 (am) 7→ µ(bm) = cm

Here b = (b1, . . . , bm) is a monoalphabetic image of c = (c1, . . . , cm). We try
all p rotors in all their n initial positions until the numerical patterns of b
and c coincide.

Chapter 6

The Enigma

6.1 General Description

For a general description of this German World War II cipher machine see
the web page http://www.staff.uni-mainz.de/pommeren/Cryptology/

Classic/6 Enigma/EnigmaDescr.html.

Rotor No. R 3 2 1 P

-

Keyboard

6

�

Light bulbs

︸ ︷︷ ︸
Rotors

︸ ︷︷ ︸
Plugboard

fast
medium

slow
Reflector

Figure 6.1: Current flow through Enigma

6.2 Mathematical Description

Here we give a mathematical description of the Enigma I (“Wehrmachts-
Enigma”) with 5 selectable rotors denoted by the roman numerals I to V
(whereas the arabic numerals 1 to 3 denote the order in which three rotors
are mounted). For a bit of mathematical background on permutations see
Appendix A.

The Key Space

The key of an Enigma message has several components:

114

http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/6_Enigma/EnigmaDescr.html
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/6_Enigma/EnigmaDescr.html

K. Pommerening, Classic Ciphers 115

• The operator choses 3 rotors from a set of 5 and mounts them in a
certain order. This gives 5!

2! = 60 different options (“Walzenlage”).

• He adjusts each of the 3 alphabet rings to one of 26 possible positions.
This gives another 263 = 17576 options. Since the alphabet ring of the
slow rotor has no effect on the encryption, only 262 = 676 of these
options contribute to the key space.

• He inserts 10 plugs into the plugboard. Each plug connects 2 letters.
He has 26!

(210·10!·6!)
= 150, 738, 274, 937, 250 ≈ 1.5 · 1014 ≈ 247 different

choices. This formula is derived in Appendix A. If the operator is
allowed to use also less than the maximum 10 plugs this number grows
to about 2.1 · 1014.

• Finally he sets the rotors to their initial positions, another 263 = 17576
possibilities.

Multiplied together these numbers make up a key space of

60 · 676 · 150, 738, 274, 937, 250 · 17576 = 107, 458, 687, 327, 250, 619, 360, 000

≈ 1023 ≈ 1.4× 276

or a key length of 76 bits (in modern language). However it is not clear
at all (and even hardly likely) that all keys define different substitutions.
Therefore we can conclude only that the effective key length is at most 76
bits. And 47 of these bits are due to the plug-board.

The Control Logic

The current flows through the three movable rotors first from right to left.
Accordingly we denote the fast rotor by 1, the middle one by 2, and the slow
one by 3. Taking the irregularity in the stepping of rotor 2 into account, and
denoting the position of the notch that moves the next rotor by mi, the
formula for the state transition function is

g(z1, z2, z3) = (z1, z2 + λ1(z1) + λ1(z1)λ2(z2), z3 + λ1(z1)λ2(z2))

where λi(x) = δx,mi is the Kronecker symbol.
Due to the direction of the labeling of the rotors and the corresponding

wiring between input keys or output bulbs and rotors, the substitution by
a single rotor in step i is ρ(i) = τ−i ◦ ρ ◦ τ i where ρ is the rotor substitution
and τ the alphabet shift, as explained in Chapter 5.

K. Pommerening, Classic Ciphers 116

The Enigma Substitution

The rotors being in the state z = (z1, z2, z3) the rotor substitution describes
the effect of transversing them from right to left:

σz := ρ
(z3)
3 ◦ ρ(z2)

2 ◦ ρ(z1)
1

The effect of the reflecting rotor is a proper involution π, no element is
mapped to itself. The plug-board also provides an involution, η. Together
this gives the Enigma substitution in state z:

ρz = η−1 ◦ σ−1
z ◦ π ◦ σz ◦ η

or, with more details, the Enigma equation for encryption

ci = η−1τ−z1ρ−1
1 τ z1−z2ρ−1

2 τ z2−z3ρ−1
3 τ z3πτ−z3ρ3τ

z3−z2ρ2τ
z2−z1ρ1τ

z1η (ai)

Theorem 10 The Enigma substitution ρz in state z is a proper involution.

Proof. a) Involution:

ρ−1
z = η−1 ◦ σ−1

z ◦ π−1 ◦ σz ◦ η = ρz

since π−1 = π.
b) Proper: Assume ρz(s) = s for a letter s ∈ Σ. Then

σzη(s) = σzηρz(s) = πσzη(s)

hence π(t) = t for t = σzη(s) ∈ Σ. This contradicts the fact that π is a
proper involution. 3

Note. The proof didn’t use the fact that η is an involution. This limitation
of the plug-board had purely practical reasons: It reduced errors in
operation. Variable plugs between the keyboard or light-bulbs and the
first rotor would give more degrees of freedom. But this would require
26 cables instead of the 10 double-plug cables.

6.3 Cryptanalysis of Enigma: General Remarks

The number of variants of Enigma and of the corresponding appropriate
approaches to cryptanalysis is hardly manageable in an introductory text.
For this reason we only treat three selected topics:

1. The Enigma without plugboard

2. Message key analysis after Rejewski

3. Wehrmacht-Enigma and known plaintext

K. Pommerening, Classic Ciphers 117

Special Features of Enigma

• Control logic: Because the middle rotor moves only after 26 steps, and
the slow rotor moves almost never, the ciphertext essentially consists
of sections of length 26 where only the fast rotor moves by one position
with each step.

• The decomposition of a rotor permutation into cycles is not affected
by the plugboard. The substitution by the set of rotors is simply con-
jugated by the plugboard substitution.

– If the attacker has enough known plaintext she finds cycles, see
Section 6.7.

– The diverse rotor orders differ by their cycle types [Rejewski’s
catalogue, Turing’s “classes”].

– In this way the attacker gets information on the rotor order.

• Negative pattern search allows to narrow down the position of known
plaintext.

In World War II this last effect allowed for the detection of test messages by
the Italians that consisted only of LLL...LLL. This was a stroke of genius
by the british cryptanalyst Mavis Lever who noticed that several cipher
messages didn’t contain any L. This observation turned out to be an essential
step in uncovering the wiring of newly introduced rotors.

6.4 Cryptanalysis of the Enigma Without Plug-
board

The Commercial Enigma

The types C and D of Enigma had a reflecting rotor but no plugboard.
They were sold on the free market and could be comprehensively analyzed
by everyone.

In the Spanish civil war all parties used the Enigma D. All big powers
broke it.

The substitution of the commercial Enigma simplifies to

ci = σ−1
z πσz(ai)

where σz is the substitution by the three rotors in state z = (z1, z2, z3). The
reflecting rotor was fixed during encryption but could be inserted in any of
26 positions.

K. Pommerening, Classic Ciphers 118

Searching for Isomorphs

In a section of the text where only rotor 1 moves, the two inner rotors to-
gether with the reflecting rotor yield a constant involution π̃. If the plaintext
for this section (say of length m) is known, then we have equations

c1 =
[
ρ

(z1)
1

]−1
π̃ρ

(z1)
1 (a1)

c2 =
[
ρ

(z1+1)
1

]−1
π̃ρ

(z1+1)
1 (a2)

. . .

cm =
[
ρ

(z1+m−1)
1

]−1
π̃ρ

(z1+m−1)
1 (am)

Hence for i = 1, . . . ,m the intermediate text

c′i = ρ
(z1+i−1)
1 (ci) = π̃ρ

(z1+i−1)
1 (ai)

is the monoalphabetic image c′i = π̃(a′i) of the intermediate text

a′i = ρ
(z1+i−1)
1 (ai)

under the involution π̃.

Rotor No. R 3 2 1

-

Plaintext

6

�

Ciphertext

� aa′

� cc′

︸ ︷︷ ︸
Fixed monoalphabetic

substitution π̃

︸ ︷︷ ︸
Fast rotor

substitution ρ
(j)
1

Intermediate texts︸ ︷︷ ︸
?

Figure 6.2: Searching for isomorphs

Therefore pattern search identifies the fast rotor and its state by testing
all rotors and all initial states. For determining a′i from ai we have to test
all three rotors with all 26 start positions, and determine c′i from ci with
the same rotor in the same position. This exhaustion comprises 3 × 26 =
78 different constellations, each of which has to be tested for a matching
pattern. Probably there are several false solutions in addition to the correct
one.

The next sieving step uses the fact that π̃ is a fixed involution. If for a
possible solution we find a coincidence c′i = a′j with j 6= i, then we test for

a′i 7→ c′i = a′j 7→ c′j
?
= a′i

K. Pommerening, Classic Ciphers 119

If no, we discard the solution. If yes, we even identified a 2-cycle of π̃, reduc-
ing the number of 262 = 676 possible states of the two inner rotors. A useful
tool for this is a precomputed table of length 676 for each of the 6 different
combinations of these two rotors that contains the cycle decomposition of π̃
for all states, making a total of 6× 676 = 4056 involutions.

Precomputing the lookup table is easy: Let the cycles of π be

(a1, b1), . . . , (a13, b13). Let ξ = ρ
(z3)
3 ◦ ρ(z2)

2 be the combined substitution
by rotors 2 and 3. Then the cycle decomposition of π̃ = ξ−1 ◦ π ◦ ξ is

π̃ = (ξ−1a1, ξ
−1b1), . . . , (ξ−1a13, ξ

−1b13)

We only need to apply the fixed substitution ξ−1 to the string a1b1 . . . a13b13.
The location of known plaintext, if not known a priori, may be narrowed

down by negative pattern search.

Conclusion

The introduction of the reflecting rotor aimed at a significant gain for the
security of Enigma by doubling the number of rotor passages. This turned
out to be an illusory complication. The attack by isomorphs reduces the
cryptanalysis to the exhaustion of position and state of three rotors only,
and even this is reduced in a substantial manner.

To prevent this attack the Wehrmacht (= army) introduced the plug-
board when adopting the Enigma.

6.5 Example

Lacking a working simulation for the commercial Enigma we use a military
Enigma I omitting the plugboard. Further differences with the commercial
Enigma D are

• The reflector is mounted in a fixed position. This will facilitate our
task slightly compared with a true Enigma D.

• The rotors (including the reflectors) are differently wired. We consider
the wiring as known.

• The input wiring is from keyboard-A to input-A etc., whereas the
commercial Enigma had the contacts wired in the order of the keys, i. e.
keyboard-Q to input-A, keyboard-W to input-B and so on. This makes
no cryptanalytic difference because it amounts to a known renaming
of the standard alphabet.

• The notches that move the rotors are fixed at the alphabet rings in-
stead of the rotor bodies, allowing a displacement with respect to the
rotor contacts, and thus effecting a slight variablity in the stepping of

K. Pommerening, Classic Ciphers 120

the rotors. In our example we ignore this complication that is irrelevant
for the commercial Enigma.

The primary rotor alphabets are

Clear: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Rot I: E K M F L G D Q V Z N T O W Y H X U S P A I B R C J

Rot II: A J D K S I R U X B L H W T M C Q G Z N P Y F V O E

Rot III: B D F H J L C P R T X V Z N Y E I W G A K M U S Q O

Refl B: Y R U H Q S L D P X N G O K M I E B F Z C W V J A T

The cycle decomposition of the reflector is

(AY)(BR)(CU)(DH)(EQ)(FS)(GL)(IP)(JX)(KN)(MO)(TZ)(VW)

Now assume we got the ciphertext:

NMSHH EZJOU OEAJA IDCWS VVMFY IVZQO QWSYO KCEVE QSTLC YMJKT

PFVK

We suspect it to be in Spanish but we don’t use this conjecture. However it
seems likely that it begins with the probable word GENERAL. Negative pattern
search yields no contradiction to this assumed known plaintext, however also
excludes only very few of other possible positions.

Now we test all three rotors in each possible position in the search for
an isomorph. For Rotor I we get 26 pairs of intermediate texts:

Pos A: PBURWXL Pos B: TNQULJH Pos C: WRNHVNR Pos D: JUJMBQY

XWFPJHW ===> FEXJQMI UTMQRGM QPWRZNP

Pos E: OHTGVDQ Pos F: IMANAIF Pos G: PGSOBCP Pos H: QNHWTJV

NMCZOOC JIWOKWH TSBKHLB AZCHDHI

Pos I: YORLYKP Pos J: NWXHSSU Pos K: JLREOHV Pos L: GHWAADN

SRUDNEJ HGZNUAR ===> RQTUMKG XWPMBRC

Pos M: CEXKEAS Pos N: MAPRHWM Pos O: TKUJUGI Pos P: LROYZNU

RQBBLJZ WVFLRYV XWIRLIF POVLQOM

Pos Q: AJKITFY Pos R: KYWOAUB Pos S: QIAIBEO Pos T: KODNJKT

===> UTAQRIE ONURJNT KJBJOOD WVCOIGJ

Pos U: PIQOYEN Pos V: QNVGUJU Pos W: IOPLRKV Pos X: NGWFNCD

===> AZKIELD DCZEQFI QPVQUBJ VUSUXNB

Pos Y: HLXBXHS Pos Z: DFFNEBO

POOXKRG WVYKPUA

K. Pommerening, Classic Ciphers 121

We find 4 isomorphs, all with the pattern 1234567. All four yield a contra-
diction with the involutory property (a “crash”): For position B the letter Q
crashes, for position K, R, for position Q, T, for position U, I.

The analoguous result for Rotor II is:

Pos A: TPNTALS Pos B: VRCWPNF Pos C: YTUFHPG Pos D: HWHAWSO

LKVDRFK AZBRNAM NMQNFOO CBIFUKR

Pos E: CFIORBU Pos F: QAQKZWJ Pos G: MOWCSKB Pos H: EKLRYGQ

UTXUHCA HGSHWRV ===> IHAWOEJ QPTOBTF

Pos I: TCDEFYL Pos J: GRSTUNT Pos K: VENLCAM Pos L: NTVYEPS

===> WVZBCLX LKGCKYM DCVKQZZ ===> SRDQFHO

Pos M: ALOZGHZ Pos N: BYUHJUO Pos O: JZBNSVW Pos P: PHQCNDY

NMFFXNG VUHXMCT ONKMHUU UTTHPJC

Pos Q: ENYUBJA Pos R: WCAJXYD Pos S: LUCEPQM Pos T: GJFMEFH

BAOPIEI ===> QPCIOMX YXYOVFP AZQVKLE

Pos U: OEOFRAV Pos V: HMJLGIR Pos W: NFXSYBJ Pos X: ULTHLHY

CBFKSSZ FESSUHH ===> ONHUWPA JIZWZRG

Pos Y: JSLPMOL Pos Z: RHARUDA

XWMZITN TSNIDWC

We find 5 isomorphs, again all with the pattern 1234567. All five contradict
an involution.

Finally for Rotor III:

Pos A: OAFNPWZ Pos B: PMSOMIS Pos C: QNBRJJB Pos D: TOUOGKC

XWJRURV CBQUHOH FENHRRI ===> SRKRWEJ

Pos E: QRDRSNJ Pos F: TOEETKG Pos G: GRLOUND Pos H: QEITVAA

BAHWZOM UTTZMTJ DCUMVWM EDVVOJZ

Pos I: VOFWWKM Pos J: YTCJXPN Pos K: LWOSNSO Pos L: UJPLZFP

LKWOXSJ IHXXYLO FEYYFUR CBOFCVE

Pos M: NSQUAOQ Pos N: WLRVBHR Pos O: XUSCEQH Pos P: EVTZBRT

ONACZCN POBZWZG QPCWIWP RQFIJTQ

Pos Q: BCJWEYU Pos R: YZVTRVV Pos S: VWWFBSY Pos T: HTXGGPV

===> SRCJKFX TSFKLGU JISLMHR VUCMNIO

K. Pommerening, Classic Ciphers 122

Pos U: IFAHJBY Pos V: JGXIWCL Pos W: KHAJFDV Pos X: LINKYEA

===> WVHNDJA XWKDPKB AZXPQAC ===> XWGQRMD

Pos Y: MJXAHFD Pos Z: CKCMIGQ

AZZRUNE NMIUROF

This time we find 4 isomorphs. Only the last one is compati-
ble with an involution. It gives us 7 cycles of the involution π̃:
(AD)(EM)(GN)(IW)(KQ)(LX)(RY), the letters BCFHJOPSTUVZ remaining.

If our assumption on the probable word GENERAL was correct, then
the fast rotor is Rotor III with initial position X. Now we use the
lookup table for the involution π̃ containing all 2 × 262 = 1318 possi-
bilities for Rotors I and II in each order and all initial positions. This is
the file vReflB tr.xls in the directory http://www.staff.uni-mainz.de

/pommeren/Cryptology/Classic/Files/. There is exactly one involution
that contains the obligatory cycles: The slow rotor 3 is Rotor I in initial
position H, and the medium rotor is Rotor II in initial position D. Trying
these settings on the online simulation at http://enigmaco.de/ we obtain
the plaintext

General Franco llegara a Sevilla en la noche. Notifica al

alcalde.

For successfully cryptanalyzing the Enigma without plugboard we only
needed a short cryptogram (54 letters) and a few letters (only 7) of known
plaintext. The attack by isomorphs is quite strong.

Compared with the attack on a linearly ordered (“straight-through”)
rotor machine the reflecting rotor reduces the workload because the involu-
tory property excludes most isomorphs. On the other hand stripping off the
last rotor is easier with a straight-through machine. But in summary the
reflecting rotor turns out to be an illusory complication.

6.6 Message Key Analysis by Rejewski

The German Army adopted the Enigma in 1930 as Enigma I. In the first
years this variant of the Enigma also had three rotors only—as had the
commercial Enigma—but had the rotors wired in another way. Furthermore
the additional plugboard, sitting between in/output and the rotors, substan-
tially increased the key space, see Section 6.2.

The crucial point for the first break-in by the Polish cryptanalysts was
a weakness in key handling:

• The key consisted of a daily basic setting and an individual message
key.

http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Files/vReflB_tr.xls
http://enigmaco.de/

K. Pommerening, Classic Ciphers 123

• The daily basic setting consisted of the rotor order, the ring positions,
and the plug connections—first at most 6 plugs—as well as an ini-
tial position of the rotors. This setting was valid for all messages of
the day—in the first years even for several days. It was known to all
participants of the communication network.

• The message key consisted of the initial positions of the three rotors.
These could be changed quickly and were to be set by the operator
in a random way. This key changed with every message and thereby
precluded the alignment in depth of all the messages encrypted with
the same daily basic setting.

• The receiver of the message knew the basic setting but not the mes-
sage key. Therefore the operator encrypted the message key, consisting
of three letters, with the basic setting and prefixed this three-letter-
cryptogram to the message. This is no diminution of security as long
as the keys are selected in a purely random way. In practice they were
not.

• Because the radiocommunication was interference-prone, and a dis-
torted key would garble the entire message, the message key was en-
crypted twice. Thus the proper message had a six-letter prefix. Adding
redundancy to a message is not good idea in classical cryptography.

The operator hence had to encrypt six letters, a repeated trigram, using the
basic setting, then to set the message key—the rotor positions—and then to
encrypt the proper message.

The Polish intercepted the encrypted radio messages of the German
Army but couldn’t read them—until in 1932 they hired the mathematician
Rejewski and his colleagues Różicky und Zygalski.

We describe their approach following Bauer’s book [1] whose presen-
tation relies on Rejewski’s own description. At first we disregard the ob-
struction of the analysis that is caused by the (unknown) ring setting, that
is, by the unknown stepping of the middle and maybe also the slow rotor.

Some Intercepted Messages

Suppose the first six letters of each of 65 intercepted messages from a single
day were (in alphabetic order)

K. Pommerening, Classic Ciphers 124

AUQ AMN | IND JHU | PVJ FEG | SJM SPO | WTM RAO

BNH CHL | JWF MIC | QGA LYB | SJM SPO | WTM RAO

BCT CGJ | JWF MIC | QGA LYB | SLM SPO | WTM RAO

CIK BZT | KHB XJV | RJL WPX | SUG SMF | WKI RKK

DDB VDV | KHB XJV | RJL WPX | SUG SMF | XRS GNM

EJP IPS | LDR HDE | RJL WPX | TMN EBY | XRS GNM

FBR KLE | LDR HDE | RJL WPX | TMN EBY | XOI GUK

GPB ZSV | MAW UXP | RFC WQQ | TAA EXB | XYW GCP

HNO THD | MAW UXP | SYX SCW | USE NWH | YPC OSQ

HNO THD | NXD QTU | SYX SCW | VII PZK | YPC OSQ

HXV TTI | NXD QTU | SYX SCW | VII PZK | ZZY YRA

IKG JKF | NLU QFZ | SYX SCW | VQZ PVR | ZEF YOC

IKG JKF | OBU DLZ | SYX SCW | VQZ PVR | ZSJ YWG

Two observations catch the eye:

1. Frequently even different operators use the same message keys. This
could hint at certain stereotypes. Looking for different messages with
the same six-letter prefix a coincidence calculation shows that they in
fact are encrypted with the same key.

2. The repetition of the three letters of the message key is obvious: If
two messages coincide in the first letters, then also their fourth letters
coincide. For example a Z at position 1 implies a Y at position 4. The
same holds for positions 2 and 5 (U implies M) and 3 and 6 (W implies
P).

Therefore the handling of the message keys could be detected from the pure
ciphertext, if it was not known already. In any case the cryptanalyst has a
lot of ciphertext in depth: The first six letters of each message. If according
to the operating instructions the message keys were randomly selected, this
observation wouldn’t be of much use. However, as it turned out, the message
keys were non-random!

Rejewski’s Approach

Rejewski started his analysis by looking at the repeated message keys.
Suppose

• a1a2a3 is the message key, hence the plaintext starts with the six letters
a1a2a3a1a2a3.

• The ciphertext starts with the six letters c1c2c3c4c5c6.

• The first six Enigma substitutions, starting with the basic setting
(+ the first rotor stepping before the first letter is encrypted), are
ρ1, ρ2, ρ3, ρ4, ρ5, ρ6.

K. Pommerening, Classic Ciphers 125

Then we have

c1 = ρ1a1, c4 = ρ4a1, a1 = ρ1c1, c4 = ρ4ρ1c1

c2 = ρ2a2, c5 = ρ5a2, a2 = ρ2c2, c5 = ρ5ρ2c2

c3 = ρ3a3, c6 = ρ6a3, a3 = ρ3c3, c6 = ρ6ρ3c3

Figure 6.3 illustrates this situation.

c2 c3c1 c4 c5 c6

a2 a3a1 a1 a2 a3

=

6

ρ1

?

ρ4

?

6

Figure 6.3: Repeated message key

The combined permutations τ1 = ρ4ρ1, τ2 = ρ5ρ2, τ3 = ρ6ρ3 are known
if we have enough different message keys. In the example the 40 different
six-letter groups completely determine τ1:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

A C B V I K Z T J M X H U Q D F L W S E N P R G O Y

and τ2:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

X L G D O Q Y J Z P K F B H U S V N W A M E I T C R

and τ3:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

B V Q U H C F L K G T X O Y D S N E M J Z I P W A R

In Rejewski’s terminology the triple (τ1, τ2, τ3) was called the character-
istic of the day.

However we are far from knowing ρ1, . . . , ρ6, and far from knowing the
basic setting, or even a single message key!

At first sight the plugboard makes trouble. But Rejewski as a math-
ematician knew that the Enigma substitutions with or without plugboard
differ only by conjugation with the plugboard substitution η. Therefore there

K. Pommerening, Classic Ciphers 126

is an invariant immune to the effect of the plugboard: the cycle type of the
permutations τ1, τ2, τ3, see Appendix A. The cycle decompositions are

τ1 : (A)(BC)(DVPFKXGZYO)(EIJMUNQLHT)(RW)(S) of type [10, 10, 2, 2, 1, 1]

τ2 : (AXT)(BLFQVEOUM)(CGY)(D)(HJPSWIZRN)(K) of type [9, 9, 3, 3, 1, 1]

τ3 : (ABVIKTJGFCQNY)(DUZREHLXWPSMO) of type [13, 13]

From this point the analysis has two possible continuations:

• Assume the rotor wirings are unknown. The cryptanalyst assumes that
the message keys are chosen in a stereotypic way—an assumption that
in the case of the Wehrmacht-Enigma turned out to be true, see be-
low. This assumption and the material delivered be a German spy and
containing the basic settings for a few days including the plug connec-
tions enabled Róṡicky to derive the wiring of the fast rotor. Since the
basic settings changed, each rotor sometimes occupied position 1, so
eventually the wirings of all three rotors became known.

• Assume the wirings are known. Then the basic setting can be com-
pletely determined and all the messages of the day can be decrypted.

These approaches lead to successes, but not always. Rejewski and his
colleagues also found some other attack methods, in particular using known
plaintext. Here we omit this.

Determining the Enigma Substitution from the Characteris-
tics of the Day

We return to our example and try to determine the first six Enigma sub-
stitutions in basic setting, ρ1, . . . , ρ6, from the known products τ1 = ρ4ρ1,
τ2 = ρ5ρ2, τ3 = ρ6ρ3 whose cycle decomposition is given above. We start
with the schema

(A) (BC) (DVPFKXGZYO)

(S) (WR) (THLQNUMJIE)

(D) (AXT) (BLFQVEOUM)

(K) (YGC) (NRZIWSPJH)

(ABVIKTJGFCQNY)

(OMSPWXLHERZUD)

see Appendix A. We immediately coinclude that ρ1 and ρ4 both have the
2-cycle (AS), and ρ2 and ρ5 both have the 2-cycle (DK). But even for the 2-
cycles of τ1 we don’t get a unique solution: ρ1 could have the cycles (BW)(CR)
and ρ4 the cycles (BR)(CW), or conversely.

K. Pommerening, Classic Ciphers 127

To get on we assume—following Rejewski—that aaa is the most pop-
ular message key with the German operators. (If this would turn out as
erroneous we would try some other stereotype.) If we are right, then this
corresponds to the encrypted message key SYX SCW that occurs five times,
and implies the cycles

(AS) in ρ1, (AS) in ρ4,

(AY) in ρ2, (AC) in ρ5,

(AX) in ρ3, (AW) in ρ6.

This is nothing new for ρ1 and ρ4. But for τ2 it means that the alignment
of the 3-cycles is correct, and we read off the 2-cycles

(AY)(XG)(TC) in ρ2, (AC)(GT)(XY) in ρ5.

For τ3 the correct alignment is

(ABVIKTJGFCQNY)

(XLHERZUDOMSPW)

and we find the unique solution

ρ3 = (AX)(BL)(CM)(DG)(EI)(FO)(HV)(JU)(KR)(NP)(QS)(TZ)(WY)

ρ6 = (AW)(BX)(CO)(DF)(EK)(GU)(HI)(JZ)(LV)(MQ)(NS)(PY)(RT)

Now let’s look at other encrypted message keys. The first one in our table
is AUQ AMN, partially decrypting to the plaintext

s?s s?s

We suspect the stereotypical message key sss. If we are right, then ρ2 has the
2-cycle (SU), and ρ5 has the 2-cycle (MS). This gives the correct alignment
of the 9-cycles ot τ2:

(D) (AXT) (BLFQVEOUM)

(K) (YGC) (JHNRZIWSP)

and completely determines ρ2 and ρ5:

ρ2 = (AY)(BJ)(CT)(DK)(EI)(FN)(GX)(HL)(MP)(OW)(QR)(SU)(VZ)

ρ5 = (AC)(BP)(DK)(EZ)(FH)(GT)(IO)(JL)(MS)(NQ)(RV)(UW)(XY)

The encrypted message key RJL WPX occurs four times, and partially de-
crypts as

?bb ?bb

K. Pommerening, Classic Ciphers 128

Again we are quite sure that this reveals a stereotypical message key: bbb.
We conclude that ρ1 has the cycle (BR)—hence also the cycle (CW)—and ρ4

has the cycle (BW), hence also the cycle (CR).
For the complete solution the only open problem left is the alignment of

the two 10-cycles of τ1. We look at the group LDR HDE and partially decrypt
it as

?kk ?kk

We are quite sure of the message key kkk. Then ρ1 has the 2-cycle (KL), the
correct alignment is

(A) (BC) (DVPFKXGZYO)

(S) (RW) (IETHLQNUMJ)

and the complete solution is

ρ1 = (AS)(BR)(CW)(DI)(EV)(FH)(GN)(JO)(KL)(MY)(PT)(QX)(UZ)

ρ4 = (AS)(BW)(CR)(DJ)(EP)(FT)(GQ)(HK)(IV)(LX)(MO)(NZ)(UY)

Now we can decrypt all message keys for the actual basic setting. How-
ever we do not yet know the basic setting itself, and we cannot decrypt
a single message. In particular we do not know the ring setting and the
positions of the rotors corresponding to the message keys.

Rejewski’s Catalogue

In our example the permutations τ1 = ρ4ρ1, τ2 = ρ5ρ2, and τ3 = ρ6ρ3 are
completely determined and their cycle types are the partitions

[10 10 2 2 1 1], [9 9 3 3 1 1], [13 13]

of the number 26. Now we ask how characteristic is this triple of partitions
for the basic setting of the Enigma. The plug connections are irrelevant for
this problem. We consider the rotor order as an element of the permutation
group S3, and the initial positions of the three rotors as elements of the
cyclic group Z/26Z. If we disregard the plugboard and the ring settings, the
possible basic settings form the set S3 × (Z/26Z)3. On the other hand we
have the set P13 consisting of all the 101 partitions of the number 13 (in
bijective correspondence with the partitions of the number 26 in pairwise
equal parts), and we have a map

S3 × (Z/26Z)3 −→ (P13)3

We would like this map to be injective. This seems not unrealistic in view of
the cardinalities: 105,456 different basic settings, 1013 = 1,030,301 different
partitions.

K. Pommerening, Classic Ciphers 129

To get the complete value table of this map Rejewski designed a simple
Enigma simulator called Cyclometer that run through all basic settings in
about one year. The result, called Rejewski’s Catalogue, got lost. But there
is a recent reconstruction in the paper

Alex Kuhl: Rejewski’s Catalog. Cryptologia 31 (2007), 326–331.

It turned out that the above map is not injective, but “almost” so: Many
triples of partitions have a unique preimage, most have only a few ones.
However a few triples occur quite frequently, the top ten being

Triple of partitions Frequency

[13 13] [13 13] [13 13] 1771
[12 12 1 1] [13 13] [13 13] 898
[13 13] [13 13] [12 12 1 1] 866
[13 13] [12 12 1 1] [13 13] 854
[11 11 2 2] [13 13] [13 13] 509
[13 13] [12 12 1 1] [12 12 1 1] 494
[13 13] [13 13] [11 11 2 2] 480
[12 12 1 1] [13 13] [12 12 1 1] 479
[13 13] [11 11 2 2] [13 13] 469
[12 12 1 1] [12 12 1 1] [13 13] 466

All in all there are 21230 different triples in the image of the map. 19604
of these, that is 92%, occur at most ten times, the numbers of these rare
triples are

Pre-Im 1 2 3 4 5 6 7 8 9 10
Freq 11466 3381 1658 958 660 456 343 265 234 183

Using the catalogue the Polish cryptanalysts usually found the correct
basic setting in at most 20 minutes. It is unknown what they did in the
exceptional situations where there are too many false positives. Certainly
some other useful details could be used. In any case we may assume that
the method was successful for at least 92% of all triples, corresponding to
roughly 50% of all cases.

We neglected the effect of the ring setting. This causes a rotor movement
because the stepping mechanism is connected with the alphabet ring. Now,
what could happen? As long as only the fast rotor moves we are in a situation
included in the catalogue. The analysis is hampered if the middle rotor moves
between two of the first six letters. The chances are 5 of 26 ring settings,
that is about 19%. This lowers the total probability of success from 50% to
about 40%.

There is even more potential for drawing conclusions from the collected
message keys. For example the moving of the middle rotor gives information

K. Pommerening, Classic Ciphers 130

about the ring setting of the first rotor. An approach to determining the
plugboard connections uses the fact that in the first years at most six letter
pairs were interchanged. If the cryptanalysts assume that there are no plugs
at all, then some true plaintext shows through the tentatively decrypted
text. This enables them to reconstruct the plugboard connections.

Epilogue

The plugboard turns out to be an illusory complication: It slows the crypt-
analyst down a bit, but not as much as the increase in keylength from 29
to 76 bits—expressed in terms of today—suggested. The main cost of the
cryptanalysis is exhausting the rotor order and positions, and this could be
made efficient by compiling lookup tables.

By the way the decrypted 40 different message keys from the list of 65
above are:

AUQ AMN : sss | IKG JKF : ddd | QGA LYB : xxx | VQZ PVR : ert

BNH CHL : rfv | IND JHU : dfg | RJL WPX : bbb | WTM RAO : ccc

BCT CGJ : rtz | JWF MIC : ooo | RFC WQQ : bnm | WKI RKK : cde

CIK BZT : wer | KHB XJV : lll | SYX SCW : aaa | XRS GNM : qqq

DDB VDV : ikl | LDR HDE : kkk | SJM SPO : abc | XOI GUK : qwe

EJP IPS : vbn | MAW UXP : yyy | SUG SMF : asd | XYW GCP : qay

FBR KLE : hjk | NXD QTU : ggg | TMN EBY : ppp | YPC OSQ : mmm

GPB ZSV : nml | NLU QFZ : ghj | TAA EXB : pyx | ZZY YRA : uvw

HNO THD : fff | OBU DLZ : jjj | USE NWH : zui | ZEF YOC : uio

HXV TTI : fgh | PVJ FEG : tzu | VII PZK : eee | ZSJ YWG : uuu

The astonishingly naive habits of the German cipher operators become ob-
vious by looking at the keyboard layout of Enigma:

Q W E R T Z U I O

A S D F G H J K

P Y X C V B N M L

All message keys belong to one of three groups of stereotypes

• iterated letters: sss, fff, ddd, ooo, . . .

• three consecutive keys: rfv, rtz, wer, ikl, . . .

• three letters in alphabetic order: abc, uvw

Before World War II the British cryptanalysts failed with the cryptanaly-
sis of Enigma because they tried to determine the wiring between in-/output
and first rotor. The commercial Enigma D connected Q with A, W with B, E
with C and so on in the order of the keyboard. Assuming this for Enigma
I didn’t work. Rejewski who knew the Germans since he was a student

K. Pommerening, Classic Ciphers 131

at Göttingen simply assumed that the wiring in any case should follow a
simple scheme, and succeeded with the assumption “A is connected to A, B
to B etc.”

The point: Enigma C also had had this simple wiring, and this informa-
tion could be found in the patent file in the British Patent Office . . .

For later attacks (from 1938 on) of the Polish cryptanalysts against the
Enigma, including a complete example, see the paper

David Link, Resurrecting Bomba Kryptologiczna: Archeology of
Algorithmic Artefacts, I. Cryptologia 33 (2009), 166–182.

6.7 Wehrmacht Enigma and Known Plaintext

The Polish break into the Enigma relies on the way in which the German
operators handled the message keys. With the beginning of the war the
method of message keying changed and the pre-war cryptanalytic approaches
broke down.

Equations for Known Plaintext

Already the Polish cryptanalysts had exlored the idea of using known
plaintext—starting from the observation that the German military in their
messages used a lot of stereotypical phrases such as “Heil Hitler” or
“Oberkommando der Wehrmacht” (= Army’s High Command). Chunks
of known plaintext (called “cribs” by the british cryptanalysts) allow nar-
rowing down the exhaustive search to an amount that eventually may be
mastered with the help of some cleverly constructed electro-mechanical ma-
chines. Alan Turing largely and systematically expanded this approach.

Here is an example (Example 1, taken from [4] as virtually all authors
of cryptographic texts do). Let the ciphertext

ULOEB ZMGER FEWML KMTAW XTSWV UINZP R ...

be given. We suppose the message contains the phrase “Oberkommando der
Wehrmacht” near the beginning. A negative pattern search over the first 12
possible positions yields exactly one hit:

K. Pommerening, Classic Ciphers 132

U L O E B Z M G E R F E W M L K M T A W X T S W V U I N Z P R

o b e r k o = m a n d o d e r w e h r m a c h t

o b = r k o m m a n d o d e r w e h r m a c h t

= b e r k o m m a n d o d e r w e h r m a c h t

o = e r k o m m a n d o d e r w e h r m a c h t

o b e r k o m m a n d o d e r = e h r m a c h t

===> o b e r k o m m a n d o d e r w e h r m a c h t

o b = = k o m = a n d o d e r w e h r m a c h t

o b e r k o = m a n d o d e r w e h r m a c h t

o b e r k o m m a n d o d e r = e h r m a c h

o b = r k o m = a n d o d e r w e h r m a c

o b e r k o = m = n d o d e r w e h r m a

o b e r = o m m a n d o d e r w e h r m

We assume the rotor wirings of all five rotors as known. The naive
approach—exhaustion by brute force and assuming that the ring settings
don’t interfere with the crib—would go through all 60 possible rotor orders,
all 263 = 17576 start positions, and all > 1014 plug configurations, each time
decrypt the ciphertext, and look if the known plaintext results. The huge
number of plug configurations makes this approach hopeless, the “virtual”
keylength for this approach being about 67 bits (1023/262 ≈ 1.6·1020 ≈ 267).
(We first neglect the ring settings that have little impact on the cryptanal-
ysis.)

Fortunately, using known plaintext, we may find conditions that involve
only a single plug . Recall the general situation as shown in Figure 6.4.

Rotor No. R 3 2 1 P

-

Plaintext aiãi

6

�

Ciphertext ci
c̃i

︸ ︷︷ ︸
Combined rotor
substitution ϕi

︸ ︷︷ ︸
Plugboard

substitution η

η−1

Figure 6.4: Enigma with plugboard

Assume a sequence a1 . . . am of known plaintext is given with correspond-
ing ciphertext c1 . . . cm, the respective combined rotor substitutions being
ϕ1, . . . , ϕm and the “full” Enigma substitutions, ρi = η−1ϕiη. This gives the

K. Pommerening, Classic Ciphers 133

equations

c1 = ρ1a1 = η−1 ϕ1 η a1

...

cm = ρmam = η−1 ϕm η am

or ηci = ϕiηai. Denoting the image of a letter under the (fixed but unknown)
plugboard substitution by a tilde we get:

Lemma 7 For a sequence a1 . . . am of known plaintext we have

c̃i = ϕi ãi and ãi = ϕi c̃i for i = 1, . . . ,m.

For the second equation we used the fact that the combined rotor sub-
stitutions ϕi are involutions.

Looking for Cycles

Returning to Example 1 we consider the special situation

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2

i = 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4

c_i = Z M G E R F E W M L K M T A W X T S W V U I N Z

a_i = O B E R K O M M A N D O D E R W E H R M A C H T

From such a plaintext-ciphertext pair we extract the Turing graph:
The nodes correspond to the letters A . . . Z of the standard alphabet. For
each pair (ai, ci) of plaintext letter and corresponding ciphertext letter an
edge is drawn between these two letters, and this edge is labeled by the index
i. Due to the reciprocity between plaintext and ciphertext, the situation is
modeled by an undirected graph. An edge with label j between nodes s and
t means that t = ρjs and s = ρjt—or t̃ = ϕj s̃ and s̃ = ϕj t̃. Figure 6.5 shows
the Turing graph for Example 1.

Turings approach uses the cycles in this graph (“closures” in Turing’s
way of speaking). In the notation of Lemma 7 we find:

E = ρ7 M, M = ρ9 A, A = ρ14 E, and Ẽ = ϕ7 M̃, M̃ = ϕ9 Ã, Ã = ϕ14 Ẽ,

and combine these three equations into one cycle equation

E = ρ7 ρ9 ρ14 E. and Ẽ = ϕ7 ϕ9 ϕ14 Ẽ.

In general we have:

Theorem 11 (Fixed Point Theorem of Rejewski/Turing) Let ρi be
the Enigma substitution in position i, and ϕi = ηρiη

−1 be the substitution
without plugs. Then a letter a is a fixed point of a composition ρi1 · · · ρik if
and only if the plugged letter ã is a fixed point of ϕi1 · · ·ϕik .

K. Pommerening, Classic Ciphers 134

L N H S

C I

K D TD

R

G

E A U

W M O Z

X V B F

10 23 18

22

11 13

4 14 21

8 12 1

5

15 19 7

16 20

�
�
�
��

17

�
�
�
��

9

@
@
@
@@

2
@
@
@
@@

6

@@
3

Figure 6.5: Turing graph for Example 1

K. Pommerening, Classic Ciphers 135

Thus the fixed point property of a cycle is in a certain sense independent
of the plug connections.

Corollary 7 (Turing’s cycle condition) Each loop in the Turing
graph gives a necessary condition for the correct key of the Enigma encryp-
tion in the form

ã = ϕi1 . . . ϕik ã

for a letter a. In particular ã is a fixed point of the corresponding composition
of unplugged Enigma substitutions.

Although mathematically trivial this theorem and its corollary are the
keys to eliminating the complexity of the plugboard by a meet-in-the-middle
attack.

What is the benefit of Turing’s cycle condition? Suppose in Example 1
we try all 26 possible values for Ẽ = η E and all 263 possible rotor positions
for all 60 possible rotor orders, searching for fixed points of ϕ7 ϕ9 ϕ14—an
exhaustion of 60 × 264 = 27, 418, 560 cases. Then the probability that the
cycle condition is fulfilled is about 1/26. This rules out ≈ 25/26 ≈ 96% of
all cases and leaves us with ≈ 60× 263 cases—not really impressive, but it
could be a good start: Suppose we find two cycles involving E, then we are
left with ≈ 60 × 262 cases, for three cycles with ≈ 60 × 26 cases, for four
cycles with ≈ 60 cases, i. e. with the exhaustion of the possible rotor orders.
And the outcome of this search is:

• The correct initial rotor positions for our known plaintext

• The correct plugboard images for all letters that occur in one of the
cycles—a significant part of the complete plug configuration

Now in our Example 1 (that is in fact Deavour’s and Kruh’s) we see
two other cycles involving E:

Ẽ = ϕ4 R̃, R̃ = ϕ15 W̃, W̃ = ϕ8 M̃, M̃ = ϕ7 Ẽ,

and
Ẽ = ϕ4 R̃, R̃ = ϕ5 K̃, K̃ = ϕ11 D̃, D̃ = ϕ13 T̃, T̃ = ϕ17 Ẽ,

giving the two additional cycle conditions

Ẽ = ϕ4 ϕ15 ϕ8 ϕ7 Ẽ, Ẽ = ϕ4 ϕ5 ϕ11 ϕ13 ϕ17 Ẽ.

The complete cycle constellation may be visualized by Figure 6.6.

K. Pommerening, Classic Ciphers 136

ER

W M

A

TD

K

13

4

8

15 7

17

HHH
HH

14

��
�
��

9

��
��
�11

H
HHHH5

Figure 6.6: Turing cycles in Example 1

Evaluating the Cycle Conditions

In evaluating the cycle conditions one sets the rotors to start positions and
then steps Rotor 1 only. In lucky cases also in the real situation only Rotor 1
moves. In bad cases Rotor 2 moves, maybe even Rotor 3. Since the ring
setting is unknown, these stepping positions are unknown. Because in the
example all the cycles are between plaintext positions 4 and 17, the length
of the effectively used plaintext segment is 14, and the probability for a
stepping of Rotor 2 in between is 13/26 = 50%, a stepping that would
invalidate the approach, and a good argument for using rather short cribs.

Now assume that we have identified the correct rotor order and the
correct initial positions of all the rotors, and no interfering movement of
Rotors 2 and 3 occurs for the involved plaintext section a1 . . . am. Then
the combined rotor substitutions ϕ1, . . . , ϕm are known, and the plug image
s̃ = ηs is known for all letters s that occur in the cycles. In the example we
know Ẽ = ηE and consequently

R̃ = ϕ4Ẽ, K̃ = ϕ5R̃, M̃ = ϕ7Ẽ, W̃ = ϕ8M̃, Ã = ϕ9M̃,

D̃ = ϕ11K̃, Õ = ϕ12M̃, T̃ = ϕ13D̃, X̃ = ϕ16W̃.

Furthermore we find F̃ = ϕ6Õ. Since η is an involution the inverse relations
might involve further letters. That is we know the plugboard substitutes of
at least 11 letters.

What is yet missing is

• The plugboard substitutes of the remaining letters

• The stepping position of Rotor 2

K. Pommerening, Classic Ciphers 137

To continue assume first that the remaining letters are unchanged by the
plugboard and decrypt cm+1, . . . As soon as the resulting plaintext is unread-
able either a new plugboard connection or the stepping position is detected.
If the crib occurred in the middle of the ciphertext, we run the same proce-
dure backwards to the beginning of the message.

Conclusion

The huge number of possible plug settings turns out to be an illusory com-
plication: The exhaustion used the plug connection of a single letter only. In
good cases where the procedure yields a unique solution of the cycle condi-
tions the effort was testing 26 plug connections with 263 start positions for
each of the 60 rotor orders, that is 27, 418, 560 ≈ 1.6 · 224 cases. In each case
we have to do some trial encryptions for the letters in the cycles plus some
house-keeping plus some finishing. So we may guess that the search space is
dropped to about 30 bits.

As soon as the daily key—rotor order, ring settings, plug connections,
initial positions of the rotors—is known, reading all further messages of
the day comes for almost no additional costs because all message keys are
encrypted with the same initial rotor positions.

A Note on the Technical Realization: Turing’s Bombe

Turing’s Bombe consisted of a battery of several Enigmas (without plug-
boards), called “scramblers” and in one-to-one correspondence with the
nodes of the Turing graph, synchronously stepping through all 263 ro-
tor positions. For each edge two scramblers were connected by a cable, and
set to start positions differing by the number that corresponded to the label
of the edge. Therefore the physical arrangement of the components was an
exact model of the graph. The cable had 26 wires, so all choices for the plug
connection of a selected letter (Ẽ in Example 1) could be tested in parallel.
The cycle conditions corresponded to closed electrical circuits that made
the bombe stop. Then the operator noted the actual rotor positions and
restarted the bombe with the next set of positions.

Using enough scramblers even all the sixty rotor orders could be tested
in parallel, dropping the effective search costs to 263, equivalent with a com-
plexity of 14 bits only. A complete run of the bombe took 11 minutes. (Today
a simulation on a PC without parallel execution takes about 5 minutes.)

Unfortunately in general the solution was far from unique, so the bombe
produced a huge number of “false positive” stops. An idea of Welchman
largely reduced the number of false positives by a clever add-on to the
bombe, see Section 6.8 below, and this was crucial for the success of the
British cryptanalysts against the Enigma.

K. Pommerening, Classic Ciphers 138

6.8 Example 2

Now we go through an example step by step and produce a complete solution
for the ciphertext

ZIDPV USABH HEABG RZMOP UWVJD MLPCS PFTSH ISJMR RFSKU KHUAT

SFDNB GWTAN CSZZW HPHNP DDSAX GTRGY OZPKO EAGRG YSGQD KKNIT

DWFZZ INSYH UTSZR KJDVJ JLJIJ MQHCB RINYI

Aligning Known Plaintext

We believe the plaintext contains “Oberleutnant zur See” as the rank of the
sender, that is we assume a crib near the end of the message, and assume
that at most 20 letters follow, containing the name. The scheme

RGYSGQDKKNITDWFZZINSYHUTSZRKJDVJJLJIJMQHCBRINYI

[89] xstopxoberleutnantxzurxseex

[90] xstopxoberleutnantxzurx=eex

[91] x=topxoberleutna=txz=rxseex

[92] xstopxoberleutnantxzurxseex

[93] xstopxoberleut=antxzurxseex

[94] xstopxoberleutnantxzu=xseex

[95] xstopxoberleutnan=x=urxseex

[96] xstopxoberleutnantxzurxseex

[97] xstopxoberleutnantxzurxseex

[98] xs=opxoberleutnantxzurxseex

[99] xstopxoberle==nantxzurxseex

[100] xstopxoberleutnantxzurxseex

[101] xstopxoberleutnantxzurxseex

[102] xstopxoberleutnantxzurxseex

[103] xstopxoberleutnantxzurxseex

[104] xstopxoberleutnantxzurxseex

[105] xstopxoberleutnantxzurxseex

[106] xstopxobe=leutnantxzurxseex

[107] x=topxoberleutnantxzurxseex

[108] xstopxoberleutnantxzurxseex

[109] xstopxoberleutnantxzurxseex

RGYSGQDKKNITDWFZZINSYHUTSZRKJDVJJLJIJMQHCBRINYI

gives 12 hits for the negative pattern search among the 21 considered posi-
tions: 89, 92, 96, 97, 100, 101, 102, 103, 104, 105, 108, 109—at least a slight
reduction for manual cryptanalysis.

Constructing a Turing Graph

Somewhere along the way we test position 103 and consider the crib

K. Pommerening, Classic Ciphers 139

FZZINSYHUTSZRKJDVJJLJIJMQHC

xstopxoberleutnantxzurxseex

We derive the cycle diagram in Figure 6.7.

T

R

Z E U J

L S X

�
�
�
�
�
�
�
�
�
�

3

10

13

12 9 21

A
A
A
A
A
A
A
A
A
AA

18

20

@
@
@
@@

2

11 6
�
�
�
��

19

Figure 6.7: Turing cycles for Example 2

Therefore as “menu”—the chunk of known plaintext to be examined—we
use the sequence of length 20 starting from position 104 (that corresponds
to the edge with label 2):

ZZINSYHUTSZRKJDVJJLJ

STOPXOBERLEUTNANTXZU

To exhaust all the rotor orders, starting positions, and plug connections
for this chunk of known plaintext we use Jean-François Bouchaudy’s Tur-
ing Bombe Simulator, to be found at http://cryptocellar.web.cern.ch
/cryptocellar/simula/jfb/BP12.zip.

In a virtual machine on a 2.93 GHz Intel Core-i7 processor it
needed 5 minutes for all 60 rotor orders and produced exactly
one solution in “Welchman mode” (the diagonal board, see
later).

Using only the rotors I, II, and III and disabling the diagonal board—that
we haven’t introduced yet—we get 6 “solutions” in a few seconds

http://cryptocellar.web.cern.ch/cryptocellar/simula/jfb/BP12.zip
http://cryptocellar.web.cern.ch/cryptocellar/simula/jfb/BP12.zip

K. Pommerening, Classic Ciphers 140

(1) I II III KFX

(2) I II III WHV

(3) II I III ZYN

(4) III I II JXS

(5) III II I IES

(6) III II I QSV

Exploring Solution (1)

Let us try the first proposed solution. We begin by decrypting the ciphertext
with a ring setting that causes no stepping of the middle rotor for the next
20 positions, and no plugs in the plugboard. Missing plugs will be detected
by the following considerations.

The assumption on the ring setting is somewhat optimistic. It it
fails for all of the solutions, we have to try harder, experimenting
with shorter cribs or guessing the ring setting of the fast rotor.

We use the rotor order I (slow), II (middle), III (fast), and the start positions
KFX. This gives the trial decryption

ZZINSYHUTSZRKJDVJJLJIJMQHCBRINYI

XPMEJJXPGQBMIVVUKRSISPTNFVAZEQTG

This doesn’t look like plaintext, but we have not yet explored the plugs. We
start with the plug connection Z̃ of Z, the letter with the maximum number
of edges in the graph. We try all 26 possible connections, see Table 6.1

Only line X is compatible with the cycle, giving Z̃ = X. For a manual
check of the other cycles we use the complete description of the combined
rotor substitutions ϕ2, . . . , ϕ21 given in Table 6.2. The “plugged” cycles fit
“unplugged” ones:

Z̃
3−→ T̃

10−→ R̃
13−→ Ũ

9−→ Ẽ
12−→ Z̃ fits X

3−→ I
10−→ Y

13−→ F
9−→ L

12−→ X

Z̃
2−→ S̃

6−→ X̃
19−→ J̃

21−→ Ũ
9−→ Ẽ

12−→ Z̃ fits

X
2−→ Z

6−→ F
19−→ N

21−→ F
9−→ L

12−→ X

T̃
10−→ R̃

13−→ Ũ
21−→ J̃

18−→ T̃ fits I
10−→ Y

13−→ F
21−→ N

18−→ I

Therefore the cycle conditions hold indeed.
However we didn’t need to check them because reading off the plug

connections from the first loop, row “X” in Table 6.1, we get Z̃ = X, S̃ = Z,
and this already is a contradiction.

Therefore solution (1) was a false alarm. This observation leads to
Welchman’s plug condition expressing the fact that the plug substitution
is an involution:

If ã = b, then also b̃ = a for each pair of letters a, b ∈ Σ.

K. Pommerening, Classic Ciphers 141

Z̃
2−→ S̃

11−→ L̃
20−→ Z̃

A C V W

B L H G

C A M B

D F N R

E G K U

F D Z E

G E T A

H O R N

I V C P

J M A T

K U W V

L B I F

M J P C

N S Q J

O H L S

P R O Y

Q Y X D

R P J Q

S N F I

T W U K

U K G H

V I B M

W T E Z

X Z D X

Y Q S L

Z X Y O

Table 6.1: Example 2—Possible plug connections for the first cycle

K. Pommerening, Classic Ciphers 142

Substition in Substitution table
rotor position A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

ϕ2: KFX C L A F G D E O V M U B J S H R Y P N W K I T Z Q X

ϕ3: KFY D C B A Y S L J X H O G N M K Z R Q F V W T U I E P

ϕ4: KFZ N X E F C D P S M Q U Y I A V G J T H R K O Z B L W

ϕ5: KFA B A X V N Y K Q O Z G M L E I U H T W R P D S C F J

ϕ5: KFB U D L B M Z O Y V S T C E Q G W N X J K A I P R H F

ϕ5: KFC Z U O T X H L F P Y Q G V S C I K W N D B M R E J A

ϕ5: KFD J D U B Y Q R X S A T P O Z M L F G I K C W V H E N

ϕ5: KFE R C B W H L O E J I M F K S G U T A N Q P X D V Z Y

ϕ10: KFF M Z H X W P T C Y R O U A Q K F N J V G L S E D I B

ϕ11: KFG M I V Z T N K L B P G H A F R J S O Q E W C U Y X D

ϕ12: KFH F Z R W V A T I H Y O X N M K U S C Q G P E D L J B

ϕ13: KFI J S U G W Y D K L A H I R P Q N O M B V C T E Z F X

ϕ14: KFJ V Y O W F E H G K S I P T R C L U N J M Q A D Z B X

ϕ15: KFK F R W K Y A M P X V D N G L Q H O B U Z S J C I E T

ϕ16: KFL B A I V J S H G C E Q O N M L T K U F P R D Z Y X W

ϕ17: KFM R J I O K Y M X C B E P G Q D L N A Z W V U T H F S

ϕ18: KFN R Q S P U H L F N K J G T I Z D B A C M E W V Y Z O

ϕ19: KFO W V E K C N X Z O R D Y P F I M S J Q U T B A G L H

ϕ20: KFP T M P X Z I H G F Q U S B R Y C J N L A K W V D O E

ϕ21: KFQ C T A V M N Y Z J I Q O E F L X K W U B S D R P G H

Table 6.2: Example 2—Combined rotor substitutions for rotor order I, II, III
without turnover of Rotor II. Calculated using the online Enigma simulation
at http://enigmaco.de/.

K. Pommerening, Classic Ciphers 143

Exploring Solution (2)

We try the second proposed solution. As before we begin by decrypting the
ciphertext, starting from position 103, rotor order I, II, III. Because V is the
turnover point of Rotor III we have to turn Rotor II back by one position
in order to get the correct start positions WGV. The trial decryption gives

ZZINSYHUTSZRKJDVJJLJIJMQHCBRINYI

STOPXOBERLEUTNANTXZURXSEEXJAEGER

—a perfect result. We see that indeed V is the true turnover point of Ro-
tor III, that means that the ring setting of this rotor is A. Moreover all
letters except F and W occur, proving that they are unplugged, and the only
possible plug connection could be between F and W.

From position 103 we go back for 26 positions and start with the rotor
setting WFV. We get

RGYOZPKOEAGRGYSGQDKKNITDWF

ISTXLEUCHTTONNEXKNULLNEUNX

This proves that also F and W are unplugged. The only key element yet
unknown is the ring setting of rotor II.

We go back for another 26 letters and start with the rotor positions WEV.
This gives the trial decryption

FDNBGWTANCSZZWHPHNPDDSAXGT

SHKTDFEEFXMAMPPGAGRJIXKMXN

and the end rotor positions XFV instead of WFV. Something must have hap-
pened in between, and this could only be the stepping of Rotor I. The
position of Rotor II then must have been E. Because of the double stepping
of Rotor II the rotor start positions for this section of text must be VDV.
Let’s try this:

FDNBGWTANCSZZWHPHNPDDSAXGT

XHDREIZEHNXSTOPXERLOSCHENX

This is correct plaintext and proves that Rotor II has turnover point E,
corresponding to ring setting A.

We conclude that the rotor start positions for the complete text are VCW,
and get the decryption

ZIDPVUSABHHEABGRZMOPUWVJDMLPCSPFTSHISJMRRFSKUKHUATS

MELDUNGXVONXFREGATTEXGERMANIAXSTOPXPLANQUADRATXQELF

FDNBGWTANCSZZWHPHNPDDSAXGTRGYOZPKOEAGRGYSGQDKKNITDWF

XHDREIZEHNXSTOPXERLOSCHENXISTXLEUCHTTONNEXKNULLNEUNX

ZZINSYHUTSZRKJDVJJLJIJMQHCBRINYI

STOPXOBERLEUTNANTXZURXSEEXJAEGER

K. Pommerening, Classic Ciphers 144

or, written in a more readable form,

Meldung X von X Fregatte X Germania X Stop X Planquadrat
X Qelf X Hdreizehn X Stop X Erloschen X ist X Leuchttonne X
Knullneun X Stop X Oberleutnant X zur X See X Jaeger

A Note on the Technical Realization: Welchman’s Diagonal
Board

To systematically explore Welchman’s plug conditions we consider the
connected component of the Turing graph that we used. Assume it consists
of the set M = {s1, . . . , sr} of letters. When the bombe stops it also provides
the plug connection of the selected letter, say s1 with s̃1, and allows to derive
the set of plug connections M̃ = {s̃1, . . . , s̃r}.

For the false “solution” (1) we had M = {E,J,L,R,S,T,U,X,Z}, and the
provided or derived plug connections

Ẽ = L, J̃ = N, L̃ = D, R̃ = Y, S̃ = Z, T̃ = I, Ũ = F, X̃ = F, Z̃ = X.

We observe two kinds of contradictions:

1. Ũ = F, X̃ = F: Two letters in M cannot be connected to the same letter
in M̃ .

2. Ẽ = L, L̃ = D, hence ηE = Ẽ ∈ M ∩ M̃ and η2E 6= E. In the same way
S̃ = Z, Z̃ = X, η2S 6= S, and Z̃ = X, X̃ = F, η2Z 6= Z.

Checking for these contradictions in software is easy. Welchman’s ingenious
idea was to imagine and construct a simple device, the diagonal board, that
was attached to the bombe and prevented stops in situations that contained
contradictions to the plug conditions.

The improved bombe, called Turing-Welchman Bombe, provided only
very few false positives. Moreover it not only used the letters in the cycles
but also “non-cycle” letters connected to a cycle, in other words, a complete
connected component of the Turing graph. In fact it even worked when the
graph didn’t have any cycles.

6.9 Example 3

Since Example 2 turned out to be quite simple, we analyze one more exam-
ple. The ciphertext is

CZSTQ GJYNF ZYOLR TLXBR YXJCE MONAS XIPHU CXSAD BGEEQ ROBPI

QMUDP LWYDD GRCMC MJLGW TWBDK BHCPM UMEIB TMCUR DOVPU XNGBZ

QRBKD RPCKL XQKYM CSLGP NHIGD LOHBM PYPNV MTZVU EBDCZ AZLSX

OSZHL GSSZN MBBWS FDTUW IAXEH HLQGR LXMVA MXLWF QGOOA RZXUH

VUAWM KQDXH ZOIJI AMXCI TQNUM ZTZIW CKSBH HRZBH HRNZE WZCGV

BQ

K. Pommerening, Classic Ciphers 145

and we are quite sure that the plaintext begins with “Befehl X des X Fuehrers
X Stop X”. We align this with the ciphertext:

CZSTQ GJYNF ZYOLR TLXBR YXJCE

BEFEH LXDES XFUEH RERSX STOPX

Negative pattern search yields no contradiction. From positions 1 to 20 we
derive the Turing graph whose largest connected component is shown in
Figure 6.8. It has three cycles that overlap, two of them of length 2. Running
the Bombe Simulator in “Turing mode” for these three cycles yields about
1500 ≈ 60 · 26 solutions, as expected. The (lexicographically) first of them
is

Rotor order I II III
Start position ZPB

Table 6.3 describes the transformations ϕ2, . . . , ϕ20.

X JZ

TEL

N

G R H Q

11

164

7

15 5
14
176

18 20
�
�
�
��

2

@
@

@
@

9

Figure 6.8: Turing graph for Example 3, largest connected component

Now we consider the E-L-E cycle and the E-Z-X-R-T-E cycle, see Ta-
ble 6.4. The L-E cycle has 6 compatible plug connections for E and L. The
E-Z-X-R-T-E cycle boils this number down to 1. The third cycle, X-R-X, fits
into the picture, because ϕ20X̃ = ϕ20I = B = R̃.

Again the Welchman conditions rule out this solution because of the
contradiction in the first row: L̃ = B in column 2, R̃ = B in column 6.
And indeed, running the Bombe Simulator in “Welchman mode” yields a
unique solution:

Rotor order III II I
Start position BMX

with the plugs A-Z, C-X, E-V. A trial decryption with these plugs and ring
settings AAA shows parts, but not all of the known plaintext:

EUEHLXHECXGFEHRERLXZTOPX

* * * ** * *

(B)EFEHLXDESXFUEHRERSXSTOPX

K. Pommerening, Classic Ciphers 146

Substition in Substitution table
rotor position A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

ϕ2: ZPB N G E S C I B R F W X U O A M Y Z H D V L T J K P Q

ϕ3: ZPC M J S H Q O K D W B G V A U F Z E Y C X N L I T R P

ϕ4: ZPD F L H N I A T C E R X B Y D Z Q P J V G W S U K M O

ϕ5: ZPE V D G B J T C K U E H Y W Z S R X P O F I A M Q L N

ϕ6: ZPF P T I U J Z Q M C E Y S H W X A G V L B D R N O K F

ϕ7: ZPG R D I B M Q U V C Y O T E X K Z F A W L G H S N J P

ϕ8: ZPH Q L F T K C P R Z S E B X W U G A H J D O Y N M V I

ϕ9: ZPI D X J A L Q I S G C U E W R Z V F N H Y K P M B T O

ϕ10: ZPJ S W X L R U Q T O M Y D J Z I V G E A H F P B C K N

ϕ11: ZPK P E O H B Z Q D N R W Y U I C A G J X V M T K S L F

ϕ12: ZPL R M S Y L U T Q P X Z E B V W I H A C G F N O J D K

ϕ13: ZPM J P S G Y N D Z Q A T U V F X B I W C K L M R O E H

ϕ14: ZPN B A Z W Y R I O G T U X Q V H S M F P J K N D L E C

ϕ15: ZPO H M S Y O R L A T U P G B X E K W F C I J Z Q N D V

ϕ16: ZPP K F D C R B S T U N A P V J Z L X E G H I M Y Q W O

ϕ17: ZPQ B A V L Y S U O K M I D J P H N Z X F W G C T R E Q

ϕ18: ZPR N I J Q T U M W B C V S G A Y X D Z L E F K H P O R

ϕ19: ZPS Q P K R U J Z N L F C I W H T B A D Y O E X M V S G

ϕ20: ZPT V I G L Z P C M B N S D H J Y F X U K W R A T Q O E

Table 6.3: Example 3—Combined rotor substitutions for rotor order I, II, III
without turnover of Rotor II. Calculated using the online Enigma simulation
at http://enigmaco.de/.

K. Pommerening, Classic Ciphers 147

Ẽ
14−→ L̃

17−→ Ẽ
2−→ Z̃

11−→ X̃
18−→ R̃

16−→ T̃
4−→ Ẽ

A B A N I B F A

B A B G Q D C H

C Z Q †
D W T †
E Y E C O Y W U

F R X †
G I K †
H O H R J C D N

I G U †
J T W †
K U G †
L X R †
M Q Z †
N V C †
O H O M U F B L

P S F †
Q M J †
R F S †
S P N †
T J M †
U K I †
V N P †
W D L †
X L D †
Y E Y P A N J R

Z C V †

Table 6.4: Example 3—Possible plug connections for the first two loops

K. Pommerening, Classic Ciphers 148

To get on we use a second connected component of the Turing graph, see
Figure 6.9.

C B S Y D

F

1 19 21 8

3 10

@
@
@

@
@

12

Figure 6.9: Turing graph for Example 3, second connected component

Trying the cycle S-F-S with ϕ3 and ϕ10 using all the plugs for S that
are yet free gives two possible solutions: S-U-S and U-S-U. The second one
violates the Welchman condition for S. The first one yields the plugs S-S

and F-U. Furthermore we get Ỹ = ϕ12F̃ = ϕ12U = B, and D̃ = ϕ8Ỹ = ϕ8B = W.
Up to now we identified the plugs A-Z, B-Y, C-X, D-W, E-V, F-U. Trial

decryption yields the perfect plaintext

EFEHLXDESXFUEHRERSXSTOPX

So we try to decrypt the complete ciphertext with the rotor order III II I,
the ring settings AAA, the plugs A-Z, B-Y, C-X, D-W, E-V, F-U, and the start
positions BMW, and get

BEFEH LXDES XFUEH RERSX STOPX IMXFA LLEXZ XZTXU NWAHR SQEIN

LIQEN XFRAN ZOESI SQENX ANGRI FFSXS INDXD IEXWE STBEF ESTIG

UNGEN XJEDE RXZAH LENMA ESSIG ENXUE BERLE GENHE ITXZU MXTRO

TZXZU XHALT ENXST OPXFU EHRUN GXUND XTRUP PEXMU ESSEN XVONX

DIESE RXEHR ENPFL IQTXD URQDR UNGEN XSEIN XSTOP XHEIL XHITL

ER

Befehl des Fuehrers STOP Im Falle z. Zt. unwahrscheinlichen
franzoesischen Angriffs sind die Westbefestigungen jeder zahlen-
maessigen Ueberlegenheit zum Trotz zu halten STOP Fuehrung
und Truppe muessen von dieser Ehrenpflicht durchdrungen sein
STOP Heil Hitler

We observe that the slow rotor didn’t step during this decryption. In
general the a priori probability for its stepping was 257 letters of text divided
by 676 possible positions of the other two rotors ≈ 0.38.

K. Pommerening, Classic Ciphers 149

6.10 Discussion

• Turing’s attack against the cycles of the graph also works for non-
involutory rotor machines. Then the graph model is a directed graph
and the attacker has to find directed cycles. These are quite rare,
therefore the attack loses most of its power.

• Exercise. Find the directed cycles in Figures 6.5, 6.7, 6.8, 6.9.

• The Turing-Welchman Bombe used the involutary characters of the
complete Enigma substitution as well as of the plugboard. The inven-
tors of both of these “features” apparently didn’t see the weaknesses.

• Nevertheless the addition of the plugboard made the machine much
stronger. The isomorph attack worked by paper and pencil. Attacking
the Wehrmacht Enigma only worked with the help of heavy machinery.

Chapter 7

Aperiodic Polyalphabetic
Ciphers

Overview Over Polyalphabetic Ciphers

Monoalph. Periodic Aperiodic
Substitution Polyalph. Polyalph.

Substitution Substitution

Standard Shift Cipher Bellaso cipher Running-Text
Alphabet (Caesar) (“Vigenère”) Cipher

Non-Standard General Monoalph. Porta’s General Stream
Alphabet Substitution Polyalph. Cipher Cipher

The table is not completely exact. The running-text cipher is only a (but
the most important) special case of an aperiodic polyalphabetic substitution
using the standard alphabet. An analogous statement holds for PORTA’s
disk cipher and a general periodic polyalphabetic substitution. In contrast
by stream cipher we denote an even more general construct.

7.1 Running-Text Ciphers

Method

Assume we have a plaintext of length r. We could encrypt it with the Bel-
laso cipher (and the Trithemius table). But instead of choosing a keyword
and periodically repeating this keyword we use a keytext of the same length
r as the plaintext. Then we add plaintext and keytext letter for letter (using
the table).

The abstract mathematical description uses a group structure on the
alphabet Σ with group operation ∗. For a plaintext a ∈ Mr = M ∩ Σr we

150

K. Pommerening, Classic Ciphers 151

choose a key k ∈ Σr and calculate

ci = ai ∗ ki for 0 ≤ i ≤ r − 1.

We may interpret this as shift cipher on Σr. The formula for decryption is

ai = ci ∗ k−1
i for 0 ≤ i ≤ r − 1.

If the key itself is a meaningful text k ∈ Mr in the plaintext language, say
a section from a book, then we call this a running-text cipher.

Example

Equip Σ = {A, . . . , Z} with the group structure as additive group of integers
mod 26.

Plaintext: i a r r i v e t o m o r r o w a t t e n o c l o c k

Keytext: I F Y O U C A N K E E P Y O U R H E A D W H E N A L

Ciphertext: Q F P F C X E G Y Q S G P C Q R A X E Q K J P B C V

A Perl program is runkey.pl in the web directory
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Perl/.

Practical Background

To avoid a period in a polyalphabetic substitution we choose a key that is
(at least) as long as the plaintext. On the other hand we need a key that is
easily remembered or transferred to a communication partner.

A common method of defining such a key is taking a book and begin-
ning at a certain position. The effective key is the number triple (page,
line, letter). This kind of encryption is sometimes called a book cipher.
Historically the first known reference for this method seems to be

Arthur Hermann: Nouveau système de correspondence secrète.
Méthode pour chiffrer et déchiffrer les dépêches secrètes. Paris
1892.

But note that there are also other ways to use a book for encryption,
see http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/

1 Monoalph/Variants.html.
A modern version could use the contents of a CD beginning with a certain

position.

Exercise: How large is the keyspace of this cipher, when the attacker knows
which CD was used?

http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Perl/runkey.pl
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/1_Monoalph/Variants.html
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/1_Monoalph/Variants.html

K. Pommerening, Classic Ciphers 152

7.2 Cryptanalytic Approaches to Running-Text
Ciphers

Cryptanalysis of running-text ciphers is laborious. There are several ap-
proaches that should be combined in practice. Automated procedures are
proposed in

E. Dawson and L. Nielsen: Automated cryptanalysis of XOR
plaintext strings. Cryptologia XX (1996), 165–181.

A. Griffing: Solving the running key cipher with the Viterbi al-
gorithm. Cryptologia XXX (2006), 361–367.

The first of these considers running-text ciphers where plaintext and key
are combined via binary addition (XOR) instead of addition mod 26. This
distinction not essential for the method (but of course for the use of the
program).

Approach 0: Exhaustion

Exhaustion of all possible keytexts is practically infeasible when there is no
a priori idea what the keytext could be. Exhaustion is feasible when the
attacker knows the source of the keytext, say a certain book. If the source
text has length q and the ciphertext has length r, then there are only q − r
choices for the start of the key text. This is troublesome for the pencil and
paper analyst, but easy with machine support.

Approach 1: Probable Word and Zigzag Exhaustion

When in the example above the attacker guesses the probable word “arrive”
in the plaintext and shifts it along the ciphertext, already for the second
position she gets the keytext FYOUCA. With a little imagination she guesses
the phrase IFYOUCAN, yielding the plaintext fragment IARRIVET, and ex-
pands this fragment to IARRIVETOMORROW. This in turn expands the keytext
to IFYOUCANKEEPYOU. Proceeding in this way alternating between plaintext
and keytext is called zigzag exhaustion (or cross-ruff method). For some
time during this process it may be unclear whether a partial text belongs to
plaintext or key.

A dictionary is a useful tool for this task. Or a pattern search in a
collection of literary texts may lead to success.

Approach 2: Frequent Word Fragments

If the attacker cannot guess a probable word she might try common word
fragments, bearing in mind that plaintext as well as keytext are meaningful
texts. Shifting words or word fragments such as

K. Pommerening, Classic Ciphers 153

THE AND FOR WAS HIS NOT BUT ARE ING ION ENT

THAT THIS FROM WITH HAVE TION

along the ciphertext will result in many meaningful trigrams or tetragrams
that provide seed crystals for a zigzag exhaustion. Recognizing typical com-
binations such as

THE + THE = MOI

ING + ING = QAM

THAT + THAT = MOAM

may be useful.

Approach 3: Frequency Analysis

Let p0, . . . , pn−1 be the letter frequencies of the (stochastic) language M over
the alphabet Σ = {s0, . . . , sn−1}. Then running-key ciphertexts will exhibit
the typical letter frequencies

qh =
∑
i+j=h

pi · pj for 0 ≤ h ≤ n− 1.

Even though the distribution is much more flat compared with plain lan-
guage, it is not completely uniform, and therefore leaks some information
on the plaintext. For example it gives a hint at the method of encryption.

Example: Letter frequencies of running-text cryptograms in English (val-
ues in percent). Coincidence index = 0.0400.

A B C D E F G H I J K L M
4.3 3.5 3.2 2.5 4.7 3.8 4.4 4.4 4.8 2.9 3.5 4.5 4.3
N O P Q R S T U V W X Y Z
3.1 3.2 3.6 3.0 4.4 4.5 4.0 3.2 4.9 4.7 3.8 3.3 3.5

Example: Letter frequencies of running-text cryptograms in German (val-
ues in percent). Coincidence index = 0.0411.

A B C D E F G H I J K L M
4.2 2.6 2.3 2.4 5.0 3.7 3.7 4.3 5.8 2.9 3.7 4.4 4.9
N O P Q R S T U V W X Y Z
3.2 3.0 3.1 3.3 5.7 3.4 3.2 3.4 5.9 4.5 3.9 3.9 3.6

Even more helpful is the distribution of bigrams and trigrams. Each
bigram in the ciphertext has 262 = 676 different possible sources whose
probabilities however show large differences. For trigrams most sources even
have probabilities 0.

A systematic description of this approach is in

Craig Bauer and Christian N. S. Tate: A statistical attack on the
running key cipher. Cryptologia XXVI (2002), 274–282.

K. Pommerening, Classic Ciphers 154

Approach 4: Frequent Letter Combinations

Frequency analysis (approach 3) is cumbersome, at least for manual eval-
uation. Friedman refined this approach in a systematic way that doesn’t
need known plaintext. See the next section.

7.3 Cryptanalysis According to Friedman

Friedman proposed a systematic approach to solving running-key ciphers
in the article

W. F. Friedman: Methods for the Solution of Running-Key Ci-
phers. Riverbank Publication No. 16 (1918). In: The Riverbank
Publications Vol 1, Aegean Park Press 1979.

Consider a running-text cryptogram. Friedman’s method starts from
the observation that a significant fraction of the ciphertext letters arise from
a combination of two frequent plaintext letters.

The frequency distribution (in percent) of the nine most frequent Ger-
man letters is:

E N I R S A T D U
18.0 10.6 8.1 7.2 6.9 6.0 5.7 5.4 4.6

Therefore these letters account for 72.5% of a German text.
Assuming that the key is sufficiently independent of the plaintext we

expect that about 53% ciphertext letters arose from a combination of two
of these letters in plaintext or key. This fact is not overly impressive. In the
example

| | | | | |

Plaintext: i c h k o m m e m o r g e n u m z e h n

Key: V O M E I S E B E F R E I T S I N D S T

Ciphertext: D Q T O W E Q F Q T I K M G M U M H Z G

this applies only to 6 of 20 letters. The method won’t work well for this
example.

Let us take another example (from the football world championships
2002):

| | | | | | | | | | | | |

Plaintext: d e u t s c h l a n d b e s i e g t p a r a g u a y

Key: E I N E N A T U E R L I C H E S P R A C H E H A T T

Ciphertext: H M H X F C A F E E O J G Z M W V L P C Y E N U T R

K. Pommerening, Classic Ciphers 155

Here we see 13 of 26 letters as interesting. We use this example to explain
the method.

Let’s begin with the first four letters, and consider all combinations that
lead to them

Plaintext: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Key: H G F E D C B A Z Y X W V U T S R Q P O N M L K J I

| | | |

Ciphertext: H

Plaintext: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Key: M L K J I H G F E D C B A Z Y X W V U T S R Q P O N

| | | | |

Ciphertext: M

Plaintext: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Key: H G F E D C B A Z Y X W V U T S R Q P O N M L K J I

| | | |

Ciphertext: H

Plaintext: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Key: X W V U T S R Q P O N M L K J I H G F E D C B A Z Y

| | | |

Ciphertext: X

The most probable pairs are flagged. We condense this observation:

DENU EISTU DENU DETU

EDUN IEUTS EDUN UTED

H M H X

There is a total of 4 · 5 · 4 · 4 = 320 possible combinations of these pairs.
Some of them may be eliminated immediately, for example we may exclude
that plaintext or key begin with the letters DS.

If we start with the pair D-E we might continue with E-I or U-S. The
first case has only one meaningful continuation:

DEUT

EINE

The second case could proceed with D-E, but no fourth pair fits. A possible
pair number 3 is N-U also, and then E-T or T-E fit as pair number 4. Therefore
we note two more options, both of them not really convincing:

DEUT DUNE DUNT

EINE ESUT ESUE

K. Pommerening, Classic Ciphers 156

Starting with E-D we find an exactly symmetric situation and get the same
three options but with plaintext and key interchanged.

Starting with N-U we might continue with I-E or U-S. The first case has
E-D as only plausible continuation, and then T-E:

DEUT DUNE DUNT NIET

EINE ESUT ESUE UEDE

The second case could proceed with D-E (and then E-T) or N-U (and then
there is no good continuation). So we found one more option:

DEUT DUNE DUNT NIET NUDE

EINE ESUT ESUE UEDE USET

Taking all the symmetric ones into account we face a total of 10 somewhat
plausible options—under the assumption that the first four letters of plain-
text and key belong to the nine most frequent German letters.

Of our five (+ five symmetric) options the first looks best. But also the
fourth is reasonably good, bearing in mind that the keytext might begin
in the middle of a word (for example “müde” = (M)UEDE). In any case
let’s begin with the first option that looks somewhat better. It suggests the
continuation SCH. This seems promising:

DEUTSCH

EINENAT

Of course if this fails we would also try for example DEUTLICH or DEUTEN.
As next letter in the first row we would try E or L and note that L gives a

better continuation in the second row (U better than B). Therefore the begin
DEUTSCHLAND is decrypted—but we don’t yet know whether it is plaintext
or key. From this point we struggle ahead in zigzag as noted before.

7.4 Other Applications of Running-Text Analysis

Key Re-Use

Consider an alphabet Σ with a group structure, and consider an (aperiodic
or periodic) polyalphabetic cipher that uses the Caesar operation: For a
plaintext a = (a0, a1, a2, . . .) and a keystream k = (k0, k1, k2, . . .) the cipher-
text c = (c0, c1, c2, . . .) is given by

ci = ai ∗ ki for i = 0, 1, 2,

Because the key is not necessarily meaningful text the cryptanalytic methods
for running-text ciphers don’t apply.

K. Pommerening, Classic Ciphers 157

But suppose another plaintext b = (b0, b1, b2, . . .) is encrypted with the
same key k, resulting in the ciphertext d = (d0, d1, d2, . . .),

di = bi ∗ ki for i = 0, 1, 2,

The attacker recognizes this situation by coincidence analysis.
Then the difference (or quotient, depending on the notation of the group

law) is given by

di ∗ c−1
i = bi ∗ ki ∗ k−1

i ∗ a
−1
i = bi ∗ a−1

i for i = 0, 1, 2,

In this way the attacker who knows the ciphertexts c and d finds the differ-
ence bi∗a−1

i that is the composition of two meaningful texts she doesn’t know
but wants to. She therefore applies the methods for running-text encryption
and eventually finds a and b and then even k.

Historical Notes

This kind of analysis was a main occupation of the cryptanalysts in World
War II and in the following Cold War. In particular teleprinter communi-
cation used additive stream ciphers (mostly XOR) with keystreams from
key generators and very long periods. In case of heavy message traffic often
passages of different messages were encrypted with the key generator in the
same state. Searching such passages was called “in-depth-analysis” and re-
lied on coincidence calculations. Then the second step was to subtract the
identified passages and to apply running-text analysis.

Some known examples for this are:

• Breaking the Lorenz cipher teleprinter SZ42 (“Schlüsselzusatz”) by
the British cryptanalysts at Bletchley Park in World War II (project
“Tunny”).

• Breaking Hagelin’s B21 in 1931 and the Siemens-Geheimschreiber
T52 in 1940 by the Swedish mathematician Arne Beurling. The T52
was also partially broken at Bletchley Park (project “Sturgeon”).

• The latest politically relevant application of this cryptanalytic tech-
nique occurred in the 1950es. US cryptanalysts broke Sovjet cipher-
texts and by the way debunked the spy couple Ethel und Julius Rosen-
berg (project “Venona”). The Sovjet spys used a one-time pad—in
principle. But because key material was rare keys were partly reused.

Large Periods

Another application is the Trithemius-Bellaso cipher with a large period
l, large enough that the standard procedure of arranging the ciphertext in
columns and shifting the alphabets fails.

K. Pommerening, Classic Ciphers 158

Then the attacker may consider the ciphertext shifted by l positions and
subtract it from the original ciphertext:

ci+l − ci = ai+l − ai.

Or, if the key consists of meaningful text, directly treat the cipher as a
running-text cipher.

Exercise.

BOEKV HWXRW VMSIB UXBRK HYQLR OYFWR KODHR JQUMM SJIQA THWSK

CRUBJ IELLM QSGEQ GSJFT USEWT VTBPI JMPNH IGUSQ HDXBR ANVIS

VEHJL VJGDS LVFAM YIPJY JM

Hints.

• Find evidence for a period of 38 or 76.

• Try the probable word AMERICA as part of the key.

7.5 Random Keys

All cryptanalytic methods collapse when the key is a random letter sequence,
chosen in an independent way for each plaintext, and never repeated. In
particular all the letters in the ciphertexts occur with the same probability.
Or in other words, the distribution of the ciphertext letters is completely
flat.

This encryption method is called One-Time Pad (OTP). Usually
Gilbert Vernam (1890–1960) is considered as the inventor in the World
War II year 1917. But the idea of a random key is due to Mauborgne
who improved Vernam’s periodic XOR cipher in this way. The German
cryptologists Kunze, Schauffler, and Langlotz in 1921—presumably
independently from Mauborgne—proposed the “individuellen Schlüssel”
(“individual key”) for running-text encryption of texts over the alphabet
{A, . . . , Z}.

In other words: The idea “was in the air”. In 2011 Steve Bellovin discov-
ered a much earlier proposal of the method by one Frank MILLER in 1882
who however was completely unknown as a crypologist and didn’t have any
influence on the history of cryptography.

Steven M. Bellovin. Frank Miller: Inventor of the One-Time Pad.
Cryptologia 35 (2011), 203–222.

K. Pommerening, Classic Ciphers 159

Uniformly Distributed Random Variables in Groups

This subsection contains evidence for the security of using random keys. The
general idea is:

“Something + Random = Random” or “Chaos Beats Order”
(the Cildren’s Room Theorem)

We use the language of Measure Theory.

Theorem 12 Let G be a group with a finite, translation invariant measure
µ and Ω, a probability space. Let X,Y : Ω −→ G be random variables, X
uniformly distributed, and X, Y independent. Let Z = X ∗ Y (where ∗ is
the group law of composition). Then:

(i) Z is uniformly distributed.

(ii) Y and Z are independent.

Comment The independency of X and Y means that

P (X−1A∩Y −1B) = P (X−1A)·P (Y −1B) for all measurable A,B ⊆ G.

The uniform distribution of X means that

P (X−1A) =
µ(A)

µ(G)
for all measurable A ⊆ G.

In particular the measure PX on G defined by PX(A) = P (X−1A) is
translation invariant, if µ is so.

Remark Z is a random variable because Z = m−1◦(X,Y) with m = ∗, the
group law of composition. This is measurable because its g-sections,

(m−1A)g = {h ∈ G | gh ∈ A}

are all measurable, and the function

g 7→ µ(m−1A)g = µ(g−1A) = µ(A)

is also measurable. A weak form of Fubini’s theorem gives that
m−1A ⊆ G×G is measurable, and

(µ⊗ µ)(m−1A) =

∫
G

(m−1A)g dg = µ(A)

∫
G
dg = µ(A)µ(G).

Counterexamples We analyze whether the conditions of the theorem can
be weakened.

K. Pommerening, Classic Ciphers 160

1. What if we don’t assume X is uniformly distributed? As an ex-
ample take X = 1 (unity element of group) constant and Y ar-
bitrary; then X and Y are independent, but Z = Y in general is
not uniformly distributed nor independent from Y .

2. What if we don’t assume X and Y are independent? As an ex-
ample take Y = X−1 (the group inverse); the product Z = 1
in general is not uniformly distributed. Choosing Y = X we get
Z = X2 that in general is not uniformly distributed nor inde-
pendent from Y . (More concrete example: Ω = G = Z/4Z, X =
identity map, Z = squaring map.)

General proof of the Theorem

(For an elementary proof of a practically relevant special case see below.)
Consider the product map

(X,Y) : Ω −→ G×G

and the extended composition

σ : G×G −→ G×G, (g, h) 7→ (g ∗ h, h).

For A,B ⊆ G we have (by definition of the product probability)

(PX ⊗ PY)(A×B) = PX(A) · PY (B) = P (X−1A) · P (Y −1B);

because X and Y are independent we may continue this equation:

= P (X−1A ∩ Y −1B) = P{ω |Xω ∈ A, Y ω ∈ B}
= P ((X,Y)−1(A×B)) = P(X,Y)(A×B).

Therefore P(X,Y) = PX⊗PY , and for S ⊆ G×G we apply Fubini’s theorem:

P(X,Y)(S) =

∫
h∈G

PX(Sh) · PY (dh).

Especially for S = σ−1(A×B) we get

Sh = {g ∈ G | (g ∗ h, h) ∈ A×B} =

{
A ∗ h−1, if h ∈ B,

∅ else,

PX(Sh) =

{
PX(A ∗ h−1) = µ(A)

µ(G) , if h ∈ B,

0 else.

Therefore

P (Z−1A ∩ Y −1B) = P{ω ∈ Ω |X(ω) ∗ Y (ω) ∈ A, Y (ω) ∈ B}
= P ((X,Y)−1S) = P(X,Y)(S)

=

∫
h∈B

µ(A)

µ(G)
· PY (dh) =

µ(A)

µ(G)
· P (Y −1B).

K. Pommerening, Classic Ciphers 161

Setting B = G we conclude P (Z−1A) = µ(A)
µ(G) , which gives (i), and from this

we immediately conclude

P (Z−1A ∩ Y −1B) = P (Z−1A) · P (Y −1B)

which proves also (ii). 3

Proof for countable groups

In the above proof we used general measure theory, but the idea was fairly
simple. Therefore we repeat the proof for the countable case, where integrals
become sums and the argumentation is elementary. For the cryptographic
application the measure spaces are even finite, so this elementary proof is
completely adequate.

Lemma 8 Let G, Ω, X, Y , and Z be as in the theorem. Then

Z−1(A) ∩ Y −1(B) =
⋃
h∈B

[X−1(A ∗ h−1) ∩ Y −1h]

for all measurable A,B ⊆ G.

The proof follows from the equations

Z−1A = (X,Y)−1{(g, h) ∈ G×G | g ∗ h ∈ A}

= (X,Y)−1

[⋃
h∈G

A ∗ h−1 × {h}

]
=

⋃
h∈G

(X,Y)−1(A ∗ h−1 × {h})

=
⋃
h∈G

[X−1(A ∗ h−1) ∩ Y −1h],

Z−1A ∩ Y −1B =
⋃
h∈G

[X−1(A ∗ h−1) ∩ Y −1h ∩ Y −1B]

=
⋃
h∈B

[X−1(A ∗ h−1) ∩ Y −1h].

K. Pommerening, Classic Ciphers 162

Now let G be countable. Then

P (Z−1A ∩ Y −1B) =
∑
h∈B

P [X−1(A ∗ h−1) ∩ Y −1h]

=
∑
h∈B

P [X−1(A ∗ h−1)] · P [Y −1h] (because X, Y are independent)

=
∑
h∈B

µ(A ∗ h−1)

µ(G)
· P [Y −1h] (because X is uniformly distributed)

=
µ(A)

µ(G)
·
∑
h∈B

P [Y −1h]

=
µ(A)

µ(G)
· P

[⋃
h∈B

Y −1h

]

=
µ(A)

µ(G)
· P (Y −1B).

Setting B = G we get P (Z−1A) = µ(A)
µ(G) , which gives (i), and immediately

conclude
P (Z−1A ∩ Y −1B) = P (Z−1A) · P (Y −1B),

which proves (ii). 3

Discussion

The theorem says that a One-Time Pad encryption results in a ciphertext
that “has nothing to do” with the plaintext, in particular doesn’t offer any
lever for the cryptanalyst.

Why then isn’t the One-Time Pad the universally accepted standard
method of encryption?

• Agreeing upon a key is a major problem—if we can securely transmit
a key of this length, why not immediately transmit the message over
the same secure message channel? Or if the key is agreed upon some
time in advance—how to remember it?

• The method is suited at best for a two-party communication. For a
multiparty communication the complexity of key distribution becomes
prohibitive.

• When the attacker has known plaintext she is not able to draw any
conclusions about other parts of the text. But she can exchange the
known plaintext with another text she likes more: The integrity of the
message is at risk.

K. Pommerening, Classic Ciphers 163

7.6 Autokey Ciphers

The first one to propose autokey ciphers was Bellaso in 1564. Also this
cipher is often attributed to Vigenère.

Encryption and Decryption

The alphabet Σ is equipped with a group operation ∗. As key chose a string
k ∈ Σl of length l. For encrypting a plaintext a ∈ Σr one concatenates k and
a and truncates this string to r letters. This truncated string then serves as
keytext for a running-key encryption:

Plaintext: a0 a1 . . . al−1 al . . . ar−1

Keytext: k0 k1 . . . kl−1 a0 . . . ar−l−1

Ciphertext: c0 c1 . . . cl−1 cl . . . cr−1

The formula for encryption is

ci =

{
ai ∗ ki for i = 0, . . . l − 1,

ai ∗ ai−l for i = l, . . . r − 1.

Example, Σ = {A, . . . , Z}, l = 2, k = XY:

P L A I N T E X T

X Y P L A I N T E

M J P T N B R Q X

Remark: Instead of the standard alphabet (or the Trithemius table) one
could also use a permuted primary alphabet.

Here is the formula for decryption

ai =

{
ci ∗ k−1

i for i = 0, . . . l − 1,

ci ∗ a−1
i−l for i = l, . . . r − 1.

A Perl program is autokey.pl in the web directory
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Perl/.

Approaches to Cryptanalysis

The four most promising approaches are:

• Exhaustion for small l.

• Interpretation as running-key cipher from position l, in case of a key
word or phrase from the plaintext language even from the beginning
of the ciphertext:

http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Perl/autokey.pl

K. Pommerening, Classic Ciphers 164

– Probable word and zigzag exhaustion

– Frequent word fragments

– Frequency analysis

– Frequent letter combinations

The repetition of the plaintext in the key makes the task considerably
easier.

• Similarity with the Trithemius-Bellaso cipher, see Section 7.8 be-
low

• Algebraic cryptanalysis (for known plaintext): Solving equations. We
describe this for a commutative group, the group operation written as
addition, that is, we consider Σ, Σr, and Σr+l as Z-modules.

We interpret the encryption formula as a system of linear equations with an
r × (r + l) coefficient matrix:

c0

c1
...

cl−1

cl
...

cr−1


=


1 0 . . . 1

1 0 . . . 1
. . .

. . .
. . .

1 0 . . . 1





k0

k1
...

kl−1

a0
...

ar−1


This is a system of r linear equations with the r + l unknowns (the compo-
nents of) k ∈ Σl and a ∈ Σr. “In general” such a system is solvable as soon
as l of the unknowns are guessed, that means known plaintext of length l
(not necessarily connected). Since the involved Z-modules are (in most in-
teresting cases) not vector spaces, solving linear equations is a bit intricate
but feasible. This is comprehensively treated in the next chapter.

Ciphertext Autokey

Using ciphertext instead of plaintext as extension of the l-letter key is a
useless variant, but also proposed by Vigenère. We only describe it by an
example:

Example, Σ = {A, . . . , Z}, l = 2, k = XY:

P L A I N T E X T

X Y M J M R Z K D

M J M R Z K D H W

K. Pommerening, Classic Ciphers 165

Exercise. Give a formal description of this cipher. Why is cryptanalysis
almost trivial? Work out an algorithm for cryptanalysis.

Exercise. Apply your algorithm to the cryptogram

IHTYE VNQEW KOGIV MZVPM WRIXD OSDIX FKJRM HZBVR TLKMS FEUKE

VSIVK GZNUX KMWEP OQEDV RARBX NUJJX BTMQB ZT

Remark: Using a nonstandard alphabet makes this cipher a bit stronger.

7.7 Example: Cryptanalysis of an Autokey Cipher

The Cryptogram

Suppose we got the ciphertext

LUSIT FSATM TZJIZ SYDZM PMFIZ REWLR ZEKLS RQXCA TFENE YBVOI

WAHIE LLXFK VXOKZ OVQIP TAUNX ARZCX IZYHQ LNSYM FWUEQ TELFH

QTELQ IAXXV ZPYTL LGAVP ARTKL IPTXX CIHYE UQR

The context suggests that the plaintext language is French.
Here are some statistics. The letter count

A B C D E F G H I J K L M

8 1 3 1 9 6 1 4 10 1 4 11 4

N O P Q R S T U V W X Y Z

3 3 5 7 6 5 10 4 5 3 9 6 9

as well as the coincidence index 0.0437 suggest a polyalphabetic cipher,
the autocincidence spectrum shows no meaningful period. The frequency
distribution of the single letters hints at a running-key or autokey cipher
that uses the standard alphabet (= Trithemius table).

A Probable Word

Since the message probably originated from the french embassy at Berlin
in 1870 we may assume that the plaintext contains the word “allemand”.
Moving this word along the ciphertext and subtracting the probable word—
with the help of the Perl script probwd.pl—we get 4 good matches (plus
some weak ones):

000: LJHEHFFX 015: SNSVAPZC 030: ZTZHGRDU

001: UHXPTSNQ 016: YSOIDMSF 031: EZAOFQKZ

002: SXIBGAGJ 017: DOBLAFVW 032: KAHNEXPX

003: IIUOOTZQ 018: ZBEITIMO <-- 033: LHGMLCNQ

004: TUHWHMGW 019: MEBBWZEB 034: SGFTQAGC

http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Perl/probwd.pl

K. Pommerening, Classic Ciphers 166

005: FHPPATMG 020: PBUENRRT 035: RFMYOTSB

006: SPIIHZWF 021: MUXVFEJI 036: QMRWHFRK

007: AIBPNJVW 022: FXONSWYO 037: XRPPTEAB

008: TBIVXIMP 023: IOGAKLEW 038: CPIBSNRV

009: MIOFWZFV 024: ZGTSZRMB 039: AIUABELY <--

010: TOYENSLA <== 025: RTLHFZRH 040: TUTJSYOS

011: ZYXVGYQW 026: ELANNEXI <== 041: FTCAMBIL <--

012: JXOOMDMJ 027: WAGVSKYP 042: ECTUPVBF

013: IOHURZZM 028: LGOAYLFO 043: NTNXJOVT

014: ZHNZNMCJ 029: ROTGZSEN 044: ENQRCIJX

045: YQKKWWNE 060: VMDGNOIN 075: AGOYLIMV <--

046: BKDEKAUF 061: XDZVCVDF 076: RORTWZLE

047: VDXSOHVB 062: OZOKJQVM 077: ZRMENYUN

048: OXLWVIRI 063: KODREICQ 078: CMXVMHDI

049: ILPDWEYI 064: ZDKMWPGX 079: XXOUVQYK

050: WPWESLYU 065: OKFEDTNR 080: IONDELAP <==

051: AWXAZLKC 066: VFXLHAHK 081: ZNWMZNFV

052: HXTHZXSH 067: QXEPOUAU 082: YWFHBSLJ

053: ITAHLFXS 068: IEIWINKX 083: HFAJGYZC

054: EAATTKIU 069: PIPQBXNO 084: QACOMMST

055: LAMBYVKL 070: TPJJLAEW 085: LCHUAFJR

056: LMUGJXBH 071: AJCTORMZ 086: NHNITWHB

057: XUZRLOXW 072: UCMWFZPU 087: SNBBKURN

058: FZKTCKML 073: NMPNNCKF 088: YBUSIEDQ

059: KKMKYZBS 074: XPGVQXVW 089: MULQSQGB

090: FLJAETRI 105: IPMTJZCV 120: AGIGZICQ

091: WJTMHEYC 106: AMMRNPLQ 121: RIZHWPGU

092: UTFPSLSE 107: XMKVDYGI 122: TZAEDTKU

093: EFIAZFUN 108: XKOLMTYI 123: KAXLHXKZ

094: QITHTHDQ 109: VOEUHLYD 124: LXEPLXPF

095: TTABVQGB 110: ZENPZLTX 125: IEITLCVE

096: EAUDETRI <== 111: PNIHZGNS 126: PIMTQIUV

097: LUWMHEYN 112: YIAHUAIM 127: TMMYWHLB

098: FWFPSLDF 113: TAACOVCX 128: XMREVYRR

099: HFIAZQVX 114: LAVWJPNO 129: XRXDMEHN

100: QITHEINU 115: LVPRDAEQ

101: TTAMWAKU 116: GPKLORGH

102: EAFEOXKS 117: AKEWFTXI

103: LFXWLXIW 118: VEPNHKYF

104: QXPTLVMM 119: PPGPYLVM

K. Pommerening, Classic Ciphers 167

Four good matches

The first good match occurs at position 10:

1

01234 56789 01234 56789

LUSIT FSATM TZJIZ SYDZM PMFIZ

ALLEM AND

TOYEN SLA

A plausible completion to the left could be CITOYENS, giving

1

01234 56789 01234 56789

LUSIT FSATM TZJIZ SYDZM PMFIZ

RE ALLEM AND

CI TOYEN SLA

The second good match occurs at position 26:

1 2 3

01234 56789 01234 56789 01234 56789 01234 56789

LUSIT FSATM TZJIZ SYDZM PMFIZ REWLR ZEKLS RQXCA

ALLE MAND

ELAN NEXI

A plausible completion to the right could be LANNEXIONDE (“l’annexion de”),
so we get

1 2 3

01234 56789 01234 56789 01234 56789 01234 56789

LUSIT FSATM TZJIZ SYDZM PMFIZ REWLR ZEKLS RQXCA

ALLE MANDE ENT

ELAN NEXIO NDE

The third good match occurs at position 80:

7 8 9

01234 56789 01234 56789 01234 56789

TAUNX ARZCX IZYHQ LNSYM FWUEQ TELFH

ALLEM AND

IONDE LAP

The previous letter could be T (“. . . tion de la p. . . ”), providing not much
help:

K. Pommerening, Classic Ciphers 168

5 6 7 8 9

01234 56789 01234 56789 01234 56789 01234 56789 01234 56789

WAHIE LLXFK VXOKZ OVQIP TAUNX ARZCX IZYHQ LNSYM FWUEQ TELFH

E ALLEM AND

T IONDE LAP

And the fourth good match at position 96 also is not helpful:

8 9 10 11

01234 56789 01234 56789 01234 56789 01234 56789

IZYHQ LNSYM FWUEQ TELFH QTELQ IAXXV ZPYTL LGAVP

ALLE MAND

EAUD ETRI

Zig-Zag Exhaustion

The four good matches occur as two pairs whose positions differ by 16. This
is a bit of evidence for an autokey cipher with a 16 letter key.

This is easily tested: If we really have an autokey cipher, then the frag-
ments should match at another position too, preferably 16 positions apart.
Let’s try the longest one, ELANNEXIONDE, at position 26. We expect exactly
one match beside the one we already know, at position 26 − 16 = 10, or
26 + 16 = 42. And we get

000: HJSVGBVSFZQV 026: ALLEMANDEENT <===

001: QHIGSODLYGWF 027: SARMRGOKDDUY

002: OXTSFWWEFMGE 028: HGZRXHVJCKZW

003: EIFFNPPLLWFV 029: NOEXYOUIJPXP

004: PUSNGIWRVVWO 030: VTKYFNTPONQB

005: BHAGZPCBUMPU 031: AZLFEMAUMGCA

006: OPTZGVMALFVZ 032: GASEDTFSFSBJ

007: WIMGMFLRELAV 033: HHRDKYDLRRKA

008: PBTMWECKKQWI 034: OGQKPWWXQABU

009: IIZWVVVQPMJL 035: NFXPNPIWZRVX

010: POJVMOBVLZMI 036: MMCNGBHFQLYR

011: VYIMFUGRYCJB 037: TRAGSAQWKOSK

012: FXZFLZCEBZCE 038: YPTSRJHQNILE

013: EOSLQVPHYSFV 039: WIFRAABTHBFS

014: VHYQMISERVWN 040: PUEARUENAVTW

015: ONDMZLPXUMOA 041: BTNRLXYGUJXD

016: USZZCIIALEBS 042: ACELORRAINEE <===

017: ZOMCZBLRDRTH 043: JTYOIKLOMUFA

018: VBPZSECJQJIN 044: ANBIBEZSTVBH

019: IEMSVVUWIYOV 045: UQVBVSDZURIH

020: LBFVMNHOXEWA 046: XKOVJWKAQYIT

K. Pommerening, Classic Ciphers 169

021: IUIMEAZDDMBG 047: RDIJNDLWXYUB

022: BXZERSOJLRHH 048: KXWNUEHDXKCG

023: EORRJHURQXIO 049: ELAUVAODJSHR

024: VGEJYNCWWYPN 050: SPHVRHOPRXST

025: NTWYEVHCXFOM

a perfect accord with our expectations. This gives

3 4 5 6 7

01234 56789 01234 56789 01234 56789 01234 56789 01234 56789

ZEKLS RQXCA TFENE YBVOI WAHIE LLXFK VXOKZ OVQIP TAUNX ARZCX

ELA NNEXI ONDE

ACE LORRA INEE

and suggests “Alsace-Lorraine”. We complete the middle row that seems to
be the keytext:

3 4 5 6 7

01234 56789 01234 56789 01234 56789 01234 56789 01234 56789

ZEKLS RQXCA TFENE YBVOI WAHIE LLXFK VXOKZ OVQIP TAUNX ARZCX

A INELA NNEXI ONDE

A LSACE LORRA INEE

If we repeat the fragment from row 3 in row 2 at position 55 = 39 + 16 we
see the very plausible text “l’annexion de l’Alsace-Lorraine”, and fill up the
rows:

3 4 5 6 7

01234 56789 01234 56789 01234 56789 01234 56789 01234 56789

ZEKLS RQXCA TFENE YBVOI WAHIE LLXFK VXOKZ OVQIP TAUNX ARZCX

A INELA NNEXI ONDEL ALSAC ELORR AINEE

A LSACE LORRA INEET LAFFI RMATI ONDEL

To find the key we go backwards in zig-zag:

1 2 3 4

01234 56789 01234 56789 01234 56789 01234 56789 01234 56789

LUSIT FSATM TZJIZ SYDZM PMFIZ REWLR ZEKLS RQXCA TFENE YBVOI

IR EALLE MANDE ENTRA INELA NNEXI

AI NELAN NEXIO NDELA LSACE LORRA

1 2 3 4

01234 56789 01234 56789 01234 56789 01234 56789 01234 56789

LUSIT FSATM TZJIZ SYDZM PMFIZ REWLR ZEKLS RQXCA TFENE YBVOI

SCI TOYEN SLAVI CTOIR EALLE MANDE ENTRA INELA NNEXI

IRE ALLEM ANDEE NTRAI NELAN NEXIO NDELA LSACE LORRA

K. Pommerening, Classic Ciphers 170

1 2 3 4

01234 56789 01234 56789 01234 56789 01234 56789 01234 56789

LUSIT FSATM TZJIZ SYDZM PMFIZ REWLR ZEKLS RQXCA TFENE YBVOI

AUXAR MESCI TOYEN SLAVI CTOIR EALLE MANDE ENTRA INELA NNEXI

LAVIC TOIRE ALLEM ANDEE NTRAI NELAN NEXIO NDELA LSACE LORRA

Now it’s certain that we have an autokey cipher and the key is “Aux armes,
citoyens”—a line from the “Marseillaise”. Using the key we easily decipher
the complete plaintext:

La victoire allemande entrâıne l’annexion de l’Alsace-Lorraine et
l’affirmation de la puissance allemande en Europe au détriment
de l’Autriche-Hongrie et de la France.

[Consequences of the German victory are the annexation of
Alsace-Lorraine and the affirmation of the German power at the
expense of Austria-Hungary and France.]

7.8 Similarity of Ciphers

Let Σ be an alphabet, M ⊆ Σ∗ a language, and K a finite set (to be used
as keyspace).

Definition [Shannon 1949]. Let F = (fk)k∈K and F ′ = (f ′k)k∈K be ciphers
on M with encryption functions

fk, f
′
k : M −→ Σ∗ for all k ∈ K.

Let F̃ and F̃ ′ be the corresponding sets of encryption functions. Then
F is called reducible to F ′ if there is a bijection A : Σ∗ −→ Σ∗ such
that

A ◦ f ∈ F̃ ′ for all f ∈ F̃ .

That is, for each k ∈ K there is a k′ ∈ K with A ◦ fk = f ′k′ , see the
diagram below.

F and F ′ are called similar if F is reducible to F ′, and F ′ is reducible
to F .

Σ∗ -
A

Σ∗

M
�

�
�	

fk @
@
@R

f ′k′

Application. Similar ciphers F and F ′ are cryptanalytically equivalent—
provided that the transformation f 7→ f ′ is efficiently computable.
That means an attacker can break F if and only if she can break F ′.

K. Pommerening, Classic Ciphers 171

Examples

1. Reverse Caesar. This is a monoalphabetic substitution with a cycli-
cally shifted exemplar of the reverse alphabet Z Y ... B A, for exam-
ple

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

W V U T S R Q P O N M L K J I H G F E D C B A Z Y X

We have K = Σ = Z/nZ. Let ρ(s) := n − s the reversion of the
alphabet. Then encryption is defined by

fk(s) := k − s for all k ∈ K.

This encryption function is involutory: fk ◦ fk(s) = k − (k − s) = s.
The ordinary Caesar encryption is

f ′k(s) := k + s for all k ∈ K.

Then

ρ ◦ fk(s) = ρ(k − s) = n+ s− k = (n− k) + s = f ′n−k(s),

whence ρ◦fk = f ′ρ(k). Because also the corresponding converse equation
holds Caesar and Reverse Caesar are similar.

2. The Beaufort cipher [Sestri 1710]. This is a periodic polyalpha-
betic substitution with a key k = (k0, . . . , kl−1) ∈ Σl (periodically
continued):

fk(a0, . . . , ar−1) := (k0 − a0, k1 − a1, . . . , kr−1 − ar−1).

Like Reverse Caesar it is involutory. The alphabet table over the
alphabet Σ = {A,...,Z} is in Figure 7.1. Compare this with
Trithemius-Bellaso encryption:

f ′k(a0, . . . , ar−1) := (k0 + a0, k1 + a1, . . . , kr−1 + ar−1).

Then as with Reverse Caesar we have ρ ◦ fk = f ′ρ(k), and in the
same way we conclude: The Beaufort sipher is similar with the
Trithemius-Bellaso cipher.

3. The Autokey cipher. As alphabet we take Σ = Z/nZ. We write the
encryption scheme as:

c0 = a0 + k0

c1 = a1 + k1
...
cl = al + a0 cl − c0 = al − k0
...
c2l = a2l + al c2l − cl = a2l − a0 c2l − cl + c0 = a2l + k0
...

K. Pommerening, Classic Ciphers 172

Let

A(c0, . . . , ci, . . . , cr−1) = (. . . , ci − ci−l + ci−2l − . . . , . . .).

In explicit form the i-th component of the image vector looks like:

bic∑
j=0

(−1)j · ci−jl.

and as a matrix A looks like

1 −1 1
. . .

. . .
. . .

1 −1
. . .

. . .

1
. . .


Then

A ◦ fk(a) = f ′(k,−k)(a),

where f ′(k,−k) is the Trithemius-Bellaso cipher with key

(k0, . . . , kl−1,−k0, . . . ,−kl−1) ∈ Σ2l. Hence the Autokey cipher is re-
ducible to the Trithemius-Bellaso cipher with period twice the key
length. [Friedman und Shannon] The converse is not true, the ci-
phers are not similar: This follows from the special form of the Bel-
laso key of an autokey cipher.

Note that A depends only on l. The reduction of the autokey cipher to
the Trithemius-Bellaso cipher is noteworthy but practically useless: The
encryption algorithm and the cryptanalysis are both more complicated when
using this reduction. And the reduction is possible only after the keylength
l is known.

K. Pommerening, Classic Ciphers 173

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Z Y X W V U T S R Q P O N M L K J I H G F E D C B A

Y X W V U T S R Q P O N M L K J I H G F E D C B A Z

X W V U T S R Q P O N M L K J I H G F E D C B A Z Y

W V U T S R Q P O N M L K J I H G F E D C B A Z Y X

V U T S R Q P O N M L K J I H G F E D C B A Z Y X W

U T S R Q P O N M L K J I H G F E D C B A Z Y X W V

T S R Q P O N M L K J I H G F E D C B A Z Y X W V U

S R Q P O N M L K J I H G F E D C B A Z Y X W V U T

R Q P O N M L K J I H G F E D C B A Z Y X W V U T S

Q P O N M L K J I H G F E D C B A Z Y X W V U T S R

P O N M L K J I H G F E D C B A Z Y X W V U T S R Q

O N M L K J I H G F E D C B A Z Y X W V U T S R Q P

N M L K J I H G F E D C B A Z Y X W V U T S R Q P O

M L K J I H G F E D C B A Z Y X W V U T S R Q P O N

L K J I H G F E D C B A Z Y X W V U T S R Q P O N M

K J I H G F E D C B A Z Y X W V U T S R Q P O N M L

J I H G F E D C B A Z Y X W V U T S R Q P O N M L K

I H G F E D C B A Z Y X W V U T S R Q P O N M L K J

H G F E D C B A Z Y X W V U T S R Q P O N M L K J I

G F E D C B A Z Y X W V U T S R Q P O N M L K J I H

F E D C B A Z Y X W V U T S R Q P O N M L K J I H G

E D C B A Z Y X W V U T S R Q P O N M L K J I H G F

D C B A Z Y X W V U T S R Q P O N M L K J I H G F E

C B A Z Y X W V U T S R Q P O N M L K J I H G F E D

B A Z Y X W V U T S R Q P O N M L K J I H G F E D C

A Z Y X W V U T S R Q P O N M L K J I H G F E D C B

Figure 7.1: The alphabet table of the Sestri-Beaufort cipher

Chapter 8

Transpositions

All the cryptographic procedures that we considered up to now worked by re-
placing each plaintext letter by another one, letter per letter. In this chapter
we follow a complementary approach: Don’t change the letters but instead
change their order. This approach also goes back to anitiquity.

8.1 Transpositions and Their Properties

See the web page http://www.staff.uni-mainz.de/pommeren/Cryptology
/Classic/8 Transpos/Definition.html

8.2 Examples

See the web page http://www.staff.uni-mainz.de/pommeren/Cryptology
/Classic/8 Transpos/Examples.html

Constructing a Turning Grille

Let l ∈ N be a natural number ≥ 2. Draw a 2l× 2l square and divide it into
four l × l squares.

1 . . . l . . . 1
...

...
...

...

. . . l2 l2 . . . l

l . . . l2 l2 . . .
...

...
...

...

1 . . . l . . . 1

In the first square (upper left) enumerate the positions consecutively
from 1 to l2, and transfer these numbers to the other three squares, rotating
the scheme by 90° to the right in each step, as shown in the table above.

174

http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/8_Transpos/Definition.html
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/8_Transpos/Definition.html
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/8_Transpos/Examples.html
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/8_Transpos/Examples.html

K. Pommerening, Classic Ciphers 175

A key consists of a choice of one of the four l× l squares for each of the
numbers 1, . . . , l2. Then make a hole at the corresponding position in the
corresponding square, for a total of l2 holes.

Thus the size of the keyspace is 4l
2
. For small l this amounts to:

Parameter l: 3 4 5 6

Keys: 218 232 250 272

For l = 6 or more the keyspace is sufficiently large. However this doesn’t
make the cipher secure.

8.3 Cryptanalysis of a Columnar Transposition
(Example)

See the web page http://www.staff.uni-mainz.de/pommeren/Cryptology
/Classic/8 Transpos/ColTrAnal.html

8.4 Cryptanalytic Approaches

See the web page http://www.staff.uni-mainz.de/pommeren/Cryptology
/Classic/8 Transpos/Approach.html

Conditional Bigram Log-Weights

Let L be a language over the alphabet Σ = (s0, . . . , sn−1) with letter prob-
abilities pi and bigram probabilities pij for the bigrams sisj . Then the con-
ditional bigram probabilities are given by

pj|i = pij/pi for i, j = 0, . . . , n− 1.

The number pj|i is the probability that given the letter si as beginning of
a bigram (an event that occurs with probability pi) the second letter of the
bigram is sj . For convenience we set pj|i = 0 if pi = 0.

Then for a set of independent bigrams the probabilities multiply,
and it’s usual to consider the logarithms of the probabilties to get
sums instead of products. Adding a constant to the sum amounts to
multiplying the probabilities by a constant factor. With an eye to
the conditional bigram frequencies of natural languages, see the web
page http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic

/8 Transpos/Bigrams.html, we choose a factor of 1000 and define the con-
ditional Bigram Log-Weight (cBLW) of the bigram sisj by the formula

wij =

{
10log(1000 · pj|i) if 1000 · pj|i > 1,

0 otherwise
for i, j = 0, . . . , n− 1.

http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/8_Transpos/ColTrAnal.html
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/8_Transpos/ColTrAnal.html
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/8_Transpos/Approach.html
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/8_Transpos/Approach.html

K. Pommerening, Classic Ciphers 176

Given a family B of bigrams we define its cBLW score as

S3(B) =

n−1∑
i=0

n−1∑
j=0

kij(B) · wij

where kij(B) is the number of occurrences of the bigram sisj in B.

8.5 Bigram Frequencies

See the web page http://www.staff.uni-mainz.de/pommeren/Cryptology
/Classic/8 Transpos/Bigrams.html

8.6 The Values of Bigram Scores

See the web page http://www.staff.uni-mainz.de/pommeren/Cryptology
/Classic/8 Transpos/cBLWsc.html

Theoretical Values for Random Bigrams

Let Σ = (s0, . . . , sn−1) be an alphabet and consider a probability distribu-
tion that assigns the probabilities pi to the letters si. Choosing two letters
independently from this distribution assigns the probability pipj to the bi-
gram sisj . Giving the bigrams whatever weights wij and scoring a set of
bigrams by summing their weights the expected value of the weight of a
bigram is

n−1∑
i=0

n−1∑
j=0

wijpipj .

Using this formula with the letter and bigram frequencies of natural lan-
guages and the corresponding conditional bigram log-weights we get the
table

English: 1.47 German: 1.54 French: 1.48

Theoretical Values for True Bigrams

For a “true” bigram we first choose the first letter si with probability pi,
then we choose the second letter sj with conditional probability pj|i. This
assigns the probability pipj|i = pij to the bigram sisj , and the expected
conditional bigram log-weight is

n−1∑
i=0

n−1∑
j=0

wijpij .

http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/8_Transpos/Bigrams.html
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/8_Transpos/Bigrams.html
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/8_Transpos/cBLWsc.html
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/8_Transpos/cBLWsc.html

K. Pommerening, Classic Ciphers 177

Using this formula with the letter and bigram frequencies of natural lan-
guages and the corresponding conditional bigram log-weights we get the
table

English: 1.94 German: 1.96 French: 1.99

Empirical Values for Natural Languages

See the web page http://www.staff.uni-mainz.de/pommeren/Cryptology
/Classic/8 Transpos/cBLWsc.html

8.7 A more systematic approach

See the web page http://www.staff.uni-mainz.de/pommeren/Cryptology
/Classic/8 Transpos/Analysis2.html

8.8 The Similarity of Columnar and Block Trans-
positions

See the web page http://www.staff.uni-mainz.de/pommeren/Cryptology
/Classic/8 Transpos/Similar.html

Permutation Matrices

Let σ ∈ Sp be a permutation of the numbers 1, . . . , p.
Let R be a ring (commutative with 1). Then σ acts on Rp, the free

R-module with basis

e1 =


1
0
...
0

 , . . . , ep =


0
...
0
1

 ,

as the linear automorphism

ρ(σ) defined by ρ(σ)ei = eσi.

This gives an injective group homomorphism

ρ : Sp −→ GL(Rp).

How to express ρ(σ) as a matrix? The vector

x =

x1
...
xp

 = x1e1 + · · ·+ xpep

http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/8_Transpos/cBLWsc.html
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/8_Transpos/cBLWsc.html
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/8_Transpos/Analysis2.html
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/8_Transpos/Analysis2.html
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/8_Transpos/Similar.html
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/8_Transpos/Similar.html

K. Pommerening, Classic Ciphers 178

maps to

ρ(σ)x = x1eσ1 + · · ·+ xpeσp =

xσ−11
...

xσ−1p

 .

Thus the matrix Pσ corresponding to ρ(σ) is given by

Pσ

x1
...
xp

 =

xσ−11
...

xσ−1p

 for all x ∈ Rp.

Therefore

Pσ = (aij)1≤i,j≤p where aij =

{
1, if i = σj,

0 otherwise.

Hence the matrix Pσ has exactly one 1 in each row and in each column, all
other entries being 0. We call Pσ the permutation matrix belonging to σ.

Matrix Description of a Block Transposition

The permutation σ defines a block transposition fσ over the alphabet Σ =
Z/nZ: For (a1, . . . , ap) ∈ Σp let

fσ(a1, . . . , ap) =

Pσ
a1

...
ap



T

= (aσ−11, . . . , aσ−1p).

This moves the i-th letter ai of the block to position σi.
More generally let r = pq and a = (a1, . . . , ar) ∈ Σr. Then

c = fσ(a) = (aσ−11, . . . , aσ−1p, ap+σ−11, . . . , ap+σ−1p, . . . , a(q−1)p+σ−1p).

From this we derive the general encryption formula:

ci+(j−1)p = aσ−1i+(j−1)p for 1 ≤ i ≤ p, 1 ≤ j ≤ q.

We may express this in matrix notation writing the plaintext as a matrix
with ai+(j−1)p in row i and column j:

A =

a1 ap+1 . . . a(q−1)p+1
...

... ai+(j−1)p

...

ap a2p . . . aqp

 ∈Mp,q(Z/nZ).

Analogously we write the ciphertext as C ∈ Mp,q(Z/nZ) where Cij =
ci+(j−1)p for 1 ≤ i ≤ p, 1 ≤ j ≤ q.

Then the encryption formula simply is the matrix product:

C = PσA

with the permutation matrix Pσ.

K. Pommerening, Classic Ciphers 179

Matrix Description of a Columnar Transposition

The permutation σ also defines a columnar transposition gσ over the alpha-
bet Σ = Z/nZ: Writing the plaintext row by row in a q×p-matrix gives just
the transposed matrix AT (again assume r = pq):

↓ ↓
→ a1 . . . ap aσ−11 . . . aσ−1p

→ ap+1 . . . a2p 7→ ap+σ−11 . . . ap+σ−1p
... a(µ−1)p+ν

...
... a(µ−1)p+σ−1ν

...

→ a(q−1)p+1 . . . aqp a(q−1)p+σ−11 . . . a(q−1)p+σ−1p

and the ciphertext is read off, as the little arrows suggest, column by column
in the order given by σ. Thus the encryption function is given by:

c̃ = gσ(a1, . . . ar) = (aσ−11, ap+σ−11, . . . , aσ−1p, . . . , a(q−1)p+σ−1p).

The encryption formula is:

c̃µ+(ν−1)q = a(µ−1)p+σ−1ν for 1 ≤ µ ≤ q, 1 ≤ ν ≤ p
= cν+(µ−1)p.

If we arrange c̃ column by column as a matrix

C̃ =

c̃1 c̃q+1 . . . c̃(p−1)q+1
...

... c̃µ+(ν−1)q

...

c̃q c̃2q . . . c̃pq

 ∈Mq,p(Z/nZ),

we see that
C̃T = C = PσA.

This shows:

Proposition 6 The result of the columnar transposition corresponding to
σ ∈ Sp on Σpq arises from the result of the block transposition corresponding
to σ by writing the latter ciphertext in p rows of width q and transposing the
resulting matrix. This produces the former ciphertext in q rows of width p.

In particular columnar transposition and block transposition are similar.

(The proposition describes the required bijection of Σ∗ for strings of
length pq.)

For texts of a length not a multiple of p this observation applies after
padding up to the next multiple of p. For a columnar transposition with an
uncompletely filled last row this does not apply. In spite of this we assess
columnar and block transpositions as similar, and conclude: Although a
columnar transposition permutes the text over its complete length without
period, and therefore seems to be more secure at first sight, it turns out to
be an illusory complication.

Chapter 9

Linear Ciphers

In 1929 the mathematician Lester Hill proposed the use of matrices for en-
cryption. He published his idea in the American Mathematical Monthly. This
cryptographic application of linear algebra piqued the curiosity of mathe-
maticians. But its obvious weaknesses soon became evident, so it never found
a serious application. The true importance of the method relied on the fact
that it was the first systematic use of algebraic methods in cryptology. And
by the way its cryptanalysis made clear how dangerous linearity in encryp-
tion functions is.

Jack Levine later mentioned that he used this kind of cipher
already in 1924 for a contribution to a youth magazine when he
was a high-school student.

In this section we use the Appendix E on the Euclidean algorithm.

9.1 Matrices over Rings

Let R be a ring (commutative with 1). The “multiplicative group” of R is
the group of invertible elements

R× = {a ∈ R | ab = 1 for some b ∈ R} = {a ∈ R | a divides 1}.

In the same way the (non-commutative) R-algebra Mqq(R) of q×q-matrices
over R has a group of invertible elements (“general linear group”)

GLq(R) = {A ∈Mqq(R) |AB = 1q for some B ∈Mqq(R)}.

The determinant defines a multiplicative map

Det: Mqq(R) −→ R,

and

180

K. Pommerening, Classic Ciphers 181

A ∈ GLq(R) =⇒ AB = 1q for some B =⇒ DetA ·DetB = Det 1q = 1

=⇒ DetA ∈ R×.

The converse implication is also true. For a proof we consider the adjoint
matrix Ã = (ãij) where

ãij = Aji = Det



a11 . . . a1,i−1 a1,i+1 . . . a1q
...

...
...

...
aj−1,1 . . . aj−1,i−1 aj−1,i+1 . . . aj−1,q

aj+1,1 . . . aj+1,i−1 aj+1,i+1 . . . aj+1,q
...

...
...

...
aq1 . . . aq,i−1 aq,i+1 . . . aqq


Using this we can prove:

Proposition 7 For A ∈Mqq(R) the following holds:
(i) AÃ = DetA · 1q.
(ii) A ∈ GLq(R)⇐⇒ DetA ∈ R×; if this is true, then

A−1 =
1

DetA
Ã.

Proof. (i) is the expansion rule for determinants.
(ii) immediately follows from (i). 3

In particular Det induces a group homomorphism GLq(R) −→ R×.

Example For R = Z/nZ the statement (ii) of Proposition 7 can be rewrit-
ten as:

A ∈Mqq(Z) is invertible mod n⇐⇒ DetA is coprime with n.

Remarks

1. The expenses for calculating the inverse matrix A−1 are, if state-
ment (ii) is naively evaluated:

• one q×q-determinant with q! summands, each with q factors,

• q2 determinants of size (q − 1)× (q − 1).

This is extremely inefficient—it is exponential in q.

2. Using Gaussian elimination the expenses drop to O(q3). But this
is not quite true: Exact calculation produces rational numbers
with huge numerators and denominators that require additional
resources.

K. Pommerening, Classic Ciphers 182

There is a modification of the elimination algorithm that uses only integers
and is much more efficient, see the next section. However also this procedure
produces large intermediate results.

An alternative algorithm uses the Chinese Remainder Theorem: Each
ring homomorphism ϕ : R −→ R′ induces a homomorphism of R-algebras

ϕq : Mqq(R) −→Mqq(R
′)

by componentwise evaluation. If A ∈Mqq is invertible, then

ϕq(A)ϕq(A
−1) = ϕq(AA

−1) = ϕq(1q) = 1q.

Hence also ϕq(A) is invertible. Furthermore Detϕq(A) = ϕ(DetA), so we
have a commutative diagram

Mqq(R)
ϕq−−−−→ Mqq(R

′)

Det

y yDet

R −−−−→
ϕ

R′

Applying this to R = Z we use the residue class homomorphisms Z −→ Fp (p
prime) for sufficiently many primes p such that the product of these primes
is > DetA. Then we calculate

• DetA mod p in all the fields Fp (avoiding huge numbers, since all inter-
mediate results may be represented as numbers between 0 and p− 1),

• DetA ∈ Z using the Chinese Remainder Theorem.

9.2 Elimination over the Integers

How to solve systems of linear equations over the ring Z of integers? How
to calculate determinants efficiently? How to find an inverse matrix? Like
in linear algebra over fields also in the more general situation over rings the
triangularization of matrices is crucial for finding efficient algorithms.

For a sufficiently general framework we consider three classes of rings
(commutative, with 1, without zero divisors):

• Factorial rings (or UFD domains): All elements have a decomposi-
tion into primes, in particular any two elements have a greatest com-
mon divisor gcd (in general not unique).

• Principal ideal domains: Each ideal is a principal ideal. Principal
ideal domains are factorial, and the gcd of any two elements is a linear
combination of these two.

K. Pommerening, Classic Ciphers 183

• Euclidean rings: They have a division with remainder. Euclidean
rings are principal ideal domains. The gcd of two elements as well as
its linear represenation can be efficiently calculated by the extended
Euclidean algorithm.

The set of invertible matrices with determinant 1 over a ring is called the
“special linear group” SLn(R) ⊆ GLn(R). It is the kernel of the determinant
homomorphism on GLn(R).

Lemma 9 Let R be a principal ideal domain, a1, . . . , an ∈ R, and d a
gcd(a1, . . . , an). Then there is an invertible matrix U ∈ SLn(R) such that

U


a1

a2
...
an

 =


d
0
...
0


Proof. Since the case n = 1 is trivial we may assume n ≥ 2.

If all ai = 0, then the assertion is trivial. Otherwise we may assume
without restriction that a1 6= 0 (after a permutation that is merged into U as
permutation matrix—if necessary replace a 1 by −1 to make the determinant
= 1).

Let d2 := gcd(a1, a2) (any gcd because in general this is not unique).
Then d2 6= 0 and d2 = c1a1 + c2a2 is a linear combination. From this we get
the equation (

c1 c2

−a2
d2

a1
d2

)(
a1

a2

)
=

(
c1a1 + c2a2

−a2a1
d2

+ a1a2
d2

)
=

(
d2

0

)
where the matrix of coefficients

C =

(
c1 c2

−a2
d2

a1
d2

)
has DetC =

c1a1

d2
+
c2a2

d2
= 1

and therefore is invertible.
We proceed be induction: Assume for the general step that for some

i ≥ 2

U ′

a1
...
an

 =



d′

0
...
0
ai
...
an


where ai 6= 0

K. Pommerening, Classic Ciphers 184

Then as before we change two coordinates:(
d′

ai

)
;

(
d′′

0

)
.

In this way we successively build the matrix U . 3

Remark The inverse of the matrix C in the proof is

C−1 =

(a1
d2
−c2

a2
d2

c1

)
From this formula we see that U and U−1 together can be calculated
by at most n − 1 executions of the Euclidean algorithm, plus n − 1
multiplications of n×n-matrices plus at most n− 1 multiplications of
permutation matrices.

With the help of this lemma we can triangularise matrices. (A more
refined analysis would lead to the Hermitean normal form.)

Theorem 13 (i) Let R be a principal ideal domain, and A ∈Mpq(R). Then
there exists an invertible matrix U ∈ SLp(R) such that H = UA has the form

∗ . . . ∗
. . .

...
∗

0

 für p ≥ q,

∗ ∗
.

0 ∗

 für p < q.

(ii) If R is Euclidean, then U and U−1 together can be calculated by at

most p(p−1)
2 executions of the extended Euclidean algorithm.

Special case Let A ∈Mpp(R) be a square matrix, and determine H = UA
as in the Theorem. Then

DetA = DetH = h11 · · ·hpp.

If A is invertible, then A−1 = (U−1H)−1 = H−1U . The calculation of
the inverse H−1 of the triangular matrix H is easy. Thus calculation
of determinant and inverse are reduced to triangularisation.

Proof. We prove this by describing an algorithm. Let r := min{p, q}.
Initialize the algorithm by

H := A, U := 1p, V := 1p.

Then loop over j = 1, . . . r. The relations UA = H, UV = 1p are loop
invariants.

K. Pommerening, Classic Ciphers 185

• Assume that at the beginning of the j-th step H has the form:

∗
. . . ∗

∗
hjj

0
...
hpj


If hjj = . . . = hpj = 0 we finish step j. Otherwise we use the lemma
and find a matrix U ′ ∈ SLp−j+1(R) together with its inverse (U ′)−1

such that

U ′

hjj. . .
hpj

 =


dj
0
. . .
0


We have

(
1 0
0 U ′

)
∈ SLp(R). At the end of the loop we replace

U :=

(
1 0
0 U ′

)
U, H :=

(
1 0
0 U ′

)
H, V := V

(
1 0
0 (U ′)−1

)
.

After finishing the last loop U and H have the desired form. 3

Summarizing the expenses we have to add p(p−1)
2 matrix multiplications

and the same number of multiplications by permutation matrices. However
the total expenses are not yet covered because bounds for the intermediate
results are yet missing. More exact considerations give expenses of the order
O(m2n5) where m is an upper bound for the number of digits of the entries
of A and n = max(p, q). For further optimizations of this bound search the
literature on algebraic algorithms.

Elimination in Residue Class Rings

Now how to invert a matrix A ∈ GLq(Z/nZ)? First interpret A as an in-
teger matrix and determine U ∈ SLq(Z) such that H = UA is an integer
upper triangular matrix as in Theorem 13. Reduction mod n conserves the
equation H = UA as well as A−1 = H−1U . Since A mod n is invertible all
diagonal elements of H are invertible mod n.

9.3 The Linear Cipher

Description

The alphabet is Σ = Z/nZ with the structure as a finite ring.

K. Pommerening, Classic Ciphers 186

The keyspace is K = GLl(Z/nZ), the multiplicative group of invertible
matrices. Section 9.4 estimates the size of the keyspace.

We encrypt blockwise taking blocks of length l: For k ∈ GLl(Z/nZ)
and (a1, . . . , al) ∈ (Z/nZ)l setc1

...
cl

 = fk(a1, . . . , al) = k ·

a1
...
al


or elementwise

ci =
l∑

j=1

kijaj für i = 1, . . . , l.

We decrypt with the inverse matrix:a1
...
al

 = k−1 ·

c1
...
cl

 .

Related Ciphers

Special case: Taking k as permutation matrix Pσ for a permutation σ ∈ Sl
the encryption function fk is the block transposition defined by σ.

Generalization: The affine cipher. Choose as key a pair

(k, b) ∈ GLl(Z/nZ)× (Z/nZ)l.

Encrypt by the formula
c = ka+ b.

Choosing the unit matrix for k (as special case) gives the Bellaso
cipher with key b.

Remark The original cipher proposed by Hill first permuted the alpha-
bet before applying the linear map. The correspondence between the
letters and the numbers 0, . . . , 25 is treated as part of the key.

Example

As an illustration we take a “toy example” of unreasonable small dimension
l = 2 and

k =

(
11 8
3 7

)
.

Then Det k = 77− 24 = 53 ≡ 1 mod 26 and

k−1 =

(
7 18
23 11

)
.

The table

K. Pommerening, Classic Ciphers 187

A B C D E F G H I J K L M

0 1 2 3 4 5 6 7 8 9 10 11 12

N O P Q R S T U V W X Y Z

13 14 15 16 17 18 19 20 21 22 23 24 25

gives the correspondence between letters and numbers.
Now the plaintext Herr = (7, 4, 17, 17) is encrypted as(

11 8
3 7

)(
7
4

)
=

(
77 + 32
21 + 28

)
=

(
109
49

)
=

(
5
23

)
,(

11 8
3 7

)(
17
17

)
=

(
187 + 136
51 + 119

)
=

(
323
170

)
=

(
11
14

)
.

Thus fk(Herr) = (5, 23, 11, 14) = FXLO.
We verify this by decrypting:(

7 18
23 11

)(
5 11
23 14

)
=

(
35 + 414 77 + 252
115 + 253 253 + 154

)
=

(
7 17
4 17

)
.

Assessment

+ The linear cipher is stronger than block transposition and Bellaso ci-
pher.

+ The frequency distribution of the ciphertext letters is nearly uniform. An
attack with ciphertext only doesn’t find useful clues.

− The linear cipher is extremely vulnerable for an attack with known plain-
text, see Section 9.5.

9.4 The Number of Invertible Matrices over a
Residue Class Ring

We want as clearly as possible to get an idea how large the number

νln := #GLl(Z/nZ)

of invertible l × l matrices over the residue class ring Z/nZ is.
In the special case l = 1 the number ν1n simply counts the invertible

elements of Z/nZ and is given as the value ϕ(n) of the Euler ϕ-function.
In the general case we easily find a trivial upper bound for νln:

νln ≤ #Mll(Z/nZ) = nl
2
.

K. Pommerening, Classic Ciphers 188

To find a lower bound we note that (over any ring R) matrices of the form1
. . .

∗ 1


d1

. . .

dl


1 ∗

. . .

1


are always invertible if d1, . . . , dl ∈ R×. This gives an injective map

R
l(l−1)

2 × (R×)l ×R
l(l−1)

2 −→ GLl(R).

(Proof of injectivity: Exercise.) This gives the bound

νln ≥ n
l(l−1)

2 · ϕ(n)l · n
l(l−1)

2 = nl
2−l · ϕ(n)l.

Taken together this yields:

Proposition 8
nl

2−l · ϕ(n)l ≤ νln ≤ nl
2
.

Remarks

1. The idea of writing matrices as A = V DW as above—where D is
a diagonal matrix, V , a lower triangular matrix with only 1’s in the
diagonal, and W , an upper triangular matrix likewise with only 1’s
in the diagonal—gives an easy way of constructing invertible matri-
ces without resorting to trial and error and calculating determinants.
This method gives “almost all” invertible matrices—in the theory of
algebraic groups this is the “big Bruhat cell”. Matrices of this type
can be easily inverted by the formula A−1 = W−1D−1V −1.

2. Two lower bounds for the ϕ-function that we cite without proofs yield
handy bounds for νln. The first of these bounds is

ϕ(n) >
6

π2
· n

lnn
for n ≥ 7.

This yields

νln > nl
2−l ·

(
6

π2
· n

lnn

)l
=

6l

π2l
· nl

2

(lnn)l
for n ≥ 7.

3. The other bound is

ϕ(n) >
n

2 · ln lnn
for almost all n.

This yields

νln >
1

(2 · ln lnn)l
· nl2

K. Pommerening, Classic Ciphers 189

or
1

(2 · ln lnn)l
<

νln

nl2
< 1

for almost all n.

Conclusion “Very many” to “almost all” matrices in Mll(Z/nZ) are in-
vertible. But also note that asymptotically the quotient νln/n

l2 is not
bounded away from 0.

Example For n = 26 we give a coarser but very simple version of the lower
bound from Proposition 8: From ϕ(26) = 12 we get

νl,26 ≥ 26l
2−l12l > 16l

2−l8l = 24l2−l.

This gives the bounds ν2,26 > 214, ν3,26 > 233, ν4,26 > 260, ν5,26 > 295.
We conclude that the linear cipher is secure from exhaustion at least
for block size 5.

Finally we derive an exact formula for νln.

Lemma 10 Let n = p prime. Then

νlp = pl
2 · ρlp where ρlp =

l∏
i=1

(
1− 1

pi

)
.

In particular for fixed l the relative frequency of invertible matrices, ρlp,
converges to 1 with increasing p.

Proof. We successively build an invertible matrix column by column and
count the possibilities for each column. Since Z/pZ = Fp is a field the first
column is an arbitrary vector 6= 0. This makes pl − 1 choices.

Assume we have already chosen i columns. These must be linearly in-
dependent hence span a linear subspace of Flp. This subspace consists of pi

elements. The (i + 1)-th column then is an arbitrary vector outside of this
subspace for which we have pl − pi choices. Summing up this yields

l−1∏
i=0

(pl − pi) =

l−1∏
i=0

pl(1− pi−l) = pl
2

l∏
j=1

(
1− 1

pj

)
choices. 3

Lemma 11 Let n = pe with p prime and e ≥ 1.

(i) Let A ∈Mll(Z). Then A mod n is invertible in Mll(Z/nZ) if and only
if A mod p is invertible in Mll(Fp).

K. Pommerening, Classic Ciphers 190

(ii) The number of invertible matrices in Mll(Z/nZ) is

νln = nl
2 · ρlp.

(iii) The relative frequency of invertible matrices in Mll(Z/peZ) is ρlp, in-
dependent of the exponent e.

Proof. (i) Since gcd(p,DetA) = 1 ⇐⇒ gcd(n,DetA) = 1, both statements
are equivalent with p - DetA.

(ii) Without restriction we may assume that A has all its entries in
[0 . . . n − 1]. Then we write A = pQ + R where all entries of R are in
[0 . . . p−1] and all entries of Q are in [0 . . . pe−1−1]. The matrix A mod n is
invertible if and only if R mod p is invertible. For R we have νlp choices by

Lemma 10, and for Q we have p(e−1)l2 choices. Taken together this proves
the claim.

(iii) is a direct consequence of (ii). 3

Lemma 12 For m and n coprime νl,mn = νlmνln.

Proof. The Chinese Remainder Theorem gives a ring isomorphism

Z/mnZ −→ Z/mZ× Z/nZ

and extends to an isomorphism of the (non-commutative) rings

Mll(Z/mnZ) −→Mll(Z/mZ)×Mll(Z/nZ).

The assertion follows from the equality of the numbers of invertible elements.
3

Induction immediately yields:

Theorem 14 For n ∈ N

νln = nl
2 ·

∏
p prime
p|n

ρlp.

In particular the relative frequency of invertible matrices ρln = νln/n
l2 is in-

dependent from the exponents of the prime factors of n. The explicit formula
is

ρln =
∏

p prime
p|n

ρlp =
∏

p prime
p|n

l∏
i=1

(
1− 1

pi

)
.

K. Pommerening, Classic Ciphers 191

Example For n = 26 the explicit formula is

νl,26 = 26l
2 ·

l∏
i=1

(
1− 1

2i

)(
1− 1

13i

)
This evaluates as ν1,26 = 12, ν2,26 = 157, 248, ν3,26 =
1, 634, 038, 189, 056 ≈ 1.5 · 240. Comparing this value of ν3,26 with the
lower bound 233 from above shows how coarse this bound is. For l = 4
we even get ν4,26 ≈ 1.3 · 273, almost secure from exhaustion.

Exercise Let p1 = 2, p2 = 3, p3 = 5, . . . the increasing sequence of the
primes. Let nr = p1 · · · pr for r ≥ 1. Show that for fixed l

lim
r→∞

ρlnr = 0.

This means that the relative frequency of invertible matrices is de-
creasing for this sequence of moduli. Hint : Let ζ be the Riemann
ζ-function. Which values has ζ at the natural numbers i ≥ 1?

9.5 Cryptanalysis of the Linear Cipher

Block Length

The block length l leaves its trace as a divisor of the ciphertext length. If
however the sender conceals the procedure by padding with meaningless text
the cryptanalyst has no choice than to try all possible lengths by brute force.

Known Plaintext

Cryptanalyzing the linear cipher needs known plaintext—or some probable
plaintext and a bit of trial and error to find the correct position. If the crypt-
analyst knows the block length l and has l blocks of known plaintext she
only has to solve a system of linear equations. This amounts to known plain-
text of l2 letters, corresponding to the length of the key. In a few degenerate
cases she needs some additional known plaintext.

Let (a11, . . . , al1), . . . , (a1l, . . . , all) be the blocks of known plaintext, not
necessarily contiguous, and (c11, . . . , cl1), . . . , (c1l, . . . , cll), the corresponding
ciphertext blocks.

This yields the matrix equationk11 . . . k1l
...

. . .
...

kl1 . . . kll


a11 . . . a1l

...
. . .

...
al1 . . . all

 =

c11 . . . c1l
...

. . .
...

cl1 . . . cll

 ,

K. Pommerening, Classic Ciphers 192

in short: kA = C in Mll(Z/nZ). Note that the lowercase letter k also denotes
an l × l-matrix. In the lucky (but common) case where A is invertible we
immediately solve for k and get the key

k = CA−1.

Inverting a matrix is efficient by Section 9.2. Furthermore with high proba-
bility A is invertible, see Section 9.4. Otherwise the cryptanalyst needs some
more plaintext. Instead of explicating the solution in detail we consider an
example.

Example

Imagine the example of Section 9.3 is part of a longer text, and the plaintext
Herr is known as well as its location. It consists of two blocks and defines
the matrix

A =

(
7 17
4 17

)
.

The determinant is DetA = 17 · (7 · 1 − 4 · 1) = 17 · 3 = 51 ≡ −1 mod 26.
The cryptanalyst has luck. She immediately calculates the inverse:

A−1 =

(
9 17
4 19

)
.

From this she gets the key matrix:

k =

(
5 11
23 14

)(
9 17
4 19

)
=

(
11 8
3 7

)
.

Solving the Affine Cipher

For solving the affine cipher c = ka + b the cryptanalyst in general needs
l + 1 blocks of known plaintext a0, . . . , al. By forming differences she gets

cl − c0 = k · (al − a0),

. . .

cl − cl−1 = k · (al − al−1).

This reduces the cryptanalysis to that of the linear cipher with l known
plaintext blocks.

K. Pommerening, Classic Ciphers 193

Summary

Linearity makes a cipher extremely vulnerable for a known plaintext attack.
The reason is that systems of linear equations are easily solved, at least over
rings that allow practical calculations. (This however is a basic prerequisite
for a ring to be useful for cryptography.)

In constructing secure ciphers on wants to prevent known plaintext at-
tacks. Therefore one has to bring in nonlinearity: Solving algebraic equation
of higher degree is much more complex. Hence the memento:

Known plaintext is adversary to linearity.

Exercise. Hill’s proposal comprised a permutation of the alphabet be-
fore applying the linear map. That means executing a monoalphabetic
substitution first. Explore the effect on cryptanalysis.

Chapter 10

Theoretical Security

The theory of this section goes back to Claude Shannon[22] (with later
simplifications by Hellman[11]). In his paper Shannon developed the first
general mathematical model of cryptology as well as the analysis of cryp-
tosystems by information theoretical methods. The basic question this the-
ory asks is:

How much information about the plaintext is preserved in the
ciphertext?

(no matter how difficult or expensive the extraction of this information is.)
If this information doesn’t suffice to determine the plaintext, then the cipher
is secure.

Shannon’s ideas are based on the information theory that he had de-
veloped before [21].

The practical value of Shannon’s theory is limited. But besides it there
are almost no sufficient criteria for the security of cryptographic methods
that are mathematically proved. In contrast there are lots of necessary cri-
teria derived from cryptanalytic procedures. Lacking better ideas one tries
to optimize the cryptographic procedures for these necessary conditions. We
saw and shall see many instances of this in these lecture notes.

10.1 A Priori and A Posteriori Probabilities

Model Scenario

Consider

• a finite set M0 ⊆M of possible plaintexts—for example all plaintexts
of length r or of length ≤ r,

• a finite set K of keys,

• a cipher F = (fk)k∈K with fk : M −→ Σ∗.

194

K. Pommerening, Classic Ciphers 195

The restriction to a finite setM0 allows us to handle probabilities in the naive
way. It is no real restriction since plaintexts of lengths > 10100 are extremely
unlikely in this universe that has at most 1080 elementary particles.

Motivating Example

For English plaintexts of length 5 we potentially know exact a priori prob-
abilities, say from a lot of countings. A small excerpt from the list is

Plaintext Probability

hello p > 0
fruit q > 0
xykph 0
.

Now assume we see a monoalphabetically encrypted English text XTJJA.
Without knowing the key—that is in a situation where all keys have the
same probability—and without further context information we nevertheless
assign to the single plaintexts different “a posteriori probabilities”:

Plaintext Probability

hello p1 >> p
fruit 0
xykph 0
.

Thus knowledge of the ciphertext alone (and knowledge of the encryption
method) changed our information on the plaintext.

A “Bayesian” approach gives a general model of this observation.

Model

The probability of plaintexts is given as a function

P : M0 −→ [0, 1] where P (a) > 0 for all a ∈M0

and
∑
a∈M0

P (a) = 1.

(This is the a priori probability of plaintexts.)

The probability of keys is likewise given as a function

P : K −→ [0, 1] such that
∑
k∈K

P (k) = 1.

(By abuse of notation denoted by the same letter P .) In general we
assume a uniform distribution P (k) = 1/#K for all k ∈ K.

K. Pommerening, Classic Ciphers 196

The probability of ciphertexts derives from the probabilities of plain-
texts and keys, implicitly assumed as independently chosen:

P : Σ∗ −→ [0, 1], P (c) :=
∑
a∈M0

∑
k∈Kac

P (a) · P (k),

where Kac := {k ∈ K | fk(a) = c} is the set of all keys that transform
a to c.

Remark 1 Only finitely many c ∈ Σ∗ have P (c) 6= 0. These form the set

C0 := {c ∈ Σ∗ | P (c) > 0}

of “possible ciphertexts”.

Remark 2 We have∑
c∈Σ∗

P (c) =
∑
c∈Σ∗

∑
a∈M0

∑
k∈Kac

P (a) · P (k)

=
∑
a∈M0

∑
k∈K

P (a) · P (k)

=
∑
a∈M0

P (a) ·
∑
k∈K

P (k)

= 1.

The conditional probability for a ciphertext to stem from a given
plaintext a ∈M0 is modeled by the function

P (•|a) : Σ∗ −→ [0, 1], P (c|a) :=
∑
k∈Kac

P (k).

Remark 3
∑

c∈Σ∗ P (c|a) =
∑

k∈K P (k) = 1.

Remark 4 P (c) =
∑

a∈M0
P (a) · P (c|a).

A Posteriori Probabilities of Plaintexts

The cryptanalyst is interested in the converse, the conditional probability
P (a|c) of a plaintext a ∈M0 if the ciphertext c ∈ Σ∗ is given.

First we describe the probability of the simultaneous occurrence of a and
c as

P : M0 × Σ∗ −→ [0, 1], P (a, c) := P (a) · P (c|a).

Remark 5 Then ∑
a∈M0

P (a, c) =
∑
a∈M0

P (a) · P (c|a) = P (c).

K. Pommerening, Classic Ciphers 197

The conditional probability of a plaintext is given by a function
P (•|c) with P (a, c) = P (c) · P (a|c) by the Bayesian formula

P (a|c) :=

{
P (a)·P (c|a)

P (c) if P (c) 6= 0,

0 if P (c) = 0.

Remark 6
∑

c∈Σ∗ P (c)·P (a|c) =
∑

c∈Σ∗ P (a)·P (c|a) = P (a) by Remark 3.

10.2 Perfect Security

Definition 1 The cipher F is called perfectly secure on M0 (the finite
set of all possible plaintexts) if P (•, c) = P on M0 for all ciphertexts
c ∈ Σ∗ of positive probability P (c) > 0.

Interpretation: This condition assures that the a posteriori probability
P (a|c) of each plaintext a ∈M0 is the same as the a priori probability
P (a). Or in other words, the cryptanalyst doesn’t get any additional
information on the plaintext by knowing the ciphertext.

Lemma 13 #M0 ≤ #C0.

Proof. Let l ∈ K be a fixed key with P (l) > 0. For every ciphertext c ∈
fl(M0), say c = fl(b), we then have

P (c) =
∑
a∈M0

P (a) ·
∑
k∈Kac

P (k) ≥ P (b) · P (l) > 0.

Hence c ∈ C0. From this follows that fl(M0) ⊆ C0. Since fl is injective also
#M0 ≤ #C0. 3

Lemma 14 If F is perfectly secure, then Kac 6= ∅ for all a ∈ M0 and all
c ∈ C0.

Proof. Assume Kac = ∅. Then

P (c|a) =
∑
k∈Kac

P (k) = 0.

Hence P (a|c) = 0 6= P (a), contradiction. 3

Therefore each possible plaintext can be transformed into each possible
ciphertext. The next lemma says that the number of keys must be very large.

Lemma 15 If F is perfectly secure, then #K ≥ #C0.

K. Pommerening, Classic Ciphers 198

Proof. Since
∑
P (a) = 1, we must have M0 6= ∅. Let a ∈ M0. Assume

#K < #C0. Then there exists a c ∈ C0 with fk(a) 6= c for every key k ∈ K,
whence Kac = ∅, contradiction. 3

Theorem 15 [Shannon] Let F be perfectly secure. Then

#K ≥ #M0.

That is the number of keys is at least as large as the number of possible
plaintexts.

Proof. This follows immediately from Lemmas 13 and 15. 3

Theorem 16 [Shannon] Let F be a cipher with

P (k) =
1

#K
for all k ∈ K

(that is all keys have the same probability) and

#Kac = s for all a ∈M0 and all c ∈ C0.

with a fixed s ≥ 1. Then F is perfectly secure. Furthermore #K = s ·#C0.

Proof. Let c ∈ C0 be a possible cipherext. Then for any possible plaintext
a ∈M0:

P (c|a) =
∑
k∈Kac

1

#K
=

#Kac

#K
=

s

#K
,

P (c) =
∑
a∈M0

P (a) · P (c|a) =
s

#K
·
∑
a∈M0

P (a) =
s

#K
= P (c|a),

P (a|c) =
P (c|a)

P (c)
· P (a) = P (a).

Therefore F is perfectly secure. The second statement follows from

K =

.⋃
c∈C0

Kac

for all a ∈M0. 3

K. Pommerening, Classic Ciphers 199

10.3 Examples of Perfect Security

Trivial Examples

Example 0: #M0 = 1. This example is cryptological nonsense since the
cryptanalyst knows the only possible plaintext a priori. Hence she
cannot gain any additional information on the plaintext by knowing
the ciphertext.

Let M0 = {a}. For all c ∈ C0 trivially P (a|c) = 1 = P (a). Hence F is
perfectly secure, no matter how it is defined.

Example 1: #M0 = 2. The smallest nontrivial example involves two possi-
ble plaintexts. Without restriction we may assume that M0 = {0, 1} =
C0 = K. Let f0 be the identity map on {0, 1}, and f1, the transposi-
tion of 0 and 1. Furthermore let the two keys 0 and 1 have the same
probability: P (0) = P (1) = 1

2 .

Then K00 = K11 = {0}, K01 = K10 = {1}. Theorem 16 tells us that
F is perfectly secure.

The Shift Cipher

We provide M0 = K = C0 with a group structure, and let F : M0×K −→ C0

be the group composition, hence fk(a) = a ∗ k. The sets

Kac = {k ∈ K | a ∗ k = c} = {a−1 ∗ c}

each consist of one element only. We let P (k) = 1
#K for all keys k ∈ K.

Then F is perfectly secure.
The Examples 0 and 1 are the special cases of the one- or two-element

group. Also Examples 2 and 3 will be special cases.

Example 2: The Caesar Cipher. This is the shift cipher on the cyclic
group Σ = Z/nZ of order n.

Hence the Caesar cipher is perfecly secure, if we encrypt messages of
length 1 only and randomly choose an independent new key for each
message.

Example 3: The One-Time Pad. This is the collection of the shift ciphers
on the groups Σr = M0 where Σ = Z/nZ. Messages are texts of length
r, and keys are independently and randomly chosen letter sequences of
the same length r.

Because one has to choose a new key for each message this cipher
has its name One-Time Pad. Imagine a tear-off calendar where each
sheet contains a random letter. After use it is torn off and destroyed.

The One-Time Pad is the prototype of a perfect cipher.

K. Pommerening, Classic Ciphers 200

The special case Σ = {0, 1} gives the binary Vernam/Mauborgne
cipher, that is the bitstram encryption with a completely random se-
quence of key bits.

Counterexample: The Monoalphabetic Substitution. Set M0 = Σr and
K = S(Σ). For r = 5 we saw already that

P (fruit|XTJJA) = 0 < q = P (fruit).

Therefore the monoalphabetic substitution is not perfect (for r ≥ 2
and n ≥ 2). For r = 1 it is perfect by Theorem 16 (with s = (n− 1)!).

10.4 Density and Redundancy of a Language

Shannon’s theory provides an idea of an unbreakable cipher via the concept
of perfection. Moreover it develops the concept of “unity distance” as a
measure of the difference to perfection. This concept takes up the observation
that the longer a ciphertext, the easier is its unique decryption.

We don’t want to develop this theory in a mathematically precise way,
but only give a rough impression. For a mathematiclly more ambitious ap-
proach see [14].

Unique Solution of the Shift Cipher

Let the ciphertext FDHVDU be the beginning of a message that was encrypted
using a Caesar cipher. We solved it by exhaustion applying all possible 26
keys in order:

K. Pommerening, Classic Ciphers 201

Key Plaintext t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

0 fdhvdu +
1 ecguct + +
2 dbftbs +
3 caesar + + + + + +
4 bzdrzq +
5 aycqyp + +
6 zxbpxo +
7 ywaown ?
8 xvznvm ?
9 wuymul + +
10 vtxltk +
11 uswksj + + ?
12 trvjri + +
13 squiqh + + + +
14 rpthpg +
15 qosgof +
16 pnrfne + +
17 omqemd + +
18 nlpdlc +
19 mkockb +
20 ljnbja +
21 kimaiz + + + ? ?
22 jhlzhy +
23 igkygx + +
24 hfjxfw +
25 geiwev + + + ?

The flags in this table stand for:

• +: The assumed plaintext makes sense including the t-th letter.

• ?: The assumed plaintext could make sense including the t-th letter
but with low probability.

Given the first five letters only one of the texts seems to make sense. We
would call this value 5 the “unicity distance” of the cipher.

Mathematical Model

Let us start again with an n-letter alphabet Σ. The “information content”
of a letter is log2 n, for we need dlog2 ne bits for a binary encoding of all of
Σ.

Example For n = 26 we have log2 n ≈ 4.7. Thus we need 5 bits for encoding
all letters differently. One such encoding is the teleprinter code.

K. Pommerening, Classic Ciphers 202

Now let M ⊆ Σ∗ be a language. Then Mr = M ∩ Σr is the set of
“meaningful” texts of length r, and Σr − Mr is the set of “meaningless”
texts. Denote the number of the former by

tr := #Mr.

Then log2 tr is the “information content” of a text of length r or the entropy
of Mr. This is the number of bits we need for distinguishing the elements of
Mr in a binary encoding.

Remark More generally the entropy is defined for a model that assigns
the elements of Mr different probabilities. Here we implicitly content
ourselves with using a uniform probability distribution.

We could consider the relative frequency of meaningful texts, tr/n
r, but

instead we focus on the relative information content,

log2 tr
r · log2 n

:

For an encoding of Σr we need r · log2 n bits, for an encoding of Mr only
log2 tr bits. The relative information content is the factor by which we can
“compress” the encoding of Mr compared with that of Σr. The complimen-
tary portion

1− log2 tr
r · log2 n

is “redundant”.
Usually one relates these quantities to log2 n, the information content of

a single letter, and defines:

Definition 2 (i) The quotient

ρr(M) :=
log2 tr
r

is called the r-th density, the difference δr(M) := log2 n− ρr(M) is
called the r-th redundancy of the language M .

(ii) If ρ(M) := limr→∞ ρr(M) exists, it is called the density of M ,
and δ(M) := log2 n− ρ(M) is called the redundancy of M .

Remarks

1. Since 0 ≤ tr ≤ nr, we have lim ρr(M) ≤ log2 n.

2. If Mr 6= ∅, then tr ≥ 1, hence ρr(M) ≥ 0. If Mr 6= ∅ for almost
all r, then lim ρr(M) ≥ 0.

3. If ρ(M) exists, then tr ≈ 2rρ(M) for large r.

K. Pommerening, Classic Ciphers 203

For natural languages one knows from empirical observations that ρr(M)
is (more or less) monotonically decreasing. Therefore density and redun-
dancy exist. Furthermore tr ≥ 2rρ(M). Here are some empirical values (for
n = 26):

M ρ(M) ≈ δ(M) ≈
English 1.5 3.2
German 1.4 3.3

The redundancy of English is 3.2
4.7 ≈ 68% (but [3] says 78%; also see [13]).

One expects that an English text (written in the 26 letter alphabet) can be
compressed by this factor. The redundancy of German is about 3.3

4.7 ≈ 70%
[13].

10.5 Unicity Distance

We now apply our findings on the redundancy to the exhaustion of the key
space. We don’t deal with the expenses but only consider the feasibility. We
follow the simplified approach of Hellman.

Assumptions

1. All meaningful texts of length r have the same probability. [Otherwise
we get more complicated formulas. For natural languages this assump-
tion is clearly false when r is small. However for large r we might hope
that it follows from the usual stochastic conditions.]

2. The densitiy ρ(M) of the language M exists. [Otherwise we could
derive only a bound.]

3. All keys k ∈ K have the same probability and they are h = #K in
number.

4. All encryption functions fk for k ∈ K respect the lengths of the texts,
or in other words f(Mr) ⊆ Σr.

Now let c ∈ Σr be a ciphertext. In general—if all encryption functions
fk are different—it fits h possible plaintexts of length r in Σr. By far not all
of them are meaningful but only

h · tr
nr
≈ h · 2rρ(M)

2r·log2 n
= h · 2−rδ(M).

We expect a unique solution in Mr if

h · 2−rδ(M) ≤ 1, log2 h− rδ(M) ≤ 0, r ≥ log2 h

δ(M)
,

K. Pommerening, Classic Ciphers 204

at least if all encryption functions fk are different; otherwise we should
replace log2 h with d = d(F), the effective key length of the cipher F .

This motivates the following definition:

Definition 3. For a cipher F with effective key length d(F) defined on a
language M of redundancy δ(M) we call

UD(F) :=
d(F)

δ(M)

the unicity distance.

Examples

We always assume the alphabet Σ = {A, . . . , Z} with n = 26, and the lan-
guage M = “English”.

1. For the shift cipher we have d = log2 26, UD ≈ 4.7/3.2 ≈ 1.5, not about
5 as suspected in the introductory example. This deviation might be
due to the many inexact steps in the derivation. In particular for small
r the approximation tr ≈ 2rρ(M) is very inexact.

2. For the monoalphabetic substitution we have d ≈ 88.4, UD ≈
88.4/3.2 ≈ 27.6. This result is in good concordance with empirical
observations on the solvability of monoalphabetic cryptograms.

3. For the Trithemius-Bellaso cipher with period l we have d ≈ 4.7 · l,
UD ≈ 1.5 · l.

4. For Porta’s disk cipher we have d ≈ 88.4 + 4.7 · l, UD ≈ 27.6 + 1.5 · l.

5. For the general polyalphabetic substitution with period l and indepen-
dent alphabets d ≈ 122 · l, UD ≈ 38 · l.

6. For the One-Time Pad over the group G = Σ we have M = K =
C = Σ∗, hence #K =∞. However it makes sense to interpret dr/δr =
r · log2 n/0 =∞ as unicity distance.

10.6 Cryptological Applications

The unicity distance is a very coarse measure of the quality of a cipher.
In modern cryptology it is almost never used. For an attack with known
plaintext it is meaningless (except for perfect ciphers where it is ∞).

A large unicity distance is achieved by:

K. Pommerening, Classic Ciphers 205

• a large key space,

• lowering the redundancy of the plaintext language, for example by
compression.

Application 1: Porta’s disk cipher is not so much stronger than the
Trithemius-Bellaso cipher because the unicity distance is greater
only by the constant summand 27.6. For a longer period the compli-
cation by permuting the primary alphabet effects not much additional
security.

Application 2: Another application of Shannon’s theory is to running
text encryption. The cryptanalysis must derive two meaningful plain-
texts of total length 2r from a ciphertext of length r. This can work
only for a language of redundancy at least 50%.

More generally consider a q-fold running text encryption with q inde-
pendent keytexts. If cryptanalysis is feasible, then meaningful plaintext
of total length (q + 1) · r is excavated from a ciphertext of length r.
We conclude that the redundancy of the language is at least ≥ q

q+1 .

Because the redundancy of German, 70%, is smaller than 3
4 we con-

clude that a triple running text encryption is secure. For English that
has somewhat less redundancy even a double running text encryption
seems to be secure.

Application 3: The unicity distance may serve as an indication for how
much ciphertext corresponding to a single key may be known to the
enemy without being of use. Or in other words: How often the key
must change.

A general short summary of Shannon’s theory consists of the rule: A
necessary condition for the solvability of a cipher is that “information con-
tent of the ciphertext + redundancy of the plaintext language” ≥ “informa-
tion content of the plaintext + information content of the key”.

Appendix A

Permutations and Rejewski’s
Theorem

A.1 The Symmetric Group

A permutation is a bijective map of a set M onto itself. The permutations
of M form a group S(M).

This group is (at least in discrete mathematics, including cryptologic
applications) of particular interest when the set M is finite. In most appli-
cations the nature of the elements doesn’t matter. (A more formal statement
is: “A bijection between two sets M und N induces an isomorphism of the
groups S(M) und S(N)”.) Therefore we often simply take the set {1, . . . , n}
of natural numbers as our set M and denote the group S(M) by Sn. This
group is called the symmetric group of order n.

Proposition 1 The symmetric group of order n has n! elements:

#Sn = n!.

Proof. A permutation π is uniquely determined by its values at the argu-
ments 1, . . . , n. For π(1) we have n possibilities, for π(2) then n− 1, . . . , for
π(n− 1) two and for π(n) only one. This makes a total of n!. 3

(Note that the dots “. . . ” are a sloppy version of a proof by complete induc-
tion. In the remainder of this text we write πx instead of π(x).)

A.2 Description of Permutations

Often a permutation π of the set {1, . . . , n} is represented by its value table,
written in two rows: (

1 2 . . . n
π1 π2 . . . πn

)
.

206

K. Pommerening, Classic Ciphers 207

Of course this representation my also be used with other sets M ; for M =
{A, . . . ,Z}, the alphabet of classic cryptology, a permutation is the same as
a monoalphabetic substitution σ and denoted in the form(

A . . . Z
σA . . . σZ

)
(often without parantheses); below each letter we write its image under
encryption.

Another description of a permutation π is the cycle representation.
Let’s illustrate this first with an example where n = 5: The permutation(

1 2 3 4 5
3 4 1 5 2

)
has a natural graphical representation:

1

3
?

6

2

4 5

� J

J
J
J
J]

-

and this graph is completely characterized by the arrangement

(1 3)(2 4 5)

of numbers. This means that each parenthesis defines a “cycle”—start with
any element, write its image right of it, then the image thereof, and so on
until you get back to the start. Then take any element that’s not yet written
down (if there is one) and do as before until all elements are met. Fixed
points of the permutation yield cycles of length one. The general formula is

(a1, πa1, . . . , π
k1−1a1) · · · (ai, πai, . . . , πki−1ai) · · · ,

where ki is the smallest natural number ≥ 1 with πkiai = ai.
This consideration shows:

Proposition 2 Each permutation of a finite set has a decomposition into
disjoint cycles. This representation is unique except for the order of the
cycles and cyclic permutations of the elements inside the cycles.

K. Pommerening, Classic Ciphers 208

A.3 Group Theoretic Interpretation

A cycle by itself represents a permutation: permute its elements in the writ-
ten order in a cyclic way, and let all other elements of M fixed.

Example: The cycle (2 4 5) in S5 corresponds to the permutation(
1 2 3 4 5
1 4 3 5 2

)
or in cycle representation (1)(2 4 5)(3).

The cycle (i) in Sn defines the identity map, no matter which i = 1, . . . , n
we choose. If we identify cycles with the permutations they describe, we
immediately get:

Lemma 1 Disjoint cycles commute as elements of the group Sn.

If we write the cycles of the cycle decomposition of a permutation next
to each other, we just get the product of the corresponding permutations in
Sn. Therefore we may express Proposition 2 in the following way:

Corollary 8 Each permutation is a product of disjoint cycles. This repre-
sentation is unique except for the order of the factors.

A.4 Partitions

If rk is the number of cycles of length k of a permutation π ∈ Sn, then we
have

n · rn + · · ·+ 1 · r1 = n.

Call a finite sequence [s1s2 . . . sm] of natural numbers with s1 ≥ . . . ≥ sm ≥ 1
a partition of n, if n = s1 + · · · + sm. If we write down the cycle lengths
of a permutation π ∈ Sn ordered by magnitude – each length with the
multiplicity with which it occurs – then we get a partition of n. Call this
the (cycle) type of π.

Example: The cycle type of(
1 2 3 4 5
3 4 1 5 2

)
= (1 3)(2 4 5)

is
[3 2].

We often visualise partitions by Young diagrams. Given a partition
[s1s2 . . . sm] of n we build the corresponding Young diagram in the following
way: Take m rows and put si squares in row i, left aligned. The partition
[7 3 3 2 1] of 16 has the diagram

K. Pommerening, Classic Ciphers 209

(The defining condition of a Young diagram is that none of the rows is
longer than the row above it.)

A.5 Conjugate Permutations

Given π, ρ ∈ Sn, how are the cycle representations of π and of the conjugate
permutation ρπρ−1 connected? First we consider the case of a single cycle
π,

π = (a1 . . . ak),

hence πai = a1+(i mod k) for i = 1, . . . , k, all other elements being fixed by π.
Then, for bi = ρai, we have

ρπρ−1bi = ρπai = ρa1+(i mod k) = b1+(i mod k),

hence
ρπρ−1 = (b1 . . . bk).

Therefore also ρπρ−1 is a cycle of length k.
Conjugating with ρ is an inner automorphism of the group Sn, that

means ρ(π1π2)ρ−1 = (ρπ1ρ
−1)(ρπ2ρ

−1). Therefore in the general case we
can conjugate the single cycles of π with ρ and get as a result the first part
the following theorem:

Theorem 1 (i) Let π, ρ ∈ Sn be two permutations. Then we get the cycle
decomposition of the conjugate permutation ρπρ−1 from that of π by
replacing each cycle (a1 . . . ak) of π with the cycle (ρa1 . . . ρak).

(ii) Two permutations of a finite set are conjugated if and only if they have
the same cycle type.

In other words: The conjugacy classes of the symmetric group Sn are in
a natural correspondence with the partitions of n resp. with the Young
diagrams with exactly n squares.

Proof. We only have to show the inverse direction of statement (ii). To
this end let σ, τ ∈ Sn be of the same cycle type. Write the cycle decompo-
sitions of σ and τ below each other in such a way that cycles of the same
length align; from this read off a permutation ρ with ρσρ−1 = τ : Simply
map each element to the one below it. 3

K. Pommerening, Classic Ciphers 210

This theorem, as simple as it is, is an essential ingredient to the crypt-
analysis of the cipher machine Enigma, and therefore sometimes was called
“the theorem that won world war II”; this is an obvious exaggeration, but
with a certain confidence we may state that it helped in shortening the war
in a significant way.

Exercise. Given σ, τ ∈ Sn, describe all solutions ρ of ρσρ−1 = τ . (For the
case τ = σ see the next section.)

A.6 Centralizers of Permutations

Theorem 1 provides an easy approach to determining the centralizer of a
permutation. First let us consider a single cycle π = (a1 a2 . . . ak) of length
2 ≤ k ≤ n. Then π acts transitively on the subset A := {a1, a2, . . . , ak} and
fixes all elements of the complement Ā = {1, . . . , n} − A. For ρ ∈ Sn the
conjugate ρπρ−1 is the cycle (ρa1 . . . ρak) by Theorem 1. By definition ρ
centralizes π if and only if ρπρ−1 = π. Therefore for ρ ∈ CSn(π), the central-
izer of π, we must have ρa1 = ai for some i, and then ρa2 = ai+1 and so on,
reducing the indices mod n if necessary. That is, ρ acts on A as πi, and on Ā
as an arbitrary permutation. In the reverse direction each permutation with
these properties centralizes π. Let SAn ≤ Sn be the subgroup of permutations
that fix A elementwise. It is canonically isomorphic with Sn−k. Using this
notation we may formulate the result of our considerations as:

Proposition 3 Let π = (a1 a2 . . . ak) ∈ Sn be a single cycle of length
2 ≤ k ≤ n, and A = {a1, a2, . . . , ak}. Then the centralizer CSn(π) of π in
Sn is the direct product of the subgroups < π > and SAn , and is isomorphic
with the direct product Zk × Sn−k.

Here Zk is the cyclic group of order k.
We want to apply this result to arbitrary permutations. First we observe:

Proposition 4 Let π = π1 · · ·πs be a product of disjoint cycles πi. For
k = 1, . . . , n let

Ak := {a | 1 ≤ k ≤ n, a is in a cycle of π of length k}.

Let ρ ∈ Sn centralize π. Then ρ(Ak) = Ak for all k, and ρ|Ak centralizes
π|Ak.

Proof. Let πi = (ai1 · · · aik) be a cycle of length k. Then ρπiρ
−1 =

(ρai1 · · · ρaik) is a cycle of length k, and ρπρ−1 = ρπ1ρ
−1 · · · ρπlρ−1 is

the unique decomposition into disjoint cycles. If ρ centralizes π, then
(ρai1 · · · ρaik) is one of cycles of π of length k. Therefore ρ(Ak) = Ak. The

K. Pommerening, Classic Ciphers 211

second assertion follows because the actions of π and ρ on {1, . . . , n} directly
decompose into the actions on the subsets Ak. 3

Proposition 4 reduces the task of determining the centralizer to the case
where all the cycles πi have the same length k. Let πi = (bi1 . . . bik), and
Bi := {bi1, . . . , bik}. Then {1, . . . , n} = B1∪̇ · · · ∪̇Bs (and n = ks).

Now consider the centralizer C := CSn(π), and take a ρ ∈ C. Then
ρ doesn’t necessarily respect the subsets Bi, but it permutes them: There
is a unique j = σ̄i—depending on ρ—such that ρ(Bi) = Bj . This defines
a permutation σ̄ ∈ Ss of the indices 1, . . . , s. This way we get a group
homomorphism

Φ: C −→ Ss, ρ 7→ σ̄.

Lift σ̄i to a permutation σ ∈ Φ−1(σ̄) ⊆ Sn by setting σbih := bσ̄i,h. Then
also σ ∈ C, and σ−1ρ is in the subgroup

C◦ := ker Φ = {τ ∈ C | τ(Bi) = Bi for i = 1, . . . , s}

of permutations that centralize π and respect the Bi. The following charac-
terization of this subgroup is immediate, because for τ ∈ C◦ the restriction
τ |Bi centralizes πi|Bi and therefore is a power of πi|Bi.

Lemma 2 The subgroup C◦ is the set of permutations with cycle decompo-
sition of the type πa1

1 · · ·πass , and is isomorphic with the direct product Zsk
of s cyclic groups Zk. This isomorphism defines an embedding e : Zsk −→ C.
The sequence

1 −→ Zsk
e−→ CSn(π)

Φ−→ Ss −→ 1

is exact. The centralizer CSn(π) has ks · s! elements.

This result easily generalizes to the general case. Let π = π1 · · ·πs be a
product of disjoint cycles πi, let ki be the length of πi, and let rk be the
number of cycles of length ki = k, for k = 1, . . . , n. Note that r1+· · ·+nrn =
n, and many of the rk are 0. Then we have a natural epimorphism

Φ: C −→
n∏
k=1

Srk ,

with kernel

C◦ := ker Φ =< π1 > · · · < πs >∼=
s∏
i=1

Zki

We sum this up to a Theorem.

Theorem 2 For each permutation π ∈ Sn we have a natural exact sequence

1 −→
s∏
i=1

Zki
e−→ CSn(π)

Φ−→
n∏
k=1

Srk −→ 1

K. Pommerening, Classic Ciphers 212

where the ki are the lengths of the cycles of π and the rk are the numbers of
cycles of π of length k.

The centralizer CSn(π) of π has

#CSn(π) =
s∏
i=1

ki ·
n∏
k=1

rk!

elements.

Example. In Sn both permutations (13)(245) and (245) = (245)(1)(3) have
a 6 element centralizer isomorphic with Z3×Z2. Its elements (in both
cases) are the three different powers of (245) times the two different
powers of (13).

A.7 Transpositions

A transposition is a cycle of length 2, that is a permutation that inter-
changes two elements and fixes all the other ones. The formula

(a1 a2 . . . ak) = (a1 ak) · · · (a1 a3)(a1 a2)

shows:

Lemma 3 Each cycle of length k can be written as a product of k − 1
transpositions.

From this and Proposition 2 we conclude:

Corollary 9 Each permutation π can be written as a product of n−r trans-
positions where r is the number of cycles with more than one element in the
cycle decomposition of π.

Note that these transpositions need not be disjoint, therefore gener-
ally they don’t commute, and the decomposition into transpositions is not
unique. Even the number of transpositions is not unique; but at least we
have:

Proposition 5 If we write a permutation π ∈ Sn as a product of transpo-
sitions in different ways, then the number of transpositions either is always
even or always odd.

Proof. Let π = τ1 · · · τs where the τi are transpositions. On the other hand
let π = ζ1 · · · ζr be the decomposition into disjoint cycles (complete, that
means including all cycles of length 1). If we multiply π from the left with
a transposition τ = (a b), we can distinguish two cases:

K. Pommerening, Classic Ciphers 213

Case 1. a und b are in the same cycle. Because the cycles commute we
may assume that this is the first one ζ1 = (a1 . . . ak), and a = a1, b = ai.
Then τπ has the effect that

a1
π7→ a2

τ7→ a2

...

ai−1 7→ ai 7→ a1

ai 7→ ai+1 7→ ai+1

...

ak 7→ a1 7→ ai

Therefore τπ = (a1 . . . ai−1)(ai . . . ak)ζ2 · · · (all other cycles unchanged).
Case 2. a and b are in different cycles. Assume that these are the first

two ζ1 = (a1 . . . ak) and ζ2 = (b1 . . . bl), and a = a1, b = b1. Then
τπ = (a1 . . . ak b1 . . . bl)ζ3 · · · .

In any case the number of cycles grows by 1 or decreases by 1, hence
is r ± 1. If we multiply with another transposition from the left, the total
number of cycles becomes r + 2, r or r − 2. After multiplication with q
transpositions we have r + tq cycles, where tq ≡ q (mod 2). Therefore the
product τs · · · τ1π has r + ts cycles where ts ≡ s (mod 2). But this is the
identy map π−1π and therefore r + ts = n. Hence s ≡ n − r (mod 2), no
matter what was the starting decomposition into transpositions. 3

A.8 The Alternating Group

If we assign to each permutation in Sn the parity of the number of trans-
positions in an arbitrary decomposition, then, by the last section, we get a
well-defined function

sgn : Sn −→ F2,

that obviously is a group homomorphism into the additive group. We call the
kernel the alternating group of order n and denote it by An. The elements
of An, that is the permutations that decompose into an even number of
transpositions, are called even permutations, the other ones odd. An is a
normal subgroup of index 2 in Sn and therefore has n!/2 elements.

A.9 Involutions

Call a permutation an involution, if it has order 2 as a group element
in Sn, or alternativly, if its cycle decomposition consists of transpositions
(and fixed points) only. An involution ist proper, if it has no fixed points.

K. Pommerening, Classic Ciphers 214

Of course this is possible only, if n is even. Then a proper involution is a
product of n/2 disjoint 2-cycles (i. e. cycles of length 2).

A task that occurs in computing the total number of keys of Enigma,
is determining the number of involutions in the symmetric group Sn that
have exactly k 2-cycles where 0 ≤ 2k ≤ n. It equals the number d(n, k)
of possibilities of choosing k pairs from n elements (where the order of the
pairs does not matter).

Choose possibilities choose possibilities

1st element: n
1st partner: n− 1 1st pair: n(n− 1)/2

2nd element: n− 2
2nd partner: n− 3 2nd pair: (n− 2)(n− 3)/2

.

k-th element: n− 2(k − 1)
k-th partner: n− 2(k − 1)− 1 k-th pair: (n− 2k + 2)(n− 2k + 1)/2

Adding all together and respecting the order we get

n(n− 1) · · · (n− 2k + 2)(n− 2k + 1)

2k
=

n!

(n− 2k)! · 2k

possibilities. If we now disregard the order we have always k! identical
choices. Hence we have shown:

Proposition 6 The number of involutions in the symmetric group Sn that
have exactly k 2-cycles is

d(n, k) =
n!

2kk!(n− 2k)!
for 0 ≤ 2k ≤ n.

Example: In the case of the Wehrmacht Enigma we have n = 26 and
k = 10, and the number of possible involutions is

26!

210 · 10! · 6!
= 150738274937250.

A.10 Products of Proper Involutions

The cryptanalysis of the Enigma by Rejewski involves products of two
proper involutions σ and τ . Let (a b) be a cycle of τ . If (a b) is also a cycle
of σ, then στ fixes the two elements a and b, hence has the two cycles (a)
and (b) of length 1.

In the general case starting with an arbitrary element a1 one finds a
chain a1, a2, a3, . . . , a2k such that

τ = (a1 a2)(a3 a4) · · · (a2k−1 a2k) × other 2-cycles,

σ = (a2 a3)(a4 a5) · · · (a2k a1) × other 2-cycles.

K. Pommerening, Classic Ciphers 215

In the product στ these become the two cycles

(a1 a3 . . . a2k−1)(a2k . . . a4 a2)

of length k. In particular all cycle lengths occur in an even number, the cycle
type is matched.

Theorem 3 [Rejewski] A permutation is the product of two proper invo-
lutions, if and only if its cycle type is matched.

Proof. In order to prove the inverse direction we take a permutation π of
matched type and give solutions σ, τ of the equation στ = π.

In the simplest case, where π only consists of two cycles of the same
length:

π = (p1 p2 . . . pk)(q1 q2 . . . qk),

an obvious solution is

τ = (p1 qk)(p2 qk−1) · · · (pk q1),

σ = (p2 qk)(p3 qk−1) · · · (p1 q1).

In the general case we analogously construct the solution for each match-
ing pair of cycles of the same length. 3

Therefore the following procedure gives a decomposition of a partition of
matched type into two proper involutions: Write cycles of the same length
below each other, the lower one in reverse direction. Then read off the 2-
cycles of τ by pairing the elements in the same column, and the 2-cycles of
σ by pairing each element with the one diagonally to the left below it.

Example: Let π = (D)(K)(AXT)(CGY)(BLFQVEOUM)(HJPSWIZRN). Then we
write down the scheme

(D)(AXT)(BLFQVEOUM)

(K)(YGC)(NRZIWSPJH)

and read off a solution of στ = π:

τ = (DK)(AY)(XG)(TC)(BN)(LR)(FZ)(QI)(VW)(ES)(OP)(UJ)(MH),

σ = (DK)(XY)(TG)(AC)(LN)(FR)(QZ)(VI)(EW)(OS)(UP)(MJ)(BH).

It’s also easy to find all solutions: Cyclically shift the lower cycles. If
there are more then two cycles of the same length also consider all possible
pairings. The solution is uniquely determined as soon as a 2-cycle of σ or τ
is fixed for each cycle pair.

Exercise. Work out the formula for the number of solutions.

Appendix B

Stirling’s Formula

Following preliminary work by de Moivre (1718) Stirling in 1730 [27]
stated his famous formula that expresses the factorial in a way that leads to
a very useful assessment of its asymptotic behaviour. Here we reproduce the
notably narrow bounds given by Robbins [19] following a method attributed
to Cesàro [2] and Fisher [6].

Theorem 1 For all natural numbers n ≥ 1 we have

n! =
√

2πn
(n
e

)n
· ern

where the error term rn is bounded by

1

12n+ 1
≤ rn ≤

1

12n

The approximation is illustrated by the following table, where sn is the
upper bound and tn, the lower bound from the theorem.

n 1 2 3 4 5 6 7 8 9

sn 1.002 2.001 6.001 24.001 120.003 720.01 5040.04 40320.2 362881.4
n! 1 2 6 24 120 720 5040 40320 362880
tn 0.996 1.997 5.996 23.991 119.970 719.87 5039.33 40315.9 362850.1

This suggests that the upper bound is closer to the true value then the
lower bound; and the absolute errors increase. The relative errors however
decrease quite fast, see Corollary 10 below.

Proof. We consider the sequence

an =
n!

(ne)n ·
√
n

and show that it decreases monotonically; because all of its members are
positive, we then know that it converges.

216

K. Pommerening, Classic Ciphers 217

Dividing two consecutive terms we get

an
an+1

=
n!(n+1

e)n+1 ·
√
n+ 1

(ne)n ·
√
n · (n+ 1)!

=
1

e
· (n+ 1

n
)n+1/2,

log
an
an+1

= −1 + (n+
1

2
) · log

n+ 1

n
.

Lemma 2 below immediately gives

0 <
1

12
· (1

n+ 1
12

− 1

n+ 1
12 + 1

) < log
an
an+1

<
1

12
· (1

n
− 1

n+ 1
).

From the left inequality we conclude an > an+1 as claimed.
Now let a = limn→∞ an. Then a ≥ 0 and by telescoping

1

12
· (1

n+ 1
12

− 1

n+ 1
12 + k

) < log
an
an+k

<
1

12
· (1

n
− 1

n+ k
).

For k →∞ we get
1

12n+ 1
≤ log

an
a
≤ 1

12n
,

e
1

12n+1 ≤ an
a
≤ e

1
12n .

To complete the proof of the theorem we have to show that a =
√

2π.
From Wallis’ product formula, see Lemma 3 below, and using k! =

akk
k+1/2/ek, we get

√
π = lim

n→∞

a2
n · n2n+1 · 22n · e2n

e2n · a2n · (2n)2n+1/2 ·
√
n+ 1/2

= a · lim
n→∞

√
n√

2 ·
√
n+ 1/2

=
a√
2
.

Therefore a =
√

2π. 3

Lemma 1 For 0 < x < 1

3x

3− x2
<

1

2
log

1 + x

1− x
< x ·

(
1 +

1

3
· x2

1− x2

)
.

Proof. For |x| < 1 we have the well-known power series expansion

1

2
log

1 + x

1− x
= x+

x3

3
+
x5

5
+ . . . =

∞∑
ν=1

x2ν−1

2ν − 1
.

K. Pommerening, Classic Ciphers 218

For 0 < x < 1 we get the upper bound

1

2
log

1 + x

1− x
< x+

x3

3
+
x5

3
· · · = x+

∞∑
ν=2

x2ν−1

3
= x+

x3

3

(
1 + x2 + x4 + · · ·

)
= x+

x3

3
· 1

1− x2
= x ·

(
1 +

1

3
· x2

1− x2

)
.

For the lower bound we use

1

2
log

1 + x

1− x
> x+

x3

3
+
x5

9
· · · =

∞∑
ν=1

x2ν−1

3ν−1
= x ·

∞∑
ν=0

x2ν

3ν
= x · 1

1− x2

3

.

3

Lemma 2 For n ∈ N1

2+
1

6
·

(
1

n+ 1
12

− 1

n+ 1
12 + 1

)
< (2n+1) · log

n+ 1

n
< 2+

1

6
·
(

1

n
− 1

n+ 1

)
Proof. In Lemma 1 we substitute x = 1

2n+1 . Then

1 + x

1− x
=

1 + 1
2n+1

1− 1
2n+1

=
2n+ 2

2n
=
n+ 1

n
.

This gives the upper bound

1

2
·log

n+ 1

n
<

1

2n+ 1
·
(

1 +
1

3
· 1

4n2 + 4n

)
=

1

2n+ 1
·
(

1 +
1

12
· 1

n(n+ 1)

)
,

as claimed. At the lower bound we get

1

2
· log

n+ 1

n
>

3(2n+ 1)

3(2n+ 1)2 − 1
,

whence

(2n+1)·log
n+ 1

n
>

6(2n+ 1)2

3(2n+ 1)2 − 1
= 2+

2

3(2n+ 1)2 − 1
= 2+

2

12n2 + 12n+ 2
.

The lower bound we aim at evaluates to

2 +
1

6
·

(
1

n+ 1
12

− 1

n+ 1
12 + 1

)
= 2 + 2 ·

(
1

12n+ 1
− 1

12n+ 13

)

= 2+2· 12

(12n+ 1)(12n+ 13)
= 2+2· 12

12 · 12n2 + 14 · 12n+ 13
= 2+2· 2

12n2 + 14n+ 13
12

which is clearly smaller for n ≥ 1. 3

K. Pommerening, Classic Ciphers 219

Lemma 3 (Product formula of Wallis)

√
π = lim

n→∞

22n · (n!)2

(2n)! ·
√
n+ 1/2

.

Proof. Starting with the product expansion of the sine function,

sin(πx) = πx ·
∞∏
k=1

(1− x2

k2
),

and substituting x = 1/2, we get

1 =
π

2
·
∞∏
k=1

4k2 − 1

4k2
,

π

2
=
∞∏
k=1

(2k)4

(2k − 1)2k · 2k(2k + 1)
= lim

n→∞

24n · (n!)4

((2n)!)2(2n+ 1)
,

and this immediately gives the assertion. 3

Corollary 10 If we replace n! by sn =
√

2πn
(
n
e

)n · e 1
12n , the relative error

is bounded by

1 ≤ sn
n!

< e
1

(12n)2 .

Proof. Let tn =
√

2πn
(
n
e

)n · e 1
12n+1 . Then

1 ≤ sn
n!
≤ sn
tn

= e
1

12n
− 1

12n+1 = e
1

12n(12n+1) < e
1

(12n)2 .

3

Note that the “usual” textbook estimate gives the lower bound 1 ≤ rn.
From this we get the bound e

1
12n for the relative error that has only a linear

term in the denominator of the exponential instad of the quadratic one.

Corollary 11 For all natural numbers n ≥ 1

√
2πn ·

(
1 +

1

13n

)
<
n! en

nn
<
√

2πn ·
(

1 +
1

11n

)
.

For n→∞
n! en

nn
=
√

2πn+ O(
1√
n

).

K. Pommerening, Classic Ciphers 220

Proof. We use the inequality ex > 1 + x for all real x 6= 0. For 0 < x < 1 we
therefore have 1− x ≤ e−x, whence ex ≤ 1

1−x = 1 + 1
1
x
−1

. Therefore

n! en

nn
<
√

2πn ·
(

1 +
1

12n− 1

)
≤
√

2πn ·
(

1 +
1

11n

)
.

For the lower bound we have

n! en

nn
>
√

2πn ·
(

1 +
1

12n+ 1

)
≥
√

2πn ·
(

1 +
1

13n

)
.

3

Corollary 12 For all natural numbers n ≥ 1

1√
2πn

·
(

1− 1

12n

)
<

nn

n! en
<

1√
2πn

·
(

1− 1

14n

)
.

For n→∞
nn

n! en
=

1√
2πn

+ O(
1√
n3

).

Proof. The lower bound is immediate from 1−x ≤ e−x. For the upper bound
we use e−x < 1

1+x = 1− 1
1
x

+1
, and get

nn

n! en
<

1√
2πn

·
(

1− 1

12n+ 2

)
≤ 1√

2πn
·
(

1− 1

14n

)
.

3

Appendix C

Kasiski’s Test: Couldn’t the
Repetitions be by Accident?

C.1 Repetitions in a Polyalphabetic Ciphertext

Kasiski’s method finds the period of a polyalphabetic cipher in the following
way: If a string of characters repeatedly appears in the ciphertext, assume
that the distance between the occurrences is a multiple of the period. Find
as many repetitions as possible and calculate the greatest common divisor
of the distances. This gives the period or a small multiple of it.

For the historic context of this method see [15]; Babbage had invented
the method ten years earlier than Kasiski but never published his results,
see [24].

Kasiski’s method is based on the following observations [16, Section 14]:

1. If a plaintext is encrypted by distinct alphabets that cyclically repeat
with a period of l, and if a certain sequence of letters occurs k times in
the text, then it will be encrypted with the same sequence of alphabets
k/l times in the mean.

2. If a repeating sequence of letters is encrypted by the same sequence
of alphabets, then the ciphertext contains a repeated pattern; the dis-
tance of the two occurrences is a multiple of the period l.

3. Not every repeated pattern in the ciphertext arises in this way; but
the probability of an accidental repetition is noticeably smaller.

Because of observation 3 the cryptanalyst has to omit some of the
distances—by intuition, but essentially by trial and error. Therefore an ob-
vious and natural question is: Is the probability of an accidental repetition
really much smaller, as stated in 3?

The answer is a simple exercise in probability theory, a corollary of the
Birthday Paradox. In spite of its simplicity, there seems to be no explicit

221

K. Pommerening, Classic Ciphers 222

reference to this result in the cryptologic literature in the context of Kasiski’s
method.

The goal of this paper is to show that elementary calculus may give
a satisfying answer to the question in the title. The intermediate results
might be improved by refined theoretic considerations. There is room for
experimental mathematics as well. The final section discusses some open
problems that make up suitable undergraduate projects.

Note. The Birthday Paradox also has other applications in cryptology, the
most renowned is to hash functions: the Birthday Paradox tells how
long the hashes should be in order to avoid collisions (= repetitions),
see [17, Sections 9.5 and 9.7] [20, Section 7.4] [26, Section 7.3]. For
statistical applications see [5, Chapter II, Section 3].

C.2 Counting Repetitions

In several situations we want to know the probability that certain data agree
or that certain events repeat. Here are three sample questions:

• What is the probability that at least two of a group of people meeting
accidentally in the same room share their birthdays?

• What is the probability that at least two of r randomly and indepen-
dently chosen character strings of length t are the same?

• Draw r balls from an urn containing N distinct balls (with replace-
ment). What is the probability that you get at least one of the balls
twice?

Let us calculate the probability in the urn experiment. There are N possible
events of which we observe r (with possible repetitions).

• The probability that the first event is a repetition is 0.

• Therefore the probability that the first event is not a repetition is
1 = N

N .

• The probability that the second event is not a repetition is N−1
N .

• The probability that then also the third event is not a repetition is
N−2
N . (There are N − 2 choices left that don’t give a repetition.)

• The general case: If there was no repetition among the first r − 1
events, then the probability is N−r+1

N that also the r-th event is not a
repetition.

From this we get the following well-known result [5, chapter II, Section 3]:

K. Pommerening, Classic Ciphers 223

Theorem 1 The probability of a repetition in a sequence of r independent
events from a set of N is

K(N, r) = 1−Q(N, r)

where

Q(N, r) =
N · (N − 1) · · · (N − r + 1)

N r
= [1− 1

N
] · · · [1− r − 1

N
].

C.3 Applications

Birthdays: For N ≈ 365.22, r = 23, we have Q(N, r) ≈ 0.493, therefore
the probability of a coincidence is ≈ 0.507. If there are 23 people in
the same room, the probability that two of them share their birthdays,
is greater then 1

2 . From this observation the Birthday Paradox got its
name.

Character strings: Consider strings over the alphabet {A,...,Z}. Choose
r strings of length t randomly and independently: This makes N = 26t

possible events. The probability that at least two strings are identical
is K(26t, r). For r = 100, 300, 1000, 5000 let these probabilities be pt,
qt, rt, st, respectively. Direct calculation from Theorem 1—with the
help of a small computer program—gives Table C.1. The table shows
for example, that for r = 1000 there is more than a 60% chance that
we find two identical four letter strings; but two identical five letter
strings are rather unlikely (probability < 5%).

t→ 1 2 3 4 5 6 7 r ↓
pt 1 1.000 0.246 0.011 0.00042 100
qt 1 1.000 0.923 0.094 0.0038 0.00015 300
rt 1 1 1.000 0.665 0.041 0.0016 1000
st 1 1 1.000 1.000 0.651 0.040 0.0016 5000

Table C.1: Probabilities for repetitions of strings. Entries < 10−4 are omit-
ted. Values given as 1 are exact, values given as 1.000 are rounded off. In
each row the cut point “50% probability” lies between the two entries in
boldface.

C.4 Bounds for the Number of Repetitions

The formula in Theorem 1 is awkward for manual calculation; it also gives
no direct idea of the order of magnitude of the probability. Fortunately,

K. Pommerening, Classic Ciphers 224

using some elementary calculus, we find convenient bounds that also show
the behaviour for large values of the parameters. First we derive an upper
bound for the number K(N, r) of repetitions:

• The probability that the i-th event is a repetition is ≤ i−1
N , because

there were only i− 1 events before.

• Therefore the probability that up to the r-th event there is a repetition
is

K(N, r) ≤ 0

N
+ · · ·+ i− 1

N
+ · · ·+ r − 1

N
=
r(r − 1)

2N
.

From this we get the right inequalities of Theorem 2.

Theorem 2 (i) The probability K(N, r) of a repetition is bounded by

1− e−
r(r−1)

2N ≤ K(N, r) ≤ r(r − 1)

2N
.

(ii) If r ≤
√

2N , then we have

(1− 1

e
) · r(r − 1)

2N
≤ K(N, r) ≤ r(r − 1)

2N
.

or, somewhat weaker,

0.3 · r(r − 1)

N
≤ K(N, r) ≤ 0.5 · r(r − 1)

N
.

(iii) If r ≤
√
N , then K(N, r) < 1

2 .

(iv) If r ≥ 1 +
√

2N ln 2, then K(N, r) > 1
2 .

Proof. The left inequality in (i) follows from the inequality 1− x ≤ e−x for
x ∈ R, hence

Q(N, r) ≤ e−
1
N · · · e−

r−1
N ≤ e−

r(r−1)
2N ,

and K(N, r) = 1−Q(N, r).
The lower bound in (ii) follows from the inequality 1 − e−x ≥ (1 − 1

e)x
in the real interval 0 ≤ x ≤ 1; and this is true because the function f(x) =
1− e−x is concave (∩-shaped), g(x) = (1− 1

e) · x is linear, and f(0) = g(0),
f(1) = g(1).

For (iii) the upper bound simplifies to K(N, r) < r2

2N ≤
N
2N = 1

2 .
In (iv) we have r(r − 1) > 2N ln 2. Therefore the left hand side of (i) is

> 1
2 . 3

Theorem 2 (iii) and (iv) together give the rule of thumb that appears in
many cryptography textbooks, see [20, Section 7.4] [26, Section 7.3]:

K. Pommerening, Classic Ciphers 225

The cut point “50% probability” for repetitions is close to r =
√
N .

More exactly it is between
√
N and 1 + 1.18

√
N . As a special case of

Theorem 2 (iii) with N = nt we immediately get

Theorem 3 For r random character strings of length t over an alphabet of
n characters with r ≤ nt/2 the probability of a repetition is less than 1

2 .

C.5 The Probability of Accidental Repetitions

Now we apply this to the substrings of a random character string of length
r (over an n letter alphabet), where “random” means that each character is
chosen independently and with probability 1

n . We abandon the exact math-
ematical reasoning and make the simplifying assumption that the sub-
strings are stochastically independent; this is clearly not perfectly correct,
because the substrings overlap—but see the discussion in the final section.
We also neglect the fact that a string of length r has only r − t + 1 sub-
strings of length t. Then the probability that a repetition of length t occurs
is (approximately) K(nt, r), and Table C.1 above illustrates the order of
magnitude of these numbers (when n = 26).

Theorem 3 immediately gives: For a random character string of length
r ≤ nt/2 (over an n letter alphabet) the probability of a repetition of length
t is < 1

2 . That means: For random strings up to a length of nt/2 a repetition
of any substring of length t is fairly unlikely. Or to express it conversely:

For random strings of length r a repetition of any substring of
length t is rather unlikely (< 50%) as long as

(A) t ≥ 2 · log r

log n
.

For n = 26 the bound (A) is approximately t ≥ 1.413 · log r (logarithm
in base 10).

This is the main answer to the title question. For a non-
mathematician maybe we would express it as follows:

• For texts of length 100, accidential repetitions of length 3 or more
are rather unlikely; Table C.1 gives the more exact result that the
probability is < 25%.

• For texts of length 300, accidential repetitions of length 4 or more are
rather unlikely (Table C.1: probability < 10%), but at least one acci-

K. Pommerening, Classic Ciphers 226

dental repetition of length 3 occurs with high probability (Table C.1:
> 90%).

And so on—use formula (A), Table C.1, or Theorem 2.
One might wish to derive more statistical results on the probabilities

of repetitions. However the simple statements given here are sufficient as
a justification for Kasiski’s method; in particular considering the cut point
“50%” seems adequate for the cryptanalyst, even if this simplistic view is
somewhat unsatisfactory for the mathematician.

C.6 Kasiski’s Test

When the cryptanalyst carries out Kasiski’s test he doesn’t examine a ran-
dom text. In order to apply the results of the preceding section we have to
make one further simplifying assumption: a polyalphabetic ciphertext
behaves randomly except for the effect of the period. Now when we find a
repetition of length t, and t is as least as large as in (A), then we are pretty
sure that we have found a true (or causal) repetition and the period is a
divisor of the distance. The smaller t is, the more we are prepared to reject
some repetitions; again Table C.1 gives more precise hints for ciphertexts
of lenghts 100, 300, 1000, or 5000. If we find a “long” repetition, we may
assume with extremely high probability that it is a causal repetition.

C.7 Discussion

Are the theoretical results above exact enough for Kasiski’s test in view of
the simplyfing assumptions that we had to make? Here we give only some
coarse empirical results, leaving room for more elaborate investigations.

1. May we really apply the theorems and the resulting Table C.1 to the
substrings of a long character string? to get empirical evidence Wwe
generated 100 random texts of lengths 100 and 300 each, 26 random
texts of lengths 1000, 5000 each, over the 26 character alphabet, and
found no remarkable deviations from the theoretical results derived for
independent strings.

2. Is the number of accidental repetitions in a polyalphabetic ciphertext
really as low as in a random text? We encrypted 100 English plain-
texts of length 300 with keys of lengths 6, 10, and 17 each (with mixed
alphabets by the way). Here we found small deviations: The cipher-
texts seem to have fewer accidental repetitions than random texts, see
figures C.1 and C.2 for key lenghts 6 and 17. A partial explanation is
given below.

K. Pommerening, Classic Ciphers 227

These simulation results confirm that the formulas in this paper apply to
polyalphabetic ciphertexts with negligeable deviations.

Here are some observations and heuristic arguments that could merit
some further investigations:

• Why is the number of accidental repetitions in item 2 smaller than
in random strings? One major effect is: there can be no accidental
repetitions whose distance is a multiple of l, the period of the ci-
pher; each such repetition must be causal since ciphertext and key
conform. Therefore we expect that the number of repetitions (for
any length) is smaller by 1/l. However this is not yet the complete
truth: Non-accidental, but “false”, repetitions may arise in some other
ways, as shown in [1, Section 17.4]: when the key contains a repeated
substring—as in “seventyseven”— or when key and plaintext contain
the same word, for example if the key for a military text contains the
word “division”. It seems hard to adequately adjust a general model to
fit these observations. But unfortunately in exceptional cases these ef-
fects can lead to annoying long “accidental” repetitions, not predicted
by the estimates above.

• How many causal repetitions can we expect? This depends on the
statistics of the plaintext language. Possible approaches are:

– Simulation. In the experiment of item 2 we also counted the causal
repetitions and found significantly more causal than accidental
repetitions. See Figures C.1 and C.2 for repetitions of length 3.

– Start with trigram freqencies and calculate the resulting proba-
bilities for repetitions of length three in a ciphertext, depending
on the key length, under suitable simplifying assumptions.

– Model the language by a Markov source of low order and derive
the relevant probabilities.

• Consider the distribution of the number of repetitions of a fixed
length—in random texts, or accidental or causal repetitions in cipher-
texts. They all seem to follow a Poisson distribution. Determine the
parameters.

Figures C.1 and C.2 show a selection of typical simulation results. The x-
axis represents the number of repetitions of length 3 in one text; note that
one long repetition of length t ≥ 3 counts as t − 2 repetitions of length 3.
The y-value shows how often exactly x repetitions occurred in 100 texts (all
of length 300). The fat gray line gives this frequency for random texts and
serves as reference, it is the same in both diagrams. The thin gray line gives
the frequency of x accidental repetitions, the black line the frequency of x
causal repetitions in the polyalphabetic ciphertexts.

K. Pommerening, Classic Ciphers 228

5 10 15 20 25
5
10
15
20
25
30
35
40

5 10 15 20 25
5
10
15
20
25
30
35
40

Number of repetitions

N
um

be
r

of
 te

xt
s

Figure C.1: Distribution of the number of repetitions in polyalphabetic ci-
phertexts, key length 6. x-axis: number of repetitions of length 3, y-axis:
number of occurrences of x repetitions. Fat gray line: random texts, thin
gray line: accidental repetitions, black line: causal repetitions; one count of
31 causal repetitions falls outside the picture.

5 10 15 20 25
5
10
15
20
25
30
35
40

5 10 15 20 25
5
10
15
20
25
30
35
40

Number of repetitions

N
um

be
r

of
 te

xt
s

Figure C.2: Distribution of the number of repetitions, key length 17.

Appendix D

Empirical Experiments with
Language Statistics

In this appendix we describe the experiments that led to empirical results
on the language statistics

MFL = Most Frequent Letter score

BLW = Bigram Log-Weight score

κ = Coincidence Index of two texts

ϕ = Inner Coincidence Index of a text

χ = Kullback’s Cross-Product Sum

for English and German (and some also for French).

D.1 Empirical Results on MFL Scores

For English we take a text of 20000 letters, an extract from
the Project Gutenberg etext of Kim, by Rudyard Kipling,
http://www.gutenberg.org/ebooks/2226. The partial 20000 letter text
is at http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/

Files/Kim20K.txt. We divide this text into 2000 substrings of
10 letters each. To this set of substrings we apply the Perl script
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Perl

/fritestE.pl. The results are collected and evaluated in a spread-
sheet, found at http://www.staff.uni-mainz.de/pommeren/Cryptology

/Classic/Files/statFriE.xls.
We do the same for random text, constructed by taking 20000 random

numbers between 0 and 25 from random.org, see .../Files/rnd10E.txt.
The Perl script .../Perl/RandOrg.pl transforms the random numbers to
text.

229

http://www.gutenberg.org/ebooks/2226
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Files/Kim20K.txt
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Files/Kim20K.txt
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Perl/fritestE.pl
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Perl/fritestE.pl
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Files/statFriE.xls
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Files/statFriE.xls
http://www.random.org/
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Files/rnd10E.txt
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Perl/RandOrg.pl

K. Pommerening, Classic Ciphers 230

Figure D.1 shows some characteristics of the distribution. Table D.1
compares the expected and observed distributions. For random texts they
match well, taking into account variations caused by drawing a sample.
Also for English the observations seem to match the predicted values. The
empirical values amount to a power of 68% (instead of 67%) and a predictive
value of 75% (75%).

We repeat this procedure for German and French. As texts we
take Schachnovelle by Stefan Zweig, http://gutenberg.spiegel.de

/buch/7318/1, and De la Terre à la Lune by Jules Verne,
http://www.gutenberg.org/ebooks/799. The 20000 letter extracts are
in http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic

/Files/Schach20K.txt and .../Files/Lune20K.txt. We gener-
ate independent random texts, see .../Files/rnd10D.txt and
.../Files/rnd10F.txt. (The random texts being independent, the
observed values for random texts differ.) The Perl scripts, adapted to the
differing collections of most-frequent letters, are .../Perl/fritestD.pl

and .../Perl/fritestF.pl.
The results are in Figures D.2 and D.3, and Tables D.2 and D.3. The

comprehensive evaluation is in the spreadsheets .../Files/statFriD.xls

and .../Files/statFriF.xls.
The empirical values amount to a power of 63% (theory: 67%) and a

predictive value of 75% (75%) for German, and a power of 87% (86%) and
a predictive value of 88% (87%).

Exercise. Verify the calculations of powers and predictive values.

http://gutenberg.spiegel.de/buch/7318/1
http://gutenberg.spiegel.de/buch/7318/1
http://www.gutenberg.org/ebooks/799
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Files/Schach20K.txt
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Files/Schach20K.txt
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Files/Lune20K.txt
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Files/rnd10D.txt
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Files/rnd10F.txt
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Perl/fritestD.pl
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Perl/fritestF.pl
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Files/statFriD.xls
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Files/statFriF.xls

K. Pommerening, Classic Ciphers 231

Figure D.1: MFL scores for 2000 English (blue) and random (red) text
chunks of 10 letters each

Table D.1: Expected and observed frequencies of MFL scores for 2000 English
and 2000 random text chunks of 10 letters

Random English
score expected observed expected observed

0 16 12 0 0
1 98 102 0 0
2 274 256 2 2
3 456 491 8 11
4 500 494 40 52
5 374 380 134 132
6 194 182 318 316
7 70 66 514 513
8 16 15 546 587
9 2 1 344 304
10 0 1 98 83

K. Pommerening, Classic Ciphers 232

Figure D.2: MFL scores for 2000 German (blue) and random (red) text
chunks of 10 letters each

Table D.2: Expected and observed frequencies of MFL scores for 2000 Ger-
man and 2000 random text chunks of 10 letters

Random German
score expected observed expected observed

0 16 22 0 0
1 98 111 0 0
2 274 287 0 3
3 456 443 6 4
4 500 493 32 31
5 374 363 116 110
6 194 184 290 277
7 70 78 500 553
8 16 18 564 632
9 2 1 378 314
10 0 0 114 76

K. Pommerening, Classic Ciphers 233

Figure D.3: MFL scores for 2000 French (blue) and random (red) text chunks
of 10 letters each

Table D.3: Expected and observed frequencies of MFL scores for 2000 French
and 2000 random text chunks of 10 letters

Random French
score expected observed expected observed

0 16 17 0 0
1 98 102 0 0
2 274 290 0 0
3 456 463 2 1
4 500 491 14 5
5 374 376 62 18
6 194 188 196 160
7 70 61 424 472
8 16 11 602 719
9 2 1 506 484
10 0 0 192 141

K. Pommerening, Classic Ciphers 234

D.2 Empirical Results on BLW Scores

We extract 20000 letters from each of the texts Kim, Schachnovelle, and
De la Terre à la Lune, and decompose them into 2000 chunks à 10 let-
ters, see the files eng10a.txt, ger10a.txt, and fra10a.txt in the direc-
tory http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/

Files/. Likewise we generate random texts, see rnd10Ea.txt, rnd10Da.txt,
and rnd10Fa.txt. We collect the results in the spreadsheets ER10res.xls,
DR10res.xls, and FR10res.xls.

The results are summarized in Tables D.4, D.5, D.6, and Figures D.4,
D.5, D.6

The empirical results for the 5%-level of the error of the first kind are as
follows.

English. We take the threshold value T = 11 for English texts. Then 86
of 2000 English scores are ≤ T , the error of the first kind is α =
86/2000 = 4.2%. For random texts 1964 of 2000 scores are ≤ T , the
power is 1964/2000 = 99.5%. There are 36 random scores and 1914
English scores > T , the predictive value for English is 1914/1950 =
98.2%.

German. We take the threshold value T = 12 for German texts. Then 84
of 2000 German scores are ≤ T , the error of the first kind is α =
84/2000 = 4.2%. For random texts 1991 of 2000 scores are ≤ T , the
power is 1991/2000 = 99.6%. There are 9 random scores and 1916
German scores > T , the predictive value for German is 1916/1925 =
99.5%.

French. We take the threshold value T = 11 for French texts. Then 58 of
2000 French scores are ≤ T , the error of the first kind is α = 58/2000 =
2.9%. For random texts 1967 of 2000 scores are ≤ T , the power is
1967/2000 = 98.3%. There are 33 random scores and 1942 French
scores > T , the predictive value for French is 1942/1975 = 98.3%.

The BLW score is significantly stronger than the MFL score.

http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Files/eng10a.txt
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Files/ger10a.txt
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Files/fra10a.txt
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Files/rnd10Ea.txt
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Files/rnd10Da.txt
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Files/rnd10Fa.txt
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Files/ER10res.xls
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Files/DR10res.xls
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Files/FR10res.xls

K. Pommerening, Classic Ciphers 235

Table D.4: Frequencies of BLW scores for English vs. random 10 letter texts

Score Random English

0 ≤ x ≤ 1 32 0
1 < x ≤ 2 97 0
2 < x ≤ 3 187 0
3 < x ≤ 4 254 0
4 < x ≤ 5 324 3
5 < x ≤ 6 301 1
6 < x ≤ 7 271 4
7 < x ≤ 8 216 1
8 < x ≤ 9 156 8
9 < x ≤ 10 77 18
10 < x ≤ 11 49 51
11 < x ≤ 12 25 120
12 < x ≤ 13 6 196
13 < x ≤ 14 3 322
14 < x ≤ 15 2 413
15 < x ≤ 16 0 406
16 < x ≤ 17 0 255
17 < x ≤ 18 0 157
18 < x ≤ 19 0 40
19 < x <∞ 0 5

Figure D.4: BLW scores for 2000 English (red) and random (blue) text
chunks of 10 letters each

K. Pommerening, Classic Ciphers 236

Table D.5: Frequencies of BLW scores for German vs. random texts

Score Random German

0 ≤ x ≤ 1 38 0
1 < x ≤ 2 105 0
2 < x ≤ 3 207 0
3 < x ≤ 4 269 0
4 < x ≤ 5 296 0
5 < x ≤ 6 319 0
6 < x ≤ 7 256 0
7 < x ≤ 8 185 1
8 < x ≤ 9 143 2
9 < x ≤ 10 96 15
10 < x ≤ 11 47 21
11 < x ≤ 12 30 45
12 < x ≤ 13 4 95
13 < x ≤ 14 4 202
14 < x ≤ 15 1 332
15 < x ≤ 16 0 411
16 < x ≤ 17 0 396
17 < x ≤ 18 0 298
18 < x ≤ 19 0 134
19 < x ≤ 20 0 41
20 < x <∞ 0 7

K. Pommerening, Classic Ciphers 237

Figure D.5: BLW scores for 2000 German (red) and random (blue) text
chunks of 10 letters each

Figure D.6: BLW scores for 2000 French (red) and random (blue) text chunks
of 10 letters each

K. Pommerening, Classic Ciphers 238

Table D.6: Frequencies of BLW scores for French vs. random texts

Score Random French

0 ≤ x ≤ 1 122 0
1 < x ≤ 2 195 0
2 < x ≤ 3 266 0
3 < x ≤ 4 315 0
4 < x ≤ 5 274 0
5 < x ≤ 6 264 0
6 < x ≤ 7 215 2
7 < x ≤ 8 140 0
8 < x ≤ 9 94 10
9 < x ≤ 10 53 15
10 < x ≤ 11 29 31
11 < x ≤ 12 21 50
12 < x ≤ 13 8 114
13 < x ≤ 14 2 239
14 < x ≤ 15 2 322
15 < x ≤ 16 0 415
16 < x ≤ 17 0 420
17 < x ≤ 18 0 258
18 < x ≤ 19 0 115
19 < x ≤ 20 0 8
20 < x <∞ 0 1

K. Pommerening, Classic Ciphers 239

Figure D.7: Frequency of coincidence counts for 2000 English text pairs of
100 letters—to get coincidence indices divide x-values by 100

D.3 Empirical Values of the Coincidence Index

The Kappa Distribution for English Texts

We want to learn more about the distribution of coincidence indices
κ(a, b) for English texts (or text chunks) a and b. To this end we
take a large English text—in this case the book The Poisoned Pen by
Arthur B. Reeve (that by the way contains a cryptogram) from Project
Gutenberg—and chop it into chunks a, b, c, d, . . . of r letters each. Then
we count κ(a, b), κ(c, d), . . . and list the values in the first column of
a spreadsheet for easy evaluation. See the Perl program kapstat.pl in
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Perl/

and the spreadsheet EnglKap.xls in http://www.staff.uni-mainz.de/

pommeren/Cryptology/Classic/Files/

In fact we also record the pure incidence counts as integers.
This makes it easier drawing a histogram without generating
discretization artefacts.

The text has 449163 letters. Taking r = 100 we get 2245 text pairs. We take
the first 2000 of them. Table D.7 and Figure D.7 show some characteristics
of the distribution.

The Kappa Distribution for German Texts

We repeat this procedure for German texts, using Scepter und Hammer by
Karl May from the web page of the Karl-May-Gesellschaft. We take the first
2000 text pairs. The results are in Table D.8 and Figure D.8.

http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Perl/kapstat.pl
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Files/EnglKap.xls

K. Pommerening, Classic Ciphers 240

Table D.7: Distribution of κ for 2000 English text pairs of 100 letters

Minimum: 0.00
Median: 0.06 Mean value: 0.0669
Maximum: 0.25 Standard dev: 0.0272
1st quartile: 0.05 5% quantile: 0.0300
3rd quartile: 0.08 95% quantile: 0.1200

Figure D.8: Frequency of coincidence counts for 2000 German text pairs of
100 letters—to get coincidence indices divide x-values by 100

Table D.8: Distribution of κ for 2000 German text pairs of 100 letters

Minimum: 0.00
Median: 0.08 Mean value: 0.0787
Maximum: 0.26 Standard dev: 0.0297
1st quartile: 0.06 5% quantile: 0.0300
3rd quartile: 0.10 95% quantile: 0.1300

K. Pommerening, Classic Ciphers 241

Figure D.9: Frequency of coincidence counts for 2000 random text pairs of
100 letters—to get coincidence indices divide x-values by 100

Table D.9: Distribution of κ for 2000 random text pairs of 100 letters

Minimum: 0.00
Median: 0.04 Mean value: 0.040
Maximum: 0.12 Standard dev: 0.020
1st quartile: 0.03 5% quantile: 0.010
3rd quartile: 0.05 95% quantile: 0.070

The Kappa Distribution for Random Texts

Finally the same procedure for random texts. To this end we generate a
400000 character text by the built-in (pseudo-) random generator of Perl.
Since the simulation might depend on the quality of the random generator
we enhance the random text in the following way: We generate 8132 random
letters by the cryptographically strong BBS-generator and use them as key
for a Belaso encryption of our random text, repeating the key several
times. In spite of this periodicity we may assume that the result gives a
400000 character random text of good quality. This provides us with 2000
text pairs of length 100. The results are in Table D.9 and Figure D.9. Note
that the values fit the theoretical values almost perfectly.

K. Pommerening, Classic Ciphers 242

Figure D.10: Frequency of inner coincidence counts for 2000 English texts
of 100 letters—to get ϕ values divide x-values by 4950

Table D.10: Distribution of ϕ for 2000 English texts of 100 letters

Minimum: 0.0481
Median: 0.0634 Mean value: 0.0639
Maximum: 0.0913 Standard dev: 0.0063
1st quartile: 0.0594 5% quantile: 0.0549
3rd quartile: 0.0677 95% quantile: 0.0750

D.4 The Distribution of the Inner Coincidence In-
dex

The Phi Distribution for English Texts

For empirically determining the distribution of the inner coin-
cidence index ϕ(a) we use the Perl program phistat.pl from
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Perl/.
For English texts (or text chunks) a, we again take a large English text—
in this case the book The Fighting Chance by Robert W. Chambers
from Project Gutenberg—and chop it into chunks a, b, c, d, . . . of r let-
ters each. Then we count ϕ(a), ϕ(b), . . . and list the values in the
first column of a spreadsheet. See the file EnglPhi.xls in http://

www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Files/. The
text has 602536 letters. We take the first 262006 of them and consider the
first 2000 pieces of 100 letters each. Table D.10 and Figure D.10 show some
characteristics of the distribution.

http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Perl/phistat.pl
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Files/EnglPhi.xls

K. Pommerening, Classic Ciphers 243

Figure D.11: Frequency of inner coincidence counts for 2000 German texts
of 100 letters—to get ϕ values divide x-values by 4950

Table D.11: Distribution of ϕ for 2000 German texts of 100 letters

Minimum: 0.0517
Median: 0.0752 Mean value: 0.0763
Maximum: 0.1152 Standard dev: 0.0099
1st quartile: 0.0689 5% quantile: 0.0618
3rd quartile: 0.0828 95% quantile: 0.0945

The Phi Distribution for German Texts

We repeat this procedure for German texts, using Scepter und Hammer by
Karl May. We already consumed its first 400000 letters for κ. Now we take
the next 200000 letters—in fact we skip 801 letters in between—and form
2000 text chunks with 100 letters each. The results are in Table D.11 and
Figure D.11.

The Phi Distribution for Random Texts

And now the same procedure for random text. The results are in Table D.12
and Figure D.12.

The Phi Distribution for 26 Letter Texts

Since the ϕ test performs so excellently for 100 letter texts we dare to look at
26 letter texts—a text length that occurs in the Meet-in-the-Middle attack
against rotor machines.

Here we give the results as tables only.
The decision threshold on the 5%-level is 0.0585. For English texts the

test has a power of only 50%, for German, near 75%. So we have a method

K. Pommerening, Classic Ciphers 244

Figure D.12: Frequency of inner coincidence counts for 2000 random texts
of 100 letters—to get ϕ values divide x-values by 4950

Table D.12: Distribution of ϕ for 2000 random texts of 100 letters

Minimum: 0.0331
Median: 0.0398 Mean value: 0.0401
Maximum: 0.0525 Standard dev: 0.0028
1st quartile: 0.0382 5% quantile: 0.0360
3rd quartile: 0.0418 95% quantile: 0.0451

K. Pommerening, Classic Ciphers 245

Table D.13: Distribution of ϕ for 2000 English texts of 26 letters

Minimum: 0.0227
Median: 0.0585 Mean value: 0.0606
Maximum: 0.1385 Standard dev: 0.0154
1st quartile: 0.0492 5% quantile: 0.0400
3rd quartile: 0.0677 95% quantile: 0.0892

Table D.14: Distribution of ϕ for 2000 German texts of 26 letters

Minimum: 0.0308
Median: 0.0708 Mean value: 0.0725
Maximum: 0.1785 Standard dev: 0.0204
1st quartile: 0.0585 5% quantile: 0.0431
3rd quartile: 0.0831 95% quantile: 0.1108

to recognize monoalphabetic ciphertext that works fairly well for texts as
short as 26 letters.

Table D.15: Distribution of ϕ for 2000 random texts of 26 letters

Minimum: 0.0154
Median: 0.0400 Mean value: 0.0401
Maximum: 0.0954 Standard dev: 0.0112
1st quartile: 0.0338 5% quantile: 0.0246
3rd quartile: 0.0462 95% quantile: 0.0585

K. Pommerening, Classic Ciphers 246

D.5 Kullback’s Cross-Product Sum Statistic

We collect empirical results for 2000 pairs of 100 letter texts us-
ing chistat.pl, from http://www.staff.uni-mainz.de/pommeren/

Cryptology/Classic/Perl/. For English we use the book Dr Thorndyke
Short Story Omnibus by R. Austin Freeman from Project Guten-
berg. We extract a first part of 402347 letters (Thorn1.txt) and
take the first 400000 of them for our statistic. In the same way
for German we use Die Juweleninsel by Karl May from Karl-May-
Gesellschaft (Juwelen1.txt, 434101 letters). For random texts we generate
400000 letters by Perl’s random generator (RndT400K.txt). (All files
in http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/

Files/.)
The results are in Tables D.16, D.17, and D.18. We see that χ—in con-

trast with the coincidence index κ—performs extremely well, in fact in our
experiments it even completely separates English and German texts from
random texts of length 100. It is a test with power near 100% and error
probability near 0%. The χ test even distinguishes between English and
German texts at the 5% error level with a power of almost 75%. For this
assertion compare the 95% quantile for English with the first quartile for
German.

Table D.16: Distribution of χ for 2000 English text pairs of 100 letters

Minimum: 0.0500
Median: 0.0660 Mean value: 0.0663
Maximum: 0.0877 Standard dev: 0.0049
1st quartile: 0.0630 5% quantile: 0.0587
3rd quartile: 0.0693 95% quantile: 0.0745

The results for 100 letter texts encourage us to try 26 letter texts. To this
end we need 104000 letters for each language. We extract the next 104009
letters from Dr Thorndyke Short Story Omnibus (Thorn2.txt), and the next

Table D.17: Distribution of χ for 2000 German text pairs of 100 letters

Minimum: 0.0578
Median: 0.0792 Mean value: 0.0794
Maximum: 0.1149 Standard dev: 0.0074
1st quartile: 0.0742 5% quantile: 0.0677
3rd quartile: 0.0840 95% quantile: 0.0923

http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Perl/chistat.pl
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Files/Thorn1.txt
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Files/Juwelen1.txt
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Files/RndT400K.txt
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Files/Thorn2.txt

K. Pommerening, Classic Ciphers 247

Table D.18: Distribution of χ for 2000 random text pairs of 100 letters

Minimum: 0.0337
Median: 0.0400 Mean value: 0.0400
Maximum: 0.0475 Standard dev: 0.0020
1st quartile: 0.0387 5% quantile: 0.0367
3rd quartile: 0.0413 95% quantile: 0.0433

Table D.19: Distribution of χ for 2000 English text pairs of 26 letters

Minimum: 0.0266
Median: 0.0666 Mean value: 0.0666
Maximum: 0.1169 Standard dev: 0.0120
1st quartile: 0.0577 5% quantile: 0.0488
3rd quartile: 0.0740 95% quantile: 0.0873

104293 letters from Die Juweleninsel (Juwelen2.txt). We construct random
text by taking 104000 random numbers between 0 and 25 from random.org

(RndT104K.txt). The results are in Tables D.19, D.20, and D.21. The χ-test
is quite strong even for 26 letters: At the 5% error level its power is around
91% for English, 98% for German.

Table D.20: Distribution of χ for 2000 German text pairs of 26 letters

Minimum: 0.0325
Median: 0.0784 Mean value: 0.0793
Maximum: 0.1538 Standard dev: 0.0154
1st quartile: 0.0680 5% quantile: 0.0562
3rd quartile: 0.0888 95% quantile: 0.1065

http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Files/Juwelen2.txt
http://www.random.org/
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Files/RndT104K.txt

K. Pommerening, Classic Ciphers 248

Table D.21: Distribution of χ for 2000 random text pairs of 26 letters

Minimum: 0.0178
Median: 0.0385 Mean value: 0.0386
Maximum: 0.0680 Standard dev: 0.0075
1st quartile: 0.0340 5% quantile: 0.0266
3rd quartile: 0.0429 95% quantile: 0.0518

Appendix E

The Euclidean Algorithm

E.1 The Algorithm

Euclid’s algorithm gives the greatest common divisor (gcd) of two integers,

gcd(a, b) = max{d ∈ Z | d|a, d|b}

If for simplicity we define gcd(0, 0) = 0, we have a function

gcd : Z× Z −→ N

with the following properties:

Lemma 1 For any a, b, c, q ∈ Z we have:

(i) gcd(a, b) = gcd(b, a).

(ii) gcd(a,−b) = gcd(a, b).

(iii) gcd(a, 0) = |a|.

(iv) gcd(a− qb, b) = gcd(a, b).

Proof. Trivial; for (iv) use the equivalence d|a, b⇐⇒ d|a− qb, b. 3

One usually writes Euclid’s algorithm as a sequence of divisions with
remainder:

r0 = |a|, r1 = |b|, . . . , ri−1 = qiri + ri+1,

where qi is the integer quotient and ri+1 is the unique division remainder
with 0 ≤ ri+1 < ri. As soon as rn 6= 0 and rn+1 = 0, we have rn = gcd(a, b).
For from Lemma 1 we get

gcd(a, b) = gcd(r0, r1) = gcd(r1, r2) = . . . = gcd(rn, 0) = rn.

249

K. Pommerening, Classic Ciphers 250

Since moreover
r1 > r2 > . . . > ri ≥ 0 for all i,

we reach the terminating condition rn+1 = 0 after at most n ≤ |b| iteration
steps (i. e. divisions).

A small additional consideration even gives more. Note that each ri is an
integer linear combination of the two preceeding division remainders, hence
of |a| and |b|:

ri+1 ∈ Zri + Zri−1 ⊆ . . . ⊆ Zr1 + Zr0 = Za+ Zb;

for r0 and r1 this is immediate, and in the general case it follows by induction:
Let rj = |a|xj + |b|yj for 0 ≤ j ≤ i. Then

ri+1 = ri−1 − qiri = |a|xi−1 + |b|yi−1 − qi|a|xi − qi|b|yi
= |a|(xi−1 − qixi) + |b|(yi−1 − qiyi).

This consideration even gives an explicit construction for the coefficients;
for they sastisfy the recursive formulas

xi+1 = xi−1 − qixi with x0 = 1, x1 = 0,

yi+1 = yi−1 − qiyi with y0 = 0, y1 = 1,

that agree with the formula for the ri except for the start values:

ri+1 = ri−1 − qiri with r0 = |a|, r1 = |b|.

The extended Euclidean algorithm (sometimes called algorithm of La-
grange) is the synopsis of these three recursive formulas. In summary we
have shown (if we properly adjust the signs of xn and yn):

Proposition 1 The extended Euclidean algorithm gives the greatest com-
mon divisor d of two integers a and b and integer coefficients x and y with
ax+ by = d in finitely many steps.

Bemerkungen

1. The least common multiple is efficiently calculated by the formula

lcm(a, b) =
ab

gcd(a, b)
.

2. One calculates the greatest common divisor of several inegers by the
formula

gcd(. . . (gcd(gcd(a1, a2), a3) . . . , ar);

this allows for a bit of optimisation. An analogous statement holds for
the least common multiple.

K. Pommerening, Classic Ciphers 251

E.2 Analysis of Euclid’s Algorithm

The algorithm of the last section has a hidden problem: Though the quo-
tients and division remainders are safely bounded by the input parameters,
the coefficients xi and yi are uncontrolled at first sight. How can we guar-
antee that we don’t get an overflow, if we use the usual integer arithmetic
with bounded precision? Now, the following reasoning controls the growth:

Lemma 2 For the coefficients xi and yi in the extended Euclidean algorithm
we have:

(i) xi > 0, if i is even, xi ≤ 0, if i is odd, and |xi+1| ≥ |xi| for i = 1, . . . , n.

(ii) yi ≤ 0, if i is even, yi > 0, if i is odd, and |yi+1| ≥ |yi| for i = 2, . . . , n.

(iii) xi+1yi − xiyi+1 = (−1)i+1 for i = 0, . . . , n; in particular the xi and yi
are always coprime for i = 0, . . . , n+ 1.

(iv) |xi| ≤ |b|, |yi| ≤ |a| for i = 0, . . . , n+ 1, if b 6= 0 resp. a 6= 0.

Proof. (Sketch.) Show (i), (ii), and (iii) by induction. From 0 = rn+1 =
|a|xn+1 + |b|yn+1 then follows xn+1|b and yn+1|a. 3

The Euclidean algorithm is very efficient—the number of iteration steps
grows only linearly with the number of digits of the input parameters, the
entire execution time only quadratically. In the following we perform a quite
exact analysis. Without loss of generality we may assume b 6= 0.

Given the length n of the division chain—how large must b be? We have
rn ≥ 1, rn−1 ≥ 2, and ri−1 ≥ ri + ri+1. The Fibonacci numbers Fn are
recursively defined by

F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2 for n ≥ 2.

Hence by induction we get ri ≥ Fn+2−i, where the induction starts with
rn ≥ 1 = F2, rn−1 ≥ 2 = F3; in particular we get |b| ≥ Fn+1. In other words:

Proposition 2 (Binet 1841) For a, b ∈ Z with 0 < b < Fn+1 the Eucliden
algorithm finds the greatest common divisor in at most n−1 iteration steps.

Addendum. This is true also for b = Fn+1, except if a ≡ Fn+2 ≡ Fn
(mod b).

This gives a quite elegant mathematical formulation, but not yet an ex-
plicit bound. However the growth of the Fibonacci numbers is well-known.

One can express it by the golden section ϕ = 1+
√

5
2 , that is defined by

ϕ2 − ϕ− 1 = 0.

K. Pommerening, Classic Ciphers 252

Lemma 3 For a real number c ∈ R and an index k ∈ N let Fk > c · ϕk and
Fk+1 > c · ϕk+1. Then Fn > c · ϕn for all n ≥ k.

Proof. (By induction.)

Fn = Fn−1 + Fn−2 > cϕn−1 + cϕn−2 = cϕn−2(ϕ+ 1) = cϕn

for n ≥ k + 2. 3

Corollary 1 Fn+1 > 0.43769 · ϕn+1 for n ≥ 2.

Proof.

ϕ2 = ϕ+ 1 =
3 +
√

5

2
,

ϕ3 = ϕ2 + ϕ = 2 +
√

5,

ϕ4 = ϕ3 + ϕ2 =
7 + 3

√
5

2
.

Therefore

F3

ϕ3
=

2

2 +
√

5
=

2(
√

5− 2)

1
= 2
√

5− 4 > 0.47,

F4

ϕ4
=

3 · 2
7 + 3

√
5

=
6(7− 3

√
5)

49− 45
=

21− 9
√

5

2
> 0.43769

which proves the assertion. 3

Corollary 2 Let a, b ∈ Z with b ≥ 2. Then the number of iteration steps in
the Euclidean algorithm for gcd(a, b) is less then 0.718 + 4.785 · log10(b).

Proof. If the division chain has length n, then b ≥ Fn+1,

b ≥ Fn+1 > 0.43769 · ϕn+1,

log10(b) > log10(0.43769) + (n+ 1) · log10(ϕ) > −0.35884 + 0.20898 · (n+ 1),

hence n < 0.718 + 4.785 · log10(b). 3

Somewhat coarser, but simply to remember, is the following version:

Corollary 3 Let a, b ∈ Z with b ≥ 2. Then the number of iteration steps
in the Euclidean algorithm for gcd(a, b) is less then five times the number
of digits of b except for b = 8, a ≡ 5 (mod 8), where 5 iteration steps are
needed.

K. Pommerening, Classic Ciphers 253

If we additionally consider the costs for the multiplication and division
of large numbers depending on their number of digits, we get a working time
that grows quadratically with the number of digits as shown in the following.

If a has m digits (with respect to a base B of the integers), and b has p
digits, then the expense for the first division alone is already ≤ c · (m−p) ·p;
here c is a constant that is at most twice as large as the constant that
bounds the expense for “multiplying quotient × divisor back”. Considering
actual computer architectures we would take B = 232 or 264, and count
the basic operations addition, subtraction, multiplication, division with re-
mainder, and comparison of 1-digit numbers (in base B) as primitive steps.
Fortunately the involved numbers shrink in an exponential way along the
Euclidean division chain. The division step

ri−1 = qiri + ri+1

yet requires ≤ c · logB(qi) logB(ri) primitive operations, hence the entire
division chain needs

A(a, b) ≤ c ·
n∑
i=1

logB(qi) logB(ri) ≤ c · logB |b| ·
n∑
i=1

logB(qi)

= c · logB |b| · logB(q1 · · · qn).

We further estimate the product of the qi:

|a| = r0 = q1r1 + r2 = q1(q2r2 + r3) + r2 = . . . = q1 · · · qnrn + · · · ≥ q1 · · · qn

and get the coarse bound

A(a, b) ≤ c · logB |b| · logB |a| .

Proposition 3 The number of primitive operations in the Euclidean algo-
rithm for two integers a and b with ≤ m digits is ≤ c ·m2.

Note that c is a known small constant.
So the expense for the Euclidean algorithm with input a and b is not

significantly larger then the expense for multiplying a and b. We won’t dis-
cuss sharper estimates or potential enhancements of this bound. But note
that an algorithm by Lehmer allows replacing a great amount of divisions
of large numbers in the division chain by primitive operations.

E.3 Congruence Division

The extended Euclidean algorithm also provides a solution of the—not
entirely trivial—problem of efficient division in the ring Z/nZ of integers
mod n.

K. Pommerening, Classic Ciphers 254

Proposition 4 Let n ∈ N, n ≥ 2, and a, b ∈ Z with gcd(b, n) = d. Then a
is divisible by b in Z/nZ, if and only if d|a. In this case there are exactly d
solutions z of zb ≡ a (mod n) with 0 ≤ z < n, and any two of them differ
by a multiple of n/d. If d = xn+ yb and a = td, then z = yt is a solution.

Proof. If b divides a, then a ≡ bz (mod n), so a = bz + kn, hence d|a. For
the converse let a = td. By Proposition 1 we find x, y with nx + by = d;
hence nxt + byt = a and byt ≡ a (mod n). If also a ≡ bw (mod n), then
b(z − w) ≡ 0 (mod n), hence z − w a multiple of n/d. 3

Proposition 4 contains an explicit algorithm for the division. An impor-
tant special case is d = 1 with a notably simple formulation:

Corollary 1 If b and n are coprime, then each a in Z/nZ is divisible by b
in a unique way.

Since d = 1 the calculation of the inverse y of b follows immediately from
the formula 1 = nx+ by; for by ≡ 1 (mod n).

Corollary 2 (Z/nZ)× = {b mod n | gcd(b, n) = 1}.

Therefore the invertible elements of the ring Z/nZ are exactly the equiv-
alence classes of the integers coprime with n. The most important case is:
n = p prime:

Corollary 3 Fp := Z/pZ is a field.

Proof. For b ∈ Fp, b 6= 0 there is exactly one c ∈ Fp with bc = 1. 3

Corollary 4 (Fermat’s Little Theorem) ap ≡ a (mod p) for all a ∈ Z.

Proof. The elements 6= 0 of Fp form the multiplicative group F×p . Because
the order of an element always divides the group order, we have ap−1 ≡ 1
(mod p) for a coprime with p. Otherwise we have p|a, hence a ≡ 0 ≡ ap

(mod p). 3

E.4 The Chinese Remainder Algorithm

The Chinese remainder problem asks for the solution of simultaneous con-
gruences. The simplest case worth of mention is:

K. Pommerening, Classic Ciphers 255

Proposition 5 (Chinese Remainder Theorem) Let m and n coprime nat-
ural numbers ≥ 1, and a, b arbitrary integers. Then there is exactly one
integer x, 0 ≤ x < mn, such that

x ≡ a (mod m), x ≡ b (mod n).

Proof. Let us first show the uniqueness: If y is another solution, then y =
x + km = x + ln with integers k und l, and km = ln. Since m and n are
coprime we conclude n|k, k = cn,

y = x+ cmn ≡ x (mod mn).

For the existence proof we try x = a+ tm; then necessarily x ≡ a (mod m)
and

x ≡ b (mod n)⇐⇒ b− a ≡ x− a ≡ tm (mod n).

Such a t exists by Proposition 4. Reduce this solution x mod(mn). 3

The proof was constructive and easily leads to an algorithm. In the
general case, for multiple congruences, the Chinese remainder problem looks
like follows:

• Given q pairwise coprime integers n1, . . . , nq ≥ 1 and q integers
a1, . . . , aq,

• find an integer x such that x ≡ ai (mod ni) for i = 1, . . . q.

One approach is suitably adapting Proposition 5. More interesting is an
abstract formulation that also comprises interpolation of polynomials; also
in this more general formulation we recognise Proposition 5 together with
its proof, if we bear in mind that for integers m and n with greatest common
divisor d we have the equivalences:

m,n coprime⇐⇒ d = 1⇐⇒ Zm+ Zn = Z.

Proposition 6 (General Chinese Remainder Theorem) Let R be a commu-
tative ring with 1, q ≥ 1, a1, . . . , aq � R ideals with ai + aj = R for i 6= j.
Let a1, . . . , aq ∈ R be given. Then there exists an x ∈ R with x − ai ∈ ai
for i = 1, . . . , q, and the equivalence class x mod a1 ∩ · · · ∩ aq is uniquely
determined.

Proof. As before the uniqueness is quite simple: If x − ai, y − ai ∈ ai, then
x− y ∈ ai; if this is true for all i, then x− y ∈ a1 ∩ · · · ∩ aq.

We prove the existence by induction on q. In the case q = 1 we simply
take x = a1. Now let q ≥ 2, and assume y with y−ai ∈ ai for i = 1, . . . , q−1
is already found. Idea: We can add to y an s ∈ a1∩ · · ·∩aq−1 without giving
up what we already have, the solution of the first q−1 congruences. We need

K. Pommerening, Classic Ciphers 256

the statement: For each r ∈ R there is an s ∈ a1 ∩ · · · ∩ aq−1 with r− s ∈ aq,
or in other words,

(a1 ∩ · · · ∩ aq−1) + aq = R.

To prove this intermediate assertion we choose ci ∈ ai for i = 1, . . . , q − 1
and b1, . . . , bq−1 ∈ aq with bi + ci = 1. Then

1 = (b1 + c1) · · · (bq−1 + cq−1) = c1 · · · cq−1 + b

with c1 · · · cq−1 ∈ a1 ∩ · · · ∩ aq−1 and b ∈ aq.
Now for aq − y ∈ R choose an s ∈ a1 ∩ · · · ∩ aq−1 with aq − y − s ∈ aq,

and set x = y + s. Then x ≡ y ≡ ai (mod ai) for i = 1, . . . , q − 1, and
x ≡ y + s ≡ aq (mod aq). 3

Remarks and Examples

1. For R = Z or any principal ideal domain, and ai = Rni we have
a1 ∩ · · · ∩ aq = R(n1 · · ·nq). From this we get the usual formulation of
the Chinese Remainder Theorem.

2. If R is a principal ideal domain, then the construction of the solution
proceeds as follows: If ai = Rni, then choose s in the intermediate
assertion such that s = tn1 · · ·nq−1 with

r − tn1 · · ·nq−1 ∈ Rnq

(congruence division mod nq). Therefore an explicit algorithm for the
Chinese remainder problem exists in R, if one exists for the congruence
division, in any case for R = Z.

3. In the case R = Z we iteratively calculate

x1 = a1 mod n1, s1 = n1,

ti with 0 ≤ ti ≤ ni − 1 and ai − xi−1 − tisi−1 ∈ Rni,
xi = xi−1 + tisi−1, si = si−1ni.

In particular sk = n1 · · ·nk. By induction one immediately proves
0 ≤ xi ≤ si − 1 for all i. Finally one gets the solution x = xq. This
consideration guarantees that none of the intermediate results causes
an overflow. The expense essentially consists of q − 1 congruence di-
visions and 2 · (q − 1) ordinary integer multiplications. Therefore the
total expense is of order cq× (the expense for a multiplication of long
integers) with a small constant c.

4. The general look of the solution formula is

x = x1 + t1n1 + · · ·+ tq−1n1 · · ·nq−1.

K. Pommerening, Classic Ciphers 257

5. As an example we treat Sun-Tsu’s problem from the 1st Century. In
our notation its formulation is: Find x such that

x ≡ 2 (mod 3), x ≡ 3 (mod 5), x ≡ 2 (mod 7).

Our algorithm gives step by step:

x1 = 2, s1 = 3,

1− 3t2 ∈ 5Z, t2 = 2,

x2 = 2 + 2 · 3 = 8, s2 = 15,

−6− 15t3 ∈ 7Z, t3 = 1,

x = x3 = 8 + 1 · 15 = 23.

6. For the polynomial ring K[T] over a field K the interpolation problem
is a special case of the Chinese remainder problem. Our algorithm in
this case is just Newton’s interpolation procedure.

E.5 Euler’s Phi Function

An important application of the Chinese Remainder Theorem follows; we
assume n ≥ 2. The integers mod n form the ring Z/nZ. The multiplicative
group mod n consists of the invertible elements of this ring, and is compactly
denoted by

Mn := (Z/nZ)×.

Its order is given by the Euler ϕ function:

ϕ(n) = #Mn = #{a ∈ [0 · · ·n− 1] | a coprime with n}.

Corollary 1 For m and n coprime, ϕ(mn) = ϕ(m)ϕ(n).

Proof. The Chinese Remainder Theorem just says that the natural ring
homomorphism

F : Z/mnZ −→ Z/mZ× Z/nZ, x 7→ (x mod m,x mod n),

is bijective, hence even a ring isomorphism. Moreover F (Mmn) = Mm×Mn.
Therefore

ϕ(mn) = #Mmn = #Mm ·#Mn = ϕ(m)ϕ(n),

as was to be shown. 3

If p is prime, then ϕ(p) = p − 1. More generally ϕ(pe) = pe − pe−1 =
pe(1− 1

p), if e ≥ 1, because pe exactly has the divisors px with 1 ≤ x ≤ pe−1.
From Corollary 1 we conclude:

K. Pommerening, Classic Ciphers 258

Corollary 2 Let n = pe11 · · · perr be the prime decomposition (all ei ≥ 1).
Then

ϕ(n) = n ·
r∏
i=1

(1− 1

pi
).

Bibliography

[1] F. L. Bauer, Decrypted Secrets; Methods and Maxims of Cryptology.
Springer, Berlin 1997.

[2] E. Cesàro, Corso di analisi algebrica con introduzione al calcolo in-
finitesimale. Bocca, Torino 1894.

[3] C. A. Deavours, Unicity points in cryptanalysis. Cryptologia 1 (1977),
469–684.

[4] C. A. Deavours, L. Kruh, Machine Cryptography and Modern Crypt-
analysis. Artech House, Norwood 1985.

[5] W. Feller, An Introduction to Probability Theory and Its Applications.
Volume I. Wiley, New York 1957.

[6] A. Fisher, Mathematical Theory of Probabilities. Macmillan, New York
1915.

[7] W. F. Friedman, The Riverbank Publications Volume 1 (contains Pub-
lications No. 15, 16, 17, and 18). Aegean Park Press, Laguna Hills
1979.

[8] R. Ganesan, A. T. Sherman, Statistical Techniques for Language
Recognition: An Introduction and Guide for Cryptanalysts. Cryptolo-
gia 17 (1993), 321–366.

[9] R. Ganesan, A. T. Sherman, Statistical Techniques for Language
Recognition: An Empirical Study Using Real and Simulated English.
Cryptologia 18 (1994), 289–331.

[10] A. M. Gleason, Elementary Course in Probability for the Cryptanalyst.
Aegean Park Press, Laguna Hills 1985.

[11] M. E. Hellman, An extension of the Shannon theory approach to cryp-
tography. IEEE Trans Information Theory 23 (1977), 289–294.

[12] A. M. Jaglom, I. M, Jaglom, Wahrscheinlichkeit und Information.
VEB Deutscher Verlag der Wissenschaften, Berlin 1967.

259

K. Pommerening, Classic Ciphers 260

[13] H. Jürgensen, Language redundancy and the unicity point. Cryptolo-
gia 7 (1983), 37–48.

[14] H. Jürgensen, D. E. Matthews, Some results on the information theo-
retic analysis of cryptosystems. Crypto 83, 303–356.

[15] D. Kahn, The Codebreakers. Macmillan, New York 1967.

[16] S. Kullback, Statistical Methods in Cryptanalysis. Aegean Park Press,
Laguna Hills 1976.

[17] A. J. Menezes, P. C. van Oorschot, S. A. Vanstone, Handbook of Ap-
plied Cryptography. CRC Press, Boca Raton 1997.

[18] J. Reeds, Entropy calculations and particular methods of cryptanaly-
sis. Cryptologia 1 (1977), 235–254.

[19] H. Robbins, A remark on Stirling’s formula. Amer. Math. Monthly 62
(1955), 26–29.

[20] B. Schneier, Applied Cryptography. John Wiley, New York 1996.

[21] C. E. Shannon, A mathematical theory of communication. Bell System
Technical Journal 27 (1948), 379–423, 623–656.

[22] C. E. Shannon, Communication theory of secrecy systems. Bell System
Technical Journal 28 (1949), 656–715.

[23] C. E. Shannon, The entropy of printed english. Bell System Technical
Journal 30 (1941), 50–64.

[24] S. Singh, The Code Book. Fourth Estate, London 1999.

[25] A. Sinkov, Elementary Cryptanalysis. The Mathematical Association
of America, Washington, 1966.

[26] D. R. Stinson, Cryptography – Theory and Practice. CRC Press, Boca
Raton 1995.

[27] J. Stirling, Methodus Differentialis: sive Tractatus de Summatione et
Interpolatione Serierum Infinitarum. G. Strahan, Londini (London)
1730.

	Cryptology as Entertainment—Literature and Puzzles
	Monoalphabetic Substitutions
	Mathematical Model of Cryptography
	Shift Ciphers
	Cryptanalysis of Shift Ciphers by Exhaustion
	Monoalphabetic Substitution
	Algorithms and Programming in Perl
	Cryptanalysis of Monoalphabetic Substitution
	Statistical Analysis of Ciphertext
	Example of a Statistical Cryptanalysis
	Pattern Search
	Example of Cryptanalysis by Pattern Search
	Known Plaintext Attack
	Early History of Cryptology
	Variants of Cryptographic Procedures

	Polyalphabetic Substitutions
	Key Alphabets
	The Invention of Polyalphabetic Substitution
	Tools for Polyalphabetic Substitution
	Mathematical Description of Periodic Polyalphabetic Substitution
	The Cipher Disk Algorithm
	Analysis of Periods
	Cryptanalysis of a Polyalphabetic Ciphertext
	Rearranging the Columns
	Summary

	Some Statistical Properties of Languages
	Recognizing Plaintext: Friedman's Most-Frequent-Letters Test
	Empirical Results on MFL Scores
	Application to the Cryptanalysis of the Bellaso Cipher
	Recognizing Plaintext: Sinkov's Log-Weight Test
	Recognizing Plaintext: The Log-Weight Method for Bigrams
	Empirical Results on BLW Scores
	Coincidences of Two Texts
	Empirical Values for Natural Languages
	Autoincidence of a Text
	The Inner Coincidence Index of a Text
	The Distribution of the Inner Coincidence Index
	Sinkov's Formula
	Sinkov's Test for the Period
	Kullback's Cross-Product Sum Statistic
	Adjusting the Columns of a Disk Cipher
	Modeling a Language by a Markov Process
	Stochastic Languages

	Cylinder Ciphers
	Introduction
	Idea and History of Cylinder Ciphers
	Mathematical Description of Cylinder Ciphers
	The Bazeries Cylinder
	Cryptanalysis of Cylinder Ciphers
	Breaking the Bazeries Cylinder
	Consequences from Cryptanalysis
	Key Generators with Long Periods

	Rotor Machines
	One-Rotor Ciphers
	Mathematical Description of Rotors
	Cryptanalysis of One-Rotor Ciphers (with Unknown Alphabet)
	Rotor Machines
	The Control Logic of a Rotor Machine
	Historical Rotor Machines
	Historical Data on Cryptanalysis
	Cryptanalysis of Rotor Machines

	The Enigma
	General Description
	Mathematical Description
	Cryptanalysis of Enigma: General Remarks
	Cryptanalysis of the Enigma Without Plugboard
	Example
	Message Key Analysis by Rejewski
	Wehrmacht Enigma and Known Plaintext
	Example 2
	Example 3
	Discussion

	Aperiodic Polyalphabetic Ciphers
	Running-Text Ciphers
	Cryptanalytic Approaches to Running-Text Ciphers
	Cryptanalysis According to Friedman
	Other Applications of Running-Text Analysis
	Random Keys
	Autokey Ciphers
	Example: Cryptanalysis of an Autokey Cipher
	Similarity of Ciphers

	Transpositions
	Transpositions and Their Properties
	Examples
	Cryptanalysis of a Columnar Transposition (Example)
	Cryptanalytic Approaches
	Bigram Frequencies
	The Values of Bigram Scores
	A more systematic approach
	The Similarity of Columnar and Block Transpositions

	Linear Ciphers
	Matrices over Rings
	Elimination over the Integers
	The Linear Cipher
	The Number of Invertible Matrices over a Residue Class Ring
	Cryptanalysis of the Linear Cipher

	Theoretical Security
	A Priori and A Posteriori Probabilities
	Perfect Security
	Examples of Perfect Security
	Density and Redundancy of a Language
	Unicity Distance
	Cryptological Applications

	Permutations and Rejewski's Theorem
	The Symmetric Group
	Description of Permutations
	Group Theoretic Interpretation
	Partitions
	Conjugate Permutations
	Centralizers of Permutations
	Transpositions
	The Alternating Group
	Involutions
	Products of Proper Involutions

	Stirling's Formula
	Kasiski's Test: Couldn't the Repetitions be by Accident?
	Repetitions in a Polyalphabetic Ciphertext
	Counting Repetitions
	Applications
	Bounds for the Number of Repetitions
	The Probability of Accidental Repetitions
	Kasiski's Test
	Discussion

	Empirical Experiments with Language Statistics
	Empirical Results on MFL Scores
	Empirical Results on BLW Scores
	Empirical Values of the Coincidence Index
	The Distribution of the Inner Coincidence Index
	Kullback's Cross-Product Sum Statistic

	The Euclidean Algorithm
	The Algorithm
	Analysis of Euclid's Algorithm
	Congruence Division
	The Chinese Remainder Algorithm
	Euler's Phi Function

