Cryptology Part I: Classic Ciphers (Mathematical Version)

Klaus Pommerening
Fachbereich Physik, Mathematik, Informatik
der Johannes-Gutenberg-Universität
Saarstraße 21
D-55099 Mainz

October 25, 1999-English version October 5, 2013-last change January 19, 2021

Preliminary Note

This text is somewhat incomplete. It focusses on the mathematical background of Cryptology. People without mathematical ambitions may browse the HTML pages - these are informal and hopefully self-contained. Also for historical or motivational stuff I often refer to the accompanying web pages

```
http://www.staff.uni-mainz.de/pommeren/Cryptology/
```


Motivational Hints

Classical cryptography considers ciphers in use up to the 1970's, that is, in the precomputer era. Today no one seriously uses these ciphers. Why does it make sense dealing with them?

- We get a feeling for the security of the basic encryption steps that are in use as components of the more complex ciphers of today.
- The complexity of modern techniques becomes perspicuous.
- Most of the mathematical foundations are relevant also for modern cryptologic techniques.
- We may learn a lot from the failures of the past-many of the commonly accepted principles of cryptology arose a long time ago. In short: The algorithms are out-of-date, the methods and principles are up-todate.
- Classical cryptology makes a good part of general education, not only for mathematicians or computer scientists. In particular it provides many interesting project ideas for undergraduates or even school children.
- Classical cryptology provides intellectual challenges-better than chess, poker, or war games [:-)]. The puzzle corners of journals often contain puzzles whose cryptological background shines through.
- And last but not least: occupation with classical cryptology is fun.

Elonka Dunin's web site "Famous Unsolved Codes and Ciphers" has an overview over unsolved "historic" cryptograms:

> http://www.elonka.com/UnsolvedCodes.html
"The Secret Code Breaker" (Bob Reynard) has a lot of elementary material that's also great for kids:
http://www.secretcodebreaker.com/
CrypTool also contains a lot of educational material and challenges:

```
http://www.cryptool.org/en/
```

CrypTool online contains lots of classic ciphers which are explained and executable in a browser or on a smartphone:

```
http://www.cryptool-online.org/en/
```

MysteryTwister C3, abbreviated MTC3, is a crypto cipher contest with currently more than 180 challenges created by more than 40 authors and used by more than 5000 solvers. The website has a moderated forum. The challenges are distributed in 4 different levels:

```
http://www.mysterytwisterc3.org/
```

Klaus Schmeh has a blog with the latest news in classic cryptology and many unsolved ciphers (German mostly):

```
http://scienceblogs.de/klausis-krypto-kolumne/
```


Conventions

In order to not get lost in less relevant and nasty details most examples in this chapter follow the model:

- Ciphertexts are written in uppercase letters without word boundaries, employing the 26 letter alphabet A...Z.
- Plaintexts are written in upper-, lower-, or mixed-case letters, with or without word boundaries and punctuation.

The mathematical considerations try to be as general as possible with respect to the used alphabet.

Gender Mainstreaming: It is common use in modern cryptology to staff the scenarios with men and women alternately. Alice and Bob are communicating partners, Eve is the eavesdropper, and Mallory, the "man in the middle". In classical cryptology the role of the cryptanalyst corresponds to the eavesdropper. For this reason in the following we consider the cryptanalyst as female in honor of the famous cryptanalysts Elizebeth Friedman, Joan Clarke, and Mavis Lever.

Chapter 0

Cryptology as
 Entertainment-Literature and Puzzles

See the web pagehttp://www.staff.uni-mainz.de/pommeren/Cryptology /Classic/O_Entertain/

Chapter 1

Monoalphabetic Substitutions

1.1 Mathematical Model of Cryptography

We want to give a formal definition of the following two concepts:

- An encryption function transforms arbitrary character strings into other character strings. (Where the strings are from a given alphabet.)
- A cipher is a parametrized family of encryption functions. The parameter is called the key. It determines the choice of a function from the family.
The purpose of this construct is that nobody can invert the encryption function except people who know the key. That is, an encrypted message (or a text, a file ...) is kept secret from third parties. These can see that there is a message, but they cannot read the contents of the message because they don't have the key and therefore don't know which of the functions from the family to invert.

Alphabets and Texts

Let Σ be a finite set, and call it alphabet. Call its elements letters (or symbols, or characters).

Examples. Here are some alphabets of cryptographic relevance:

- $\{\mathrm{A}, \mathrm{B}, \ldots, \mathrm{Z}\}$, the standard 26 letter alphabet of classical cryptography.
- The 95 character alphabet of printable ASCII characters from "blank" to "tilde", including punctuation marks, numbers, lowercase, and uppercase letters.
- $\{0,1\}=\mathbb{F}_{2}$, the alphabet of bits, or the field of two elements. The earliest appearence (after BaUER[1) is Bacon 1605.
- \mathbb{F}_{2}^{5}, the alphabet used for telegraphy code since Baudot (1874). It has 32 different symbols and also goes back to Bacon (after Bauer[1]).
- \mathbb{F}_{2}^{8}, the alphabet of bytes (correctly: octets, because in early computers bytes did not necessarily consist of exactly 8 bits). The earliest appearance seems to be at IBM around 1964.
- More generally \mathbb{F}_{2}^{l}, the alphabet of l-bit blocks. Often $l=64$ (for example in DES or IDEA), or $l=128$ (for example in AES). See Part II (on Bitblock Ciphers).

Often the alphabet Σ is equipped with a group structure, for example:

- \mathcal{Z}_{n}, the cyclic group of order $n=\# \Sigma$. Often we interpret the calculations in this group as arithmetic $\bmod n$, as in elementary number theory, and denote \mathcal{Z}_{n} by $\mathbb{Z} / n \mathbb{Z}$, the residue class ring of integers $\bmod n$.
- \mathbb{F}_{2} with the field addition + , as Boolean operator often denoted by XOR or \oplus. (Algebraists like to reserve the symbol \oplus for direct sums. For this reason we'll rarely use it in the Boolean context.)
- \mathbb{F}_{2}^{l} as l-dimensional vector space over \mathbb{F}_{2} with vector addition, denoted by + , XOR, or \oplus.

For an alphabet Σ we denote by Σ^{*} the set of all finite sequences from Σ. These sequences are called texts (over Σ). A subset $M \subseteq \Sigma^{*}$ is called a language or plaintext space, and the texts in M are called meaningful texts or plaintexts.

Note that the extreme case $M=\Sigma^{*}$ is not excluded.

Ciphers

Let K be a set (finite or infinite), and call its elements keys.
Definition (i) An encryption function over Σ is an injective map $f: \Sigma^{*} \longrightarrow \Sigma^{*}$.
(ii) A cipher (also called encryption system or cryptosystem) over Σ with key space K is a family $F=\left(f_{k}\right)_{k \in K}$ of encryption functions over Σ.
(iii) Let F be a cipher over Σ, and $\tilde{F}=\left\{f_{k} \mid k \in K\right\} \subseteq \operatorname{Map}\left(\Sigma^{*}, \Sigma^{*}\right)$ be the corresponding set of different encryption functions. Then $\log _{2}(\# K)$ is called the key length, and $d(F)=\log _{2}(\# \tilde{F})$, the effective key length of the cipher F.

Remarks

1. This is not the most general definition of an encryption function. One could also consider non-injective functions, or even relations that are not functions, or are not defined on all of Σ^{*}.
2. Strictly speaking, the encryption functions need to be defined only on the plaintext space M, however we almost always consider encryption functions that are defined on all of Σ^{*}.
3. The encryption functions $f_{k}, k \in K$, need not be pairwise different. Therefore in general $\# \tilde{F} \leq \# K$, and effective key length \leq key length. If K is infinite, then \tilde{F} can be finite or infinite. In general the key length is easier to determine than the effective key length, however it is less useful.
4. The elements in the ranges $f_{k}(M)$ depend on the key k. They are called ciphertexts.
5. Note that the identification of the alphabet Σ with the integers $\bmod n$, $\mathbb{Z} / n \mathbb{Z}$, also defines a linear order on Σ. We often implicitely use this order. In some cases for clarity we must make it explicit.

1.2 Shift Ciphers

Assume that the alphabet is linearly ordered. A shift cipher replaces each letter of the plaintext by the letter that follows a certain number k of positions in the alphabet. If the end of the alphabet is reached, restart at the beginning. That means, we consider cyclic shifts. The number k is the key.

Decryption works in the reverse direction: Count backwards from the ciphertext letter.

Example 1: Original Caesar

Here $\Sigma=\{\mathrm{A}, \ldots, \mathrm{Z}\}=\mathcal{Z}_{26}$, hence $A \leftrightarrow 0, B \leftrightarrow 1, \ldots, Z \leftrightarrow 25$. CaESAR used the fixed key $k=3$. Encryption looks like follows

```
C A E S A R | +3 (plaintext)
F D H V D U (ciphertext)
```

Note that the original Roman alphabet had only 23 letters without J, U, W. However in this part of the lecture we (almost) always use the 26 letter alphabet.

As key space we could also take $K=\mathbb{Z}$. Then the key length is ∞. But effectively we only have 26 different encryption functions, one of them being trivial. Therefore the effective key length is only $\log _{2}(26) \approx 4.7$.

Example 2: Rot13

ROT13 is a shift cipher over the alphabet $\{\mathrm{A}, \ldots, \mathrm{Z}\}$ that shifts each letter by 13 positions ahead in the alphabet. As mnemonic take the table

```
A B C DEFGHIJKLM
N O P Q R S T U V W X Y Z
```

As encryption function this is almost useless. Its purpose is hiding some texts, say of offensive content, from immediate recognition. The reader of the message can figure it out only by a conscious act.

Because $13+13=26$, double encryption restores the plaintext. That is, ROT13 is an involution. Or in other words: encryption = decryption as functions.

Example 3: XOR

This example extends the notion of shift cipher towards the more general version given in the mathematical description below. In this sense XOR is a shift cipher on the space of l-bit blocks. Thus our alphabet is the l dimensional vector space \mathbb{F}_{2}^{l} over the two element field \mathbb{F}_{2}. The operation XOR is the addition of vectors in this space (because XOR of bits is the addition in the field \mathbb{F}_{2}). The key is a fixed block k. Each plaintext block a is XORed with k bitwise, that is, "shifted" (or translated) by k.

Mathematical Description

Let the alphabet Σ be a finite group G with n elements and with group composition *. As key space also take $K=G$. For $k \in K$ let

$$
f_{k}: \Sigma^{*} \longrightarrow \Sigma^{*}
$$

be the continuation of the right translation $f_{k}(s)=s * k$ for $s \in \Sigma$, that is

$$
f_{k}\left(a_{1}, \ldots, a_{r}\right)=\left(a_{1} * k, \ldots, a_{r} * k\right) \quad \text { for } a=\left(a_{1}, \ldots, a_{r}\right) \in \Sigma^{r} .
$$

The effective key length is $d(F)=\log _{2}(n)$. Thus the key space is quite small and is easily completely searched except when n is VERY LARGE. An example will follow in the next section.

1.3 Cryptanalysis of Shift Ciphers by Exhaustion

General Approach

The most primitive of all cryptanalytic attacks is exhaustion, also known as brute force attack. It consists of a complete key search - run through the complete key space K, and try key after key until you get a valid decryption.

Assume that K is finite (as it is in all practical situations). Then the attacker needs $\# K$ steps in the worst case, and $\# K / 2$ steps in the mean. This method applies to all ciphers. A precondition for the success is the redundancy of the plaintext language that allows distinguishing between meaningful text and nonsense character sequences. In general the solution is unique as soon as the length of the text exceeds the "unicity distance" of the cipher, see Chapter 10.

For distinguishing between meaningful and meaningless texts, algorithms that compute language statistics may be used, see Chapter 3.

Solving Shift Ciphers

```
FDHVDU
GEIWEV
HFJXFW
IGKYGX
JHLZHY
KIMAIZ
LJNBJA
MKOCKB
NLPDLC
OMQEMD
PNRFNE
QOSGOF
RPTHPG
SQUIQH
TRVJRI
USWKSJ
VTXLTK
WUYMUL
XVZNVM
YWAOWN
ZXBPXO
AYCQYP
BZDRZQ
CAESAR
DBFTBS
ECGUCT
```

This is an example for solving a shift cipher by exhaustion. The first row is the ciphertext from the last section. The following rows contain the candidate plaintexts for each possible key one after the other.

Only the row CAESAR makes sense as plaintext. Hence the ciphertext is decrypted and the key is 3 .

Note that each column contains the standard alphabet, cyclically continued. From this observation a purely mechanical approach derives: Produce some vertical strips containing the alphabet twice, and arrange them beneath each other in such a way that one row contains the ciphertext. Then scan the other rows for meaningful plaintext.

Because of this scheme the exhaustion method is sometimes called "generatrix method". This notation comes from an analogy with cipher cylinders, see Chapter 4.

Lessons Learned

1. Shift ciphers are solvable as soon as the attacker has some small amount of ciphertext, at least when the alphabet is not too large and the language is only a small part of all character sequences. (Later we'll express this as "high redundancy" or "low entropy", see Chapter 10.)
2. A cipher should use a large key space (or rather a large effective key length). But bear in mind:

The effective key length measures the complexity of the exhaustion attack. But in general it is an insufficient measure of the complexity of the cryptanalysis of a cipher.

In other words: In many cases there are more efficient attacks against a cipher than exhaustion.

1.4 Monoalphabetic Substitution

Introductory Example

The key of a monoalphabetic substition is a permutation of the alphabet, for example:

ABCDEFGHIJKLMNOPQRSTUVWXYZ
 UNIVERSTABCDFGHJKLMOPQWXYZ

For encryption locate each letter of the plaintext in the first row of this table, and replace it by the letter below it. In our example this becomes:

```
ENGLI SHAST RONOM ERWIL LIAML ASSEL LDISC OVERE DTRIT ON
EGSDA MTUMO LHGHF ELWAD DAUFD UMMED DVAMI HQELE vOLAO HG
```

For decryption we use the inverse permutation, given by the table

Mathematical Description

Let $\mathcal{S}(\Sigma)$ be the group of permutations of the alphabet Σ, that is the full symmetric group. See Appendix A for an introduction to permutations.

A monoalphabetic substitution consists of the elementwise application of a permutation $\sigma \in \mathcal{S}(\Sigma)$ to texts:

$$
f_{\sigma}\left(a_{1}, \ldots, a_{r}\right):=\left(\sigma a_{1}, \ldots, \sigma a_{r}\right) \quad \text { for }\left(a_{1}, \ldots, a_{r}\right) \in \Sigma^{r}
$$

Definition A monoalphabetic cipher over the alphabet Σ with keyspace $K \subseteq \mathcal{S}(\Sigma)$ is a family $\left(f_{\sigma}\right)_{\sigma \in K}$ of monoalphabetic substitutions.

Examples 1. The shift cipher where $K=$ the set of right translations.
2. The general monoalphabetic cipher where $K=\mathcal{S}(\Sigma)$. Here $\# K=n$! with $n=\# \Sigma$.

The Effective Key Length

The general monoalphabetic cipher F defeats the exhaustion attack, even with computer help. The n ! different keys define n ! different encryption functions. Therefore

$$
d(F)=\log _{2}(n!) \geq n \cdot\left[\log _{2}(n)-\log _{2}(e)\right] \approx n \cdot \log _{2}(n)
$$

by Stirling's formula, see Appendix B. For $n=26$ we have for example

$$
n!\approx 4 \cdot 10^{26}, \quad d(F) \approx \log _{2}(26!) \approx 88.38
$$

Note that for a ciphertext that doesn't contain all letters of the alphabet the search is somewhat faster because the attacker doesn't need to determine the entire key.

1.5 Algorithms and Programming in Perl

See the web pagehttp://www.staff.uni-mainz.de/pommeren/Cryptology /Classic/1_Monoalph/MonoPerl.html

1.6 Cryptanalysis of Monoalphabetic Substitution

General Approach

The cryptanalysis of the monoalphabetic substitution makes use of its invariants, that is of properties of a text that remain unchanged under encryption:

1. The distribution of the frequencies of single characters is invariant.

- This means that a letter in the ciphertext occurs exactly as many times as the corresponding letter in the plaintext.
- The same is true for bigrams (= pairs of letters), trigrams, ..., n-grams.

2. Repeated patterns in the plaintext show up also in the ciphertext.

Both of these invariant properties suggest cryptanalytic approaches:

1. Statistical analysis
2. Pattern recognition (for example matching with the words of a dictionary)

Often the cryptanalyst combines both of these approaches, and supplements them with systematic guesses:

- Cryptography is Mathematics.
- Cryptanalysis is struggling, using all available aids.

Only in rare situations cryptanalysis is completely algorithmic. But no matter which method applies and how clean its theoretical basis is, the successful solution legitimates the cryptanalyst.

1.7 Statistical Analysis of Ciphertext

Character Frequencies

Natural languages such as German, English, Russian, ..., and also artificial languages such as MS-DOS-EXE, ..., Pascal, ..., MS-Word, ..., show typical character frequencies that are

- nonuniformly distributed,
- characteristic for the language.

Texts of about 500 or 1000 letters in a natural language rareley show a significant deviation from the typical frequencies.

This allows automating the cryptanalysis based on letter frequencies to a large extent. The web offers several such programs, for example see the ACA Crypto Dropbox [http://www.und.nodak.edu/org/crypto/crypto/].

Mathematical Model

The simplest mathematical model for statistical analysis of ciphertext is a probability distribution on the underlying (finite) alphabet Σ with atomic probabilities $p(s)$ for all letters $s \in \Sigma$. Thus we assume that plaintexts are streams of independent (but not uniformly distributed) random letters.

A closer approximation to the truth would account for dependencies of letters from their predecessors according to the typical bigram distribution.

There are further possible refinements, for example the most frequent initial letter of a word in English is T, in German, D.

Example: Byte Frequencies in MS-Word Files

Byte	Frequency
00	ca $7-70 \%$
01	ca $0.8-17 \%$
$20=$ space	ca $0.8-12 \%$
$65=$ e	ca $1-10 \%$
FF	ca $1-10 \%$

Observations

- The variability is rather large, unexpected peaks occur frequently.
- The distribution depends on the software version.
- All bytes 00-FF occur.
- We see long sequences of zero bytes. If the file is encrypted by XOR, large parts of the key shine through.

The last remark yields an efficient method for analysis of the XOR encryption of a WORD file with periodically repeated key. This not exactly a statistical cryptanalysis, it only uses the frequency of a single byte. To start with, pairwise add the blocks. If one of the plaintext blocks essentially consists of zeroes, then the sum is readable plaintext:

| Plaintext | \ldots | $a_{1} \ldots$ | a_{s} | \ldots | 0 | \ldots | 0 | \ldots |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Key (repeated) | \ldots | $k_{1} \ldots$ | k_{s} | \ldots | k_{1} | \ldots | k_{s} | \ldots |
| Ciphertext | \ldots | $c_{1} \ldots$ | c_{s} | \ldots | c_{1}^{\prime} | \ldots | c_{s}^{\prime} | \ldots |

where $c_{i}=a_{i}+k_{i}$ in the first block, and $c_{i}^{\prime}=0+k_{i}$ in the second block for $i=1, \ldots, s$ (s the blocksize).

Therefore $c_{i}+c_{i}^{\prime}=a_{i}+k_{i}+k_{i}=a_{i}$,-one block of plaintext revealed and identified-; and $k_{i}=c_{i}^{\prime}$ - the key revealed.

If the addition of two cipher text blocks yields a zero block, then with high probability both plaintext blocks are zero blocks (or with small probability are identical nonzero blocks). Also in this case the key is revealed.

1.8 Example of a Statistical Cryptanalysis

See web pages http://www.staff.uni-mainz.de/pommeren/Kryptologie /Klassisch/1_Monoalph/Beispiel.html (in German) or http://www.staff.uni-mainz.de/pommeren/Kryptologie/Klassisch /O_Unterhaltung/Lit/Goldbug_Crypto.html (in English)

1.9 Pattern Search

Word Lists

The second basic approach to cryptanalysis of the monoalphabetic substitution is the search for patterns in the ciphertext that correspond to the patterns of

- supposed words (probable words),
- words from a list.

This method is cumbersome if done by hand but easy with computer support that completely searches lists of several 100000 words in a few seconds.

Searching for a probable word is a variant of pattern search. We search for the pattern of a word that we suspect from knowledge of the context as occuring in the plaintext.

Numerical Patterns for Strings

To normalize letter patterns we describe them by numbers. Here is an example: The word "statistics" defines the pattern 1232412451. The general procedure is: Replace the first letter by 1. Then replace each following letter by

- the number that was assigned to this letter before,
- the next unused number, if the letter occurs for the first time.

Here is a formal definition:

Definition Let Σ be an alphabet. Let a_{1}, \ldots, a_{q} be letters from Σ. The pattern belonging to the string $\left(a_{1}, \ldots, a_{q}\right)$ ist the q-tuple $\left(n_{1}, \ldots, n_{q}\right) \in$ \mathbb{N}^{q} of numbers that is defined recursively by

- $n_{1}:=1$.
- For $k=2, \ldots, q$:

If there is an i with $1 \leq i<k$ and $a_{k}=a_{i}$, then $n_{k}:=n_{i}$, else $n_{k}:=1+\max \left\{n_{i} \mid 1 \leq i<k\right\}$.

Remarks

1. $n_{i}=n_{j} \Longleftrightarrow a_{i}=a_{j}$ for $1 \leq i \leq j \leq q$.
2. $\left\{n_{1}, \ldots, n_{q}\right\}=[1 \ldots m]$ where $m=\#\left\{a_{1}, \ldots, a_{q}\right\}$ ($=$ number of different letters in $\left(a_{1}, \ldots, a_{q}\right)$).

Algorithmic Description

Goal: Determine the numerical pattern of a string.
Input: The string as a list string $=\left(a_{1}, \ldots, a_{q}\right)$.
Output: The numerical pattern as a list pattern $=\left(n_{1}, \ldots, n_{q}\right)$.
Initial value: pattern $=$ empty list.

Auxiliary variables:

- $n=$ current number, initial value $=0$.
- assoc $=$ list of processed letters.

The index i belongs to the letter assoc[i].
Initial value: assoc = empty list.
Procedure: Loop over the letters in string. The current letter is x .
If there is an i with $\mathrm{x}=\operatorname{assoc}[\mathrm{i}]$, then append i to pattern,
else increment n, append n to pattern, append \mathbf{x} to assoc.
For a Perl program that implements this algorithm see the web page http://www.staff.uni-mainz.de/pommeren/Cryptology /Classic/1_Monoalph/PattPerl.html

1.10 Example of Cryptanalysis by Pattern Search

See the web pagehttp://www.staff.uni-mainz.de/pommeren/Cryptology /Classic/1_Monoalph/Puzzle.html

1.11 Known Plaintext Attack

See the web pagehttp://www.staff.uni-mainz.de/pommeren/Cryptology /Classic/1_Monoalph/knownplain.html

1.12 Early History of Cryptology

See the web pagehttp://www.staff.uni-mainz.de/pommeren/Cryptology /Classic/1_Monoalph/EarlyHist.html

1.13 Variants of Cryptographic Procedures

Some Definitions

Substitution: Letters or groups of letters are replaced by other ones.
Monoalphabetic substitution: Each letter is replaced by another letter that is always the same.

Polyalphabetic substitution: Each letter is replaced-depending on its position in the text-by another letter. (The most important method of classical cryptography in the 20th century up to the sixties)

Monographic substitution: Letters are replaced by symbols one at a time.

Polygraphic substitution: In each step one or more letters are replaced by several symbols.

Homophonic substitution: For some plaintext letters or groups there are several choices of ciphertext symbols.
A mathematical model uses a probability space Ω and considers encryption functions of the type

$$
f_{k}: M \times \Omega \longrightarrow \Sigma^{*} .
$$

This is called probabilistic encryption.
Transposition: The letters of the plaintext are permuted.
Codebook: Letter groups of various lengths (for example entire words) are replaced by other ones according to a list. Since the Renaissance this was in use under the denomination Nomenclator. It was the most used encryption method even in the 20th Century, especially by diplomats.

Source coding (superencrypted code): The plaintext is transformed with a codebook, and the resulting "intermediate text" is encrypted by some kind of substitution.

Book cipher: Plaintext words or letters are looked up in a certain book. As ciphertext one takes the position of the word or letter in the book, for example page number, line number, number of the word (or number of the letter).

Block cipher: In each step a fixed number of letters is substituted at once.
Stream cipher: In each step a single letter is substituted, each time in another way, depending on its position in the plaintext.

Product cipher: A sequence of several transpositions and block substitutions is applied one after the other (also called cipher cascade).

Polygraphic Substitution

For a fixed l in each step an l-gram (block of l letters) is encrypted at once.
As simplest nontrivial example we consider bigraphic substitution. Here pairs of letters are encrypted together. The easiest description of the cipher is by a large square of sidelength $n=\# \Sigma$. An example for the standard alphabet:

	\mathbf{a}	\mathbf{b}	\mathbf{c}	\mathbf{d}	\ldots
\mathbf{a}	CA	FN	BL	\ldots	\ldots
\mathbf{b}	SK	WM	\ldots	\ldots	\ldots
\mathbf{c}	HP	\ldots	\ldots	\ldots	\ldots
\mathbf{d}	\cdots	\cdots	\ldots	\ldots	\ldots
\ldots	\cdots	\cdots	\cdots	\cdots	\ldots

With this table BA is encrypted as SK .
The earliest historical example was given by Porta in 1563. His bigram table however contained strange symbols meeting the spirit of the time. A picture is on the web page http://www.staff.uni-mainz.de/pommeren /Cryptology/Classic/1_Monoalph/PortaBi.gif

Properties of the Polygraphic Substitution

1. The key space of a bigraphic substitution is the set $\mathcal{S}\left(\Sigma^{2}\right)$ of all permutations of the Cartesian product $\Sigma \times \Sigma$. It contains the huge number of n^{2} ! keys. (Of course one also could restrict the keys to a subspace.) The effective keylength is

$$
d(F)=\log _{2}\left(n^{2}!\right) \approx n^{2} \cdot \log _{2}\left(n^{2}\right)=2 \cdot n^{2} \cdot \log _{2}(n) .
$$

For $n=26$ this amounts to about 4500. Exhaustion surpasses all present or future computer capacity.
2. Compared with a monoalphabetic (and monographic) substitution the frequency distribution of single letters is flattened down. A statistical analysis therefore must resort to bigram frequencies and is a lot harder. Pattern recognition and search for probable words also is harder, but not so much. Also more general attacks with known plaintext are feasible.
3. We may interpret a polygraphic substitution of l-grams as a monographic substitution over the alphabet $\tilde{\Sigma}=\Sigma^{l}$ of l-grams. The larger
l, the more complicated is the cryptanalysis. However for the general polygraphic substitution also the complexity of specifying the key grows with n^{l}, that is exponentially with l. Therefore this encryption method is useful only with a restricted keyspace. That means we need to fix a class of substitutions $\Sigma^{l} \longrightarrow \Sigma^{l}$ whose description is much shorter than the complete value table of n^{l} entries.
A bigraphic example from history is the Playfair cipher, invented by Wheatstone.
4. Polygraphic substitutions are the predecessors of modern block ciphers.

Codebooks

See the web page http://www.staff.uni-mainz.de/pommeren/Cryptology /Classic/1_Monoalph/Codebook.html

Chapter 2

Polyalphabetic Substitutions

2.1 Key Alphabets

The Idea of Polyalphabetic Cipher

A polyalphabetic cipher-like a monoalphabetic one - encrypts each letter by a substitution that is defined by a permuted alphabet. However for each letter another alphabet is used, depending on its position in the plaintext.

Thus polyalphabetic encryption breaks the invariants that led to successful cryptanalysis of monoalphabetic substitutions:

- Letter frequencies
- l-gram frequencies
- Patterns

This method was considered unbreakable until the 19th Century, its variants that used cipher machines even until the begin of the computer era. Nevertheless before cipher machines became available polyalphabetic substitution was rarely used because it requires concentrated attention by the operator, and the ciphertext often is irreparably spoiled by encryption errors.

The Key of a Monoalphabetic Substitution

The key of a monoalphabetic substitution over the alphabet Σ is a permutation $\sigma \in \mathcal{S}(\Sigma)$. It has a unique description by the sequence of substituted letters in the order of the alphabet, that is by the family $(\sigma(s))_{s \in \Sigma}$.

Example for the standard alphabet $\Sigma=\{$ A, ..., Z $\}$

1. representation by the permutation table:
```
A B C D E FG H I J K L M N OP Q R S T U V W X Y Z
BCD F G H I J K M N W S T U V W X Y Z P A R O L E
```

2. or representation by the permuted alphabet alone:
B C D F GH I J K M N W S T UV W X Y Z P A R O L E

The term "monoalphabetic" reflects that this one (permuted) alphabet defines the complete encryption function.

The Key of a Polyalphabetic Substitution

Now let us write several permuted alphabets below each other and apply them in order: the first alphabet for the first plaintext letter, the second alphabet for the second letter and so on. In this way we perform a polyalphabetic substitution. If the list of alphabets is exhausted before reaching the end of the plaintext, then we restart with the first alphabet. This method is called periodic polyalphabetic substitution.

Example for the standard alphabet with 5 permuted alphabets

```
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
KNQT W Z C F I L O R U X A D G J M P S V Y B E H
L O R U X A D G J M P S V Y B E H K N Q T W Z C F I
A D G J M P S V Y B E H K N Q T W Z C F I L O R U X
U X A D G J M P S V Y B E H K N Q T W Z C F I L O R
S V Y B E H K N Q T W Z C F I L O R U X A D G J M P
```

Using these alphabets we encrypt

Classification of Polyalphabetic Substitutions

We classify polyalphabetic substitutions by four independent binary properties:

- Periodic (or repeated key)
- Aperiodic (or running key)
depending on whether the alphabets repeat cyclically or irregularly.
- Independent alphabets
- Primary alphabet and accompanying secondary alphabets
where secondary alphabets derive from the primary alphabet by a fixed recipe. In the example above we took simple cyclical shifts. A closer inspection reveals that the definition of the shifts is given by the keyword KLAUS.
- Progressive alphabet change
- Alphabet choice controlled by a key
depending on whether the alphabets are used one after the other in their original order, or the order is changed by a key.
- Contextfree
- Contextsensitive
depending on whether the alphabets depend only on the position in the text, or also on some adjacent plaintext or ciphertext letters.

In general we take a set of alphabets (only n ! different alphabets are possible at all), and use them in a certain order, periodically repeated or not. Often one takes exactly n alphabets, each one beginning with a different letter. Then one can control the alphabet choice by a keyword that is cyclically repeated, or by a long keytext that is at least as long as the plaintext.

2.2 The Invention of Polyalphabetic Substitution

Polyalphabetic Encryption in Renaissance

See the web pagehttp://www.staff.uni-mainz.de/pommeren/Cryptology /Classic/2_Polyalph/Renaissance.html

The Trithemius Table (aka Vigenère Table)

This table is used for polyalphabetic substitution with the standard alphabet and its cyclically shifted secondary alphabets. It has n rows. The first row consists of the alphabet Σ. Each of the following rows has the alphabet cyclically shifted one position further to the left. For the standard alphabet this looks like this:

```
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
B C D E F G H I J K L M N O P Q R S T U V W X Y Z A
C D E F G H I J K L M N O P Q R S T U V W X Y Z A B
D E F G H I J K L M N O P Q R S T U V W X Y Z A B C
E F G H I J K L M N O P Q R S T U V W X Y Z A B C D
FG H I J K L M N O P Q R S T U V W X Y Z A B C D E
G H I J K L M N O P Q R S T U V W X Y Z A B C D E F
H I J K L M N O P Q R S T U V W X Y Z A B C D E F G
I J K L M N O P Q R S T U V W X Y Z A B C D E F G H
JKLMNOPQRRSTUV W X Y Z A B C D E F G H I
KLMNOPQQRSTUV W X Y Z A B C D E F G H I J
LMNOPQRSTUV W X Y Z A B C D E F G H I J K
MNOPQR ST U V W X Y Z A B C D E F G H I J K L
N O P Q R S T U V W X Y Z A B C D E F G H I J K L M
O PQRS T U V W X Y Z A B C D E F G H I J K L M N
PQRS T U V W X Y Z A B C D E F G H I J K L M N O
Q R S T U V W X Y Z A B C D E F G H I J K L M N O P
R S T U V W X Y Z A B C D E F G H I J K L M N O P Q
S T U V W X Y Z A B C D E F G H I J K L M N O P Q R
T U V W X Y Z A B C D E F G H I J K L M N O P Q R S
U V W X Y Z A B C D E F G H I J K L M N O P Q R S T
V W X Y Z A B C D E F G H I J K L M N O P Q R S T U
W X Y Z A B C D E F G H I J K L M N O P Q R S T U V
XYZABCDEFGHI J KLMNOPQRSTUV W
Y Z A B C D E F G H I J K L M N O P Q R S T UV W X
ZABCDEFGHI J K L MNOPQRSTUV W X Z
```

Trithemius used it progressively, that is he used the n alphabets from top to down one after the other for the single plaintext letters, with cyclic repetition.

Note that this procedure involves no key and therefore is not an encryption in the proper sense. Its security is only by obscurity.

Notwithstanding this weakness even Trithemius's method results in a crucial improvement over the monoalphabetic substitution: Each letter is encrypted to each other the same number of times in the mean. The frequency distribution of the ciphertext is perfectly uniform.

The Bellaso Cipher (aka Vigenère Cipher)

Even Vigenère himself attributes this cipher to Bellaso. It uses the Trithemius table but with the alphabet choice controlled by a keyword: for each plaintext letter choose the row that begins with this letter. This method uses a key and therefore is a cipher in the proper sense.

As an example take the keyword MAINZ. Then the 1st, 6 th, 11 th, ... plaintext letter is encrypted with the "M row", the 2nd, 7 th, 12 th, \ldots with the "A row" and so on. Note that this results in a periodic CaEsar addition of the keyword:

```
pol y a l p h a b e t i c
M A I N Z M A I N Z M A I N
B O T L Z X P P N A Q T Q P
```

In general the Bellaso cipher uses a group structure on the alphabet Σ. For the key $k=\left(k_{0}, \ldots, k_{l-1}\right) \in \Sigma^{l}$ we have
Encryption: $c_{i}=a_{i} * k_{i \bmod l}$
Decryption: $a_{i}=c_{i} * k_{i \bmod l}^{-1}$
The first one who described this cipher algebraically as an addition apparently was the French scholar Claude Comiers in his 1690 book using a 18 letter alphabet. Lacking a suitable formal notation his description is somewhat long-winded. Source:

Joachim von zur Gathen: Claude Comiers: The first arithmetical cryptography. Cryptologia 27 (2003), 339-349.

2.3 Tools for Polyalphabetic Substitution

See the web pagehttp://www.staff.uni-mainz.de/pommeren/Cryptology /Classic/2_Polyalph/Tools.html

2.4 Mathematical Description of Periodic Polyalphabetic Substitution

The General Case

In general a periodic polyalphabetic cipher has a key space $K \subseteq \mathcal{S}(\Sigma)^{l}$, consisting of sequences of l permutations of the alphabet Σ. The key $k=$ $\left(\sigma_{0}, \ldots, \sigma_{l-1}\right)$ defines the encryption function $f_{k}: \Sigma^{r} \longrightarrow \Sigma^{r}$ given by

$$
\begin{array}{lllllllll}
a_{0} & a_{1} & \ldots & a_{l-1} & a_{l} & \ldots & a_{i} & \ldots & a_{r-1} \\
\downarrow & \downarrow & & \downarrow & \downarrow & & \downarrow & & \\
\sigma_{0} a_{0} & \sigma_{1} a_{1} & \ldots & \sigma_{l-1} a_{l-1} & \sigma_{0} a_{l} & \ldots & \sigma_{i \bmod l} a_{i} & \ldots & \ldots
\end{array}
$$

The componentwise encryption formula for $c=f_{k}(a) \in \Sigma^{r}$ is

$$
c_{i}=\sigma_{i \bmod l}\left(a_{i}\right),
$$

and the formula for decryption

$$
a_{i}=\sigma_{i \bmod l}^{-1}\left(c_{i}\right)
$$

Effective Key Length

Bellaso Cipher

The primary alphabet is the standard alphabet, and we assume the cryptanalyst knows it. The key is chosen as word (or passphrase) $\in \Sigma^{l}$. Therefore

$$
\begin{aligned}
\# K & =n^{l} \\
d(F) & =l \cdot \log _{2}(n) .
\end{aligned}
$$

For $n=26$ this amounts to $\approx 4.70 \cdot l$. To avoid exhaustion l should be about 10 (pre-computer age), or about 20 (computer age). However there are far more efficient attacks against this cipher than exhaustion, making these proposals for the key lengths obsolete.

Disk Cipher

The key consists of two parts: a permutation $\in \mathcal{S}(\Sigma)$ as primary alphabet, and a keyword $\in \Sigma^{l}$. Therefore

$$
\begin{aligned}
\# K & =n!\cdot n^{l}, \\
d(F) & =\log _{2}(n!)+l \cdot \log _{2}(n) \approx(n+l) \cdot \log _{2}(n)
\end{aligned}
$$

For $n=26$ this amounts to $\approx 4.70 \cdot l+88.38$.
If the enemy knows the primary alphabet, say be capturing a cipher disk, the effective key length reduces to that of the Bellaso cipher.

A More General Case

For a periodic polyalphabetic cipher that uses l independent alphabets,

$$
\begin{aligned}
K & =\mathcal{S}(\Sigma)^{l}, \\
d(F) & =\log _{2}\left((n!)^{l}\right) \approx n l \cdot \log _{2}(n) .
\end{aligned}
$$

For $n=26$ this is about $88.38 \cdot l$.

Another View

An l-periodic polyalphabetic substitution is an l-gram substitution, or block cipher of length l, given by the product map

$$
\left(\sigma_{0}, \ldots, \sigma_{l-1}\right): \Sigma^{l}=\Sigma \times \cdots \times \Sigma \longrightarrow \Sigma \times \cdots \times \Sigma=\Sigma^{l}
$$

that is, a monoalphabetic substitution over the alphabet Σ^{l}. In particular the Bellaso cipher is the shift cipher over Σ^{l}, identified with $(\mathbb{Z} / n \mathbb{Z})^{l}$.

For $\Sigma=\mathbb{F}_{2}$ the Bellaso cipher degenerates to the simple XOR on \mathbb{F}_{2}^{l}.

2.5 The Cipher Disk Algorithm

Mathematical Notation

Take the alphabet $\Sigma=\left\{s_{0}, \ldots, s_{n-1}\right\}$, and interpret (or code) it as the additive group of the ring $\mathbb{Z} / n \mathbb{Z}$. The key $(\sigma, k) \in \mathcal{S}(\Sigma) \times \Sigma^{l}$ of a disk cipher consists of a primary alphabet (represented by the permutation σ) and a keyword $k=\left(k_{0}, \ldots, k_{l-1}\right) \in \Sigma^{l}$. Our notation for the corresponding encryption function is

$$
f_{\sigma, k}: \Sigma^{*} \longrightarrow \Sigma^{*}
$$

Special case: The Bellaso cipher with keyword k is $f_{\varepsilon, k}$ where $\varepsilon \in \mathcal{S}(\Sigma)$ denotes the identity permutation.

The Alphabet Table

We arrange the alphabets for the polyalphabetic substitution in form of the usual table:

s_{0}	s_{1}	s_{2}	\ldots	s_{n-1}
t_{0}	t_{1}	t_{2}	\ldots	t_{n-1}
t_{1}	t_{2}	t_{3}	\ldots	t_{0}
\ldots	\ldots	\ldots	\ldots	\ldots
t_{n-1}	t_{0}	t_{1}	\ldots	t_{n-2}

where $t_{i}=\sigma s_{i}$ for $0 \leq i \leq n-1$.
Note that whenever we refer to an alphabet table we implicitely use an order on the alphabet Σ. This order manifests itself by indexing the letters as s_{0}, \ldots, s_{n-1}.

The Encryption Function

Now we encrypt a text $a=\left(a_{0}, a_{1}, a_{2}, \ldots\right) \in \Sigma^{r}$ using this notation. Let $a_{i}=s_{q}$ and $k_{i}=t_{p}$ as letters of the alphabet. Then we read the ciphertext letter c_{i} off from row p and column q of the table:

$$
c_{i}=t_{p+q}=\sigma s_{p+q}=\sigma\left(s_{p}+s_{q}\right) \quad[\text { sums in } \mathbb{Z} / n \mathbb{Z}] .
$$

We have

$$
k_{i}=t_{p}=\sigma\left(s_{p}\right), \quad s_{p}=\sigma^{-1}\left(k_{i}\right), \quad \text { hence } c_{i}=\sigma\left(a_{i}+\sigma^{-1}\left(k_{i}\right)\right) .
$$

If we denote by f_{σ} the monoalphabetic substitution corresponding to σ, then this derivation proves:

Theorem 1 The disk cipher $f_{\sigma, k}$ is the composition (or "superencryption") of the Bellaso encryption $f_{\varepsilon, k^{\prime}}$, where $k^{\prime}=f_{\sigma}^{-1}(k)$, with the monoalphabetic substitution f_{σ},

$$
f_{\sigma, k}=f_{\sigma} \circ f_{\varepsilon, k^{\prime}}
$$

Algorithm

The naive straightforward algorithm for the disk cipher is

- Take the next plaintext letter.
- Take the next alphabet.
- Get the next ciphertext letter.

From Theorem 1 we derive an algorithm that is a bit more efficient:

1. Take $k^{\prime}=f_{\sigma}^{-1}(k)$, in coordinates $k_{i}^{\prime}=\sigma^{-1}\left(k_{i}\right)$ for $0 \leq i<l$.
2. Add a and (the periodically extended) k^{\prime} over $\mathbb{Z} / n \mathbb{Z}$, and get b, in coordinates $b_{j}=a_{j}+k_{j \bmod l}^{\prime}$
3. Take $c=f_{\sigma}(b) \in \Sigma^{r}$, in coordinates $c_{j}=\sigma\left(b_{j}\right)$.

A Perl program implementing this algorithm is on the web page http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Perl/ porta.pl, the corresponding program for decryption on http://www. staff.uni-mainz.de/pommeren/Cryptology/Classic/Perl/portadec.pl They can be called online from the pages http://www.staff.uni-mainz. de/pommeren/Kryptologie/Klassisch/2_Polyalph/portaenc.html and http://www.staff.uni-mainz.de/pommeren/Kryptologie/Klassisch/ 2_Polyalph/portadec.html

2.6 Analysis of Periods

Kasiski's approach

Already in the 16th Century Porta and the Argentis occasionally broke polyalphabetic encryptions by guessing the key or a probable word. For some more historical bits see the web page http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/ 2_Polyalph/AnaPer.html

An attack with known plaintext is easy against a disk cipher as soon as the primary alphabet is compromised, for example by a lost cipher disk. It is trivial against the Bellaso cipher that uses the standard alphabet. In contrast it is quite difficult against ciphers that use independent alphabets.

In 1863 the Prussian Major F. W. Kasiski published a solution that immediately demolished the belief in the security of periodic polyalphabetic ciphers. In fact BABBAGE had found this method ten years before but never published it. Therefore it is appropriate to credit the method to Kasiski.

The solution proceeds in three steps:

1. Determine the period l.
2. Arrange the ciphertext in rows of length l. Then the columns each are encrypted by a (different) monoalphabetic substitution.
3. Break the monoalphabetic columns.

Step 3, that is cryptanalyzing the monoalphabetically encrypted columns, faces the complication that the columns don't represent connected meaningful texts. Pattern search is pointless. However frequency analysis makes sense.

There are some simplifications for dependent alphabets:

- Adjusting the frequency curves. This works when the primary alphabet is known, see Sections 2.7 and 2.8.
- Symmetry of position when the primary alphabet is unknown (not treated here, but see Chapter 5). This method, proposed by Kerckhoffs, uses regularities in the alphabet table to infer further entries from already known entries, for example by completing the diagonals in the alphabet table of a disk cipher.

Especially simple is the situation with Bellaso's cipher, as soon as the period is known: Each column is CaEsAR encrypted. Therefore we need to identify only one plaintext letter in each column.

How to Determine the Period

Three approaches to determining the period of a periodic polyalphabetic cipher are

1. Exhaustion: Try $l=1,2,3, \ldots$ one after each other. The correct l reveals itself by the appropriate frequency distribution of the letters in each column. As tools use some statistical "goodness of fit" tests. We'll study appropriate methods in Chapter 3.
2. Search for repetitions, see next subsection. This is an instance of the general method "pattern search".
3. Coincidence analysis after Friedman, Kullback, and Sinkov. This is also a subject of Chapter 3, and is an instance of the general method "statistical analysis".

In contrast to the exhaustion approach the other two methods immediately identify the situation where there is no period.

Search for Repetitions

We start with three observations:

1. If a plaintext is encrypted using l alphabets in cyclic order, and if a sequence of letters occurs k times in the plaintext, than this sequence occurs in the ciphertext about k / l times encrypted with the same sequence of alphabets.
2. In each of these occurrences where the sequence is encrypted the same way the ciphertext contains a repeated pattern in a distance that is a multiple of l, see Figure 2.1.
3. Not every repeated pattern in the ciphertext necessarily arises in this way. It could be by accident, see Figure 2.2 However the probability of this event is noticeably smaller.

An assessment of this probability is related to the birthday paradox of probability theory, and is contained in Appendix C. It was published in
K. Pommerening: Kasiski's Test: Couldn't the repetitions be by accident? Cryptologia 30 (2006), 346-352.

Figure 2.1: Repetition in ciphertext
A Perl program that searches for repetitions is on the web page http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Perl/ kasiski.pl

For online use see the web form http://www.staff.uni-mainz.de/ pommeren/Kryptologie/Klassisch/2_Polyalph/kasiski1.html

2.7 Cryptanalysis of a Polyalphabetic Ciphertext

(for a German plaintext)

Figure 2.2: True and accidental repetitions

Finding the Period by Searching Repetitions

http://www.staff.uni-mainz.de/pommeren/Cryptology/ Classic/2_Polyalph/Kasiski.html

Column Analysis and Rearrangement

```
http://www.staff.uni-mainz.de/pommeren/Cryptology/
Classic/2_Polyalph/Columns.html and/http://www.staff.uni-mainz.de/
pommeren/Cryptology/Classic/2_Polyalph/Rearrang.html
```


2.8 Rearranging the Columns

The Problem

The formula for the disk cipher from Theorem 1 was $f_{\sigma, k}=f_{\sigma} \circ f_{\varepsilon, k^{\prime}}$ where $k^{\prime}=f_{\sigma}^{-1}(k)$. However we didn't use this formula in our analysis but rather a similar one of the type $f_{\sigma, k}=g \circ f_{\sigma}$ where g should describe the shifts in the alphabets and g^{-1} the rearrangement. What we did was first rearrange the shifts in the different columns, and then solve the resulting monoalphabetic ciphertext. Note that for this method to work in general the primary alphabet must be known. Unfortunately there is no useful general interpretation of the formula $g=f_{\sigma} \circ f_{\varepsilon, k^{\prime}} \circ f_{\sigma}^{-1}$ when σ is unknown.

We'll analyze the situation, first for an example.

Example

We take the standard alphabet $\Sigma=\mathrm{A} . . \mathrm{Z}$, and consider an alphabet table.

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Q W ER T Z U I OPAS DFGH J K L Y X CVBNM W E R T Z U I O P A S D F G H J K L Y X C V B N M Q ERTZUIOPASDFGHJKLYXCVBNMQW

M Q W ER T Z U I OPASDFGHJKLYXCVBN
Phrased in terms of permutations the top row, Row 0 , the standard alphabet, corresponds to the identical permutation $\varepsilon \in \mathcal{S}(\Sigma)$. The next row, Row 1 , the primary alphabet, corresponds to the permutation $\sigma \in \mathcal{S}(\Sigma)$. Row 2 corresponds to $\sigma \circ \tau$, where τ is the alphabet shift

$$
\tau(\mathrm{A})=\mathrm{B}, \quad \tau(\mathrm{~B})=\mathrm{C}, \quad \ldots, \quad \tau(\mathrm{Z})=\mathrm{A}
$$

Row i corresponds to $\sigma \circ \tau^{i-1}$. For the concrete example we have

$$
\sigma(\mathrm{A})=\mathrm{Q}, \quad \sigma(\mathrm{~B})=\mathrm{W}, \quad \ldots
$$

and thus

$$
\sigma \circ \tau(\mathrm{A})=\sigma(\mathrm{B})=\mathrm{W}, \quad \sigma \circ \tau(\mathrm{~B})=\sigma(\mathrm{C})=\mathrm{E}, \quad \ldots
$$

On the other hand

$$
\tau \circ \sigma(\mathrm{A})=\tau(\mathrm{Q})=\mathrm{R}, \quad \tau \circ \sigma(\mathrm{~B})=\tau(\mathrm{W})=\mathrm{X}, \quad \ldots
$$

Shifts in the Primary Alphabet

Recall the alphabet table in the general case

s_{0}	s_{1}	s_{2}	\ldots	s_{n-1}
t_{0}	t_{1}	t_{2}	\ldots	t_{n-1}
t_{1}	t_{2}	t_{3}	\ldots	t_{0}
\ldots	\ldots	\ldots	\ldots	\ldots
t_{n-1}	t_{0}	t_{1}	\ldots	t_{n-2}

where $t_{i}=\sigma s_{i}$ for $0 \leq i \leq n-1$, and σ is the permutation that defines the primary alphabet.

Identify as usual the alphabet $\Sigma=\left\{s_{0}, \ldots, s_{n-1}\right\}$ with $\mathbb{Z} / n \mathbb{Z}$, the integers $\bmod n$, via $i \mapsto \sigma_{i}$ and take indices $\bmod n$. Mathematical expressions for the shifts in the original and primary alphabets are

- $\tau=$ shift by 1 in the original alphabet, $\tau\left(s_{i}\right)=s_{i+1}$.
- $\tau^{k}=$ shift by k in the original alphabet, $\tau^{k}\left(s_{i}\right)=s_{i+k}$.
- $\sigma \tau \sigma^{-1}=$ shift by 1 in the primary alphabet,

$$
t_{i} \stackrel{\sigma^{-1}}{\mapsto} s_{i} \stackrel{\tau}{\mapsto} s_{i+1} \stackrel{\sigma}{\mapsto} t_{i+1}
$$

- $\sigma \tau^{k} \sigma^{-1}=\left(\sigma \tau \sigma^{-1}\right)^{k}=$ shift by k in the primary alphabet.

The alphabet table, interpreted as list of permutations, is the orbit of $\sigma \in \mathcal{S}(\Sigma)$ under iterated right translation by τ (or under the cyclic subgroup $\langle\tau\rangle \subseteq \mathcal{S}(\Sigma)$ generated by $\tau)$.

The "naive" shift that we performed in Section 2.7 shifted the single letters of the primary alphabet by a certain number of positions in the standard alphabet-we performed $\tau^{i} \circ \sigma$ for some value i. Why was this successful? Under what conditions are the naively shifted primary alphabets again rows of the alphabet table?

Decimated alphabets

We take the ordering of the alphabets into account and let $T_{1}=\left(t_{0}, \ldots, t_{n-1}\right)$ be the ordered primary alphabet where $t_{i}=\sigma s_{i}$. The secondary alphabets then are $T_{i}=\left(t_{i-1}, \ldots, t_{n-1}, t_{0}, \ldots, t_{i-2}\right)$ for $i=2, \ldots, n$. They correspond to the permutations $\sigma \circ \tau^{i-1}$, that is $T_{i}=\left(\sigma s_{i-1}, \sigma s_{i}, \ldots\right)$.

The primary alphabet used in the example of Section 2.7 was of a special kind: It had $t_{i}=s_{3 i \bmod 26}$. The corresponding formula for the general case is

$$
t_{i}=s_{k i \bmod n}
$$

and t_{i} for $i=0, \ldots, n-1$ runs through all elements of Σ if and only if k and n are relative prime.

Definition. Let the alphabet Σ be linearly ordered as $\left(s_{0}, \ldots, s_{n-1}\right)$, and let $\operatorname{gcd}(k, n)=1$. The (ordered) alphabet $T=\left(t_{0}, \ldots, t_{n-1}\right)$ is called decimated alphabet of order k (of Σ with the given linear order relation) if there is an index $p \in\{0, \ldots, n-1\}$ such that $t_{p+i}=s_{k i} \bmod n$ for $i=0, \ldots, n-1$.

That means, beginning with $t_{p}=s_{0}$ we take each k-th letter from Σ.
If the primary alphabet is decimated, so are all the secondary alphabets; we get them all by varying the index p.

Now when we apply the shift τ to the (ordered) primary and secondary alphabets T_{1}, \ldots, T_{n} we get new alphabets $f_{\tau}\left(T_{1}\right), \ldots, f_{\tau}\left(T_{n}\right)$; note that we interpret the n-tuples T_{i} as texts and apply τ elementwise. The question we want to answer is whether the $f_{\tau}\left(T_{i}\right)$ belong to the collection of the T_{i}. The answer involves the normalizer $N(\langle\tau\rangle)$ of the subgroup $\langle\tau\rangle \leq \mathcal{S}(\Sigma)$.

Theorem 2 (Decimated alphabets) Let the alphabet Σ be linearly ordered as $\left(s_{0}, \ldots, s_{n-1}\right)$. Let the (ordered) primary alphabet $T_{1}=$ $\left(t_{0}, \ldots, t_{n-1}\right)$ be defined by $t_{i}=\sigma s_{i}$ where $\sigma \in \mathcal{S}(\Sigma)$, and let T_{2}, \ldots, T_{n} be the corresponding ordered secondary alphabets. Then the following statements are equivalent:
(i) There is a $j \in\{1, \ldots, n\}$ with $f_{\tau}\left(T_{1}\right)=T_{j}$.
(ii) f_{τ} permutes the $\left\{T_{1}, \ldots, T_{n}\right\}$.
(iii) T_{1} is a decimated alphabet of Σ.
(iv) $\sigma \in N(\langle\tau\rangle)$.

Proof. "(i) \Longrightarrow (iv)": $f_{\tau}\left(T_{1}\right)=T_{j}$ means that $\tau \circ \sigma=\sigma \circ \tau^{j}$. Then $\sigma^{-1} \circ \tau \circ \sigma \in\langle\tau\rangle$ or $\sigma \in N(\langle\tau\rangle)$.
"(iv) \Longrightarrow (iii)": By conjugation σ defines an automorphism of the cyclic group $\langle\tau\rangle$. These automorphisms are known, the following Lemma 1 gives $\sigma \circ \tau \circ \sigma^{-1}=\tau^{k}$ for some k, relative prime with n. The letter s_{0} occurs somewhere in T_{1}, so let $s_{0}=t_{p}$. Then $\sigma s_{p}=t_{p}=s_{0}$ and

$$
t_{j+p}=\sigma s_{j+p}=\sigma \tau^{j} s_{p}=\tau^{j k}\left(\sigma s_{p}\right)=\tau^{j k} s_{0}=s_{j k} \quad \text { for } j=0, \ldots, n-1,
$$

where as usual we take the indices $\bmod n$.
"(iii) \Longrightarrow (iv)": Let p and k as in the definition. For any i we have

$$
\tau^{k} \sigma s_{p+i}=\tau^{k} t_{p+i}=\tau^{k} s_{k i}=s_{k i+k}=s_{k(i+1)}=t_{p+i+1}=\sigma s_{p+i+1}=\sigma \tau s_{p+i} .
$$

From this we conclude $\sigma \circ \tau=\tau^{k} \circ \sigma$ or $\sigma \circ \tau \circ \sigma^{-1} \in\langle\tau\rangle$.
"(iv) $\Longrightarrow\left(\right.$ ii)": We have $\sigma^{-1} \circ \tau \circ \sigma=\tau^{k^{\prime}}$ where $k^{\prime} k \equiv 1(\bmod n)$ whence $\tau \circ \sigma=\sigma \circ \tau^{k^{\prime}}$. The permuted alphabet T_{i} corresponds to the permutation $\sigma \circ \tau^{i-1}$. Therefore $f_{\tau} T_{i}$ corresponds to $\tau \circ \sigma \circ \tau^{i-1}=\sigma \circ \tau^{k^{\prime}+i-1}$. We conclude $f_{\tau} T_{i}=T_{k^{\prime}+i}$.
"(ii) \Longrightarrow (i)" is the restriction to a special case.

Lemma 1 Let $G=\langle g\rangle$ be a finite cyclic group of order m. Then the automorphisms of G are the power maps $g \mapsto g^{k}$ where k is relatively prime to m. In other words, the automorphism group Aut G is isomorphic with the multiplicative group $(\mathbb{Z} / m \mathbb{Z})^{\times}$.

Proof. Let h be an automorphism of G. Then $h(g)=g^{k}$ for some $k \in \mathbb{Z}$. This k uniquely defines h on all of G, and k is uniquely determined by h up to multiples of $\operatorname{Ord}(g)=m$. The power map $g \mapsto g^{k}$ is bijective if and only if k is relatively prime to m. \diamond

2.9 Summary

The canonical method of cryptanalyzing the disk cipher $f_{\sigma, k}$ proceeds in three steps:

1. Determine the period l.
2. Rearrange the ciphertext in rows of length l.
3. Reconstruct the monoalphabets of the columns.

Note that the effort is essentially independent of the key length. However the success probability decreases with the period length, because

- The probability of finding non-accidental repetitions decreases.
- Finding useful frequency distributions in the columns becomes harder.

Some special cases have special facilities:

- For a Bellaso cipher or more generally for a disk cipher with a decimated alphabet or even more generally for a disk cipher with a known primary alphabet we may rearrange the monoalphabets of the columns and are left with a large monoalphabetic ciphertext.
- Known plaintext gives the plaintext equivalents of single letters in a few columns that may be extended to other columns by symmetry of position when the alphabets are related, for example for a disk cipher (not treated here, but see Chapter 5).

These findings result in two recommendations for the use of polyalphabetic ciphers:

- The larger the period, the better the security.
- Independent alphabets more reliably protect from attacks.

Both of these recommendations make polyalphabetic ciphers more cumbersome in routine use, and therefore in history were adopted only after many failures.

Chapter 3

Some Statistical Properties of Languages

In this chapter we study certain statistical properties of texts and languages. These help to answer questions such as:

- Does a given text belong to a certain language? Can we derive an algorithm for automatically distinguishing valid plaintext from random noise? This is one of the central problems of cryptanalysis.
- Do two given texts belong to the same language?
- Can we decide these questions also for encrypted texts? Which properties of texts are invariant under certain encryption procedures? Can we distinguish encrypted plaintext from random noise?
- Is a given ciphertext monoalphabetically encrypted? Or polyalphabetically with periodic repetition of alphabets? If so, what is the period?
- How to adjust the alphabets in the columns of a periodic cipher? Or of several ciphertexts encrypted with the same key and correctly aligned in depth?

To get useful information on these questions we define some statistical reference numbers and analyze the distributions of these numbers. The main methods for determining reference values are:

- Exact calculation. This works for artificial languages with exact descriptions and for simple distributions, but for natural languages it is hopeless.
- Modelling. We try to build a simplified model of a language, based on letter frequencies etc. and hope that the model on the one hand approximates the statistical properties of the language closely enough,
and on the other hand is simple enough that it allows the calculation of the relevant statistics. The two most important models are:
- the computer scientific model that regards a language as a fixed set of strings with certain statistical properties,
- the stochastic model that regards a language as a finite stationary Markov process. This essentially goes back to Shannon in the 1940s after at least 20 years of naive but successful use by the Friedman school.
- Simulation. We take a large sample of texts from a language and determine the characteristic reference numbers by counting. In this way we find empirical approximations to the distributions and their characteristic properties.

The main results of this section go back to Friedman, Kullback, and Sinkov in the 1920s and 1930s. However the statistical methodology has since developed and now provides a uniform conceptual framework for statistical tests and decisions.

For a systematic treatment of the first two questions above a good reference is [8, 9]. An elementary but mathematically sound introduction to probability and statistics is [10], whereas [16] and [25] use an elementary "naive" approach to probability theory.

3.1 Recognizing Plaintext: Friedman's Most-Frequent-Letters Test

We begin with the first question: Does a given text belong to a certain language? Friedman gave a quite simple procedure for distinguishing valid text from random noise that works surprisingly well, even for short texts. Besides it makes a smooth introduction to statistical test theory.

Friedman's Procedure

Assume we are given a string of letters and want to decide whether it is a part of a meaningful text (in a given language, say English), or whether it is random gibberish. Our first contact with this problem was the exhaustion attack against the simple shift cipher that produced 26 strings, exactly one of which represented the correct solution. Cherry-picking it was easy by visual inspection. But for automating this decision procedure we would prefer a quantitative criterion.

Such a criterion was proposed by Friedman in Riverbank Publication No. 16 from 1918 [7]. The procedure is

1. Identify a set of most frequent letters from the target language. For English take ETOANIRSHD that make up 73.9% of an average English text but only $10 / 26 \approx 38.5 \%$ of a random text.
2. Count the cumulative frequencies of these most-frequent letters for each of the candidate strings.
3. Pick the string with the highest score. If this doesn't work, also consider the next highest scores.

Example. For the Caesar example in Section 1.3 the scores are in Table 3.1. We immediately see that the correct solution CAESAR has the highest score (even if this is not a genuine English word).

Table 3.1: Friedman scores for the exhausion of a shift cipher

FDHVDU	3	OMQEMD	3	XVZNVM	1
GEIWEV	3	PNRFNE	$4<---$	YWAOWN	3
HFJXFW	1	QOSGOF	3	ZXBPXO	1
IGKYGX	1	RPTHPG	3	AYCQYP	1
JHLZHY	2	SQUIQH	3	BZDRZQ	2
KIMAIZ	3	TRVJRI	$4<---$	CAESAR	$5<===$
LJNBJA	2	USWKSJ	2	DBFTBS	3
MKOCKB	1	VTXLTK	2	ECGUCT	2
NLPDLC	2	WUYMUL	0		

The example shows that Friedman's procedure seems to work well even for quite short strings. To confirm this observation we analyze the distribution of the Most-Frequent-Letters scores - in short MFL scores - for strings of natural languages and for random strings. First we consider this task from a theoretic viewpoint, then we also perform some empirical evaluations.

The distribution of MFL Scores

Consider strings of length r over an alphabet Σ whose letters are independently drawn with certain probabilities, the letter $s \in \Sigma$ with probability p_{s}. Let $\mathcal{M} \subseteq \Sigma$ be a subset and $p=\sum_{s \in \mathcal{M}} p_{s}$ be the cumulative probability of the letters in \mathcal{M}. The MFL score of a string $a=\left(a_{1}, \ldots, a_{r}\right) \in \Sigma^{r}$ with respect to \mathcal{M} is

$$
N_{\mathcal{M}}(a)=\#\left\{i \mid a_{i} \in \mathcal{M}\right\} .
$$

To make the scores for different lengths comparable we also introduce the MFL rate

$$
\nu_{\mathcal{M}}(a)=\frac{N_{\mathcal{M}}(a)}{r} .
$$

The MFL rate defines a function

$$
\nu_{\mathcal{M}}: \Sigma^{*} \longrightarrow \mathbb{Q} .
$$

(Set $\nu_{\mathcal{M}}(\emptyset)=0$ for the empty string \emptyset of length 0 .)
The distribution of scores is binomial, that is the probability that a string $a \in \Sigma^{r}$ contains exactly k letters from \mathcal{M} is given by the binomial distribution

$$
P\left(a \in \Sigma^{r} \mid N_{\mathcal{M}}(a)=k\right)=B_{r, p}(k)=\binom{r}{k} \cdot p^{k} \cdot(1-p)^{r-k} .
$$

Random strings. We take the 26 letter alphabet A. . . Z and pick a subset \mathcal{M} of 10 elements. Then $p=10 / 26 \approx 0.385$, and this is also the expected value of the MFL rate $\nu_{\mathcal{M}}(a)$ for $a \in \Sigma^{*}$. For strings of length 10 we get the two middle columns of Table 3.2.

English strings. Assuming that the letters of an English string are independent is certainly only a rough approximation to the truth, but the best we can do for the moment, and, as it turns out, not too bad. Then we take $\mathcal{M}=\{$ ETOANIRSHD $\}$ and $p=0.739$ and get the rightmost two columns of Table 3.2.

Table 3.2: Binomial distribution for $r=10$. The columns headed "Total" contain the accumulated probabilities.

			$p=0.385$ (Random)		$p=0.739$ (English)	
Score	Coefficient	Probability	Total	Probability	Total	
0	$B_{10, p}(0)$	0.008	0.008	0.000	0.000	
1	$B_{10, p}(1)$	0.049	0.056	0.000	0.000	
2	$B_{10, p}(2)$	0.137	0.193	0.001	0.001	
3	$B_{10, p}(3)$	0.228	0.422	0.004	0.005	
$\mathbf{4}$	$B_{10, p}(4)$	0.250	$\mathbf{0 . 6 7 1}$	0.020	$\mathbf{0 . 0 2 4}$	
5	$B_{10, p}(5)$	0.187	0.858	0.067	0.092	
6	$B_{10, p}(6)$	0.097	0.956	0.159	0.250	
7	$B_{10, p}(7)$	0.035	0.991	0.257	0.507	
8	$B_{10, p}(8)$	0.008	0.999	0.273	0.780	
9	$B_{10, p}(9)$	0.001	1.000	0.172	0.951	
10	$B_{10, p}(10)$	0.000	1.000	0.049	1.000	

A Statistical Decision Procedure

What does this table tell us? Let us interpret the cryptanalytic task as a decision problem: We set a threshold value T and decide:

- A string with score $\leq T$ is probably random. We discard it.
- A string with score $>T$ could be true plaintext. We keep it for further examination.

There are two kinds of possible errors in this decision:

1. A true plaintext has a low score. We miss it.
2. A random string has a high score. We keep it.

Example. Looking at Table 3.2 we are tempted to set the threshold value at $T=4$. Then (in the long run) we'll miss 2.4% of all true plaintexts because the probability for an English 10 letter text string having an MFL score ≤ 4 is 0.024 . On the other hand we'll discard only 67.1% of all random strings and erroneously keep 32.9% of them.

The lower the threshold T, the more unwanted random strings will be selected. But the higher the threshold, the more true plaintext strings will be missed. Because the distributions of the MFL scores for "Random" and "English" overlap there is no clear cutpoint that always gives the correct decision.

This is a typical situation for statistical decision problems (or tests). The statistician usually bounds one of the two errors by a fixed amount, usually 5% or 1%, and calls this the error of the first kind, denoted by α. (The complementary value $1-\alpha$ is called the sensitivity of the test.) Then she tries to minimize the other error, the error of the second kind, denoted by β. The complementary value $1-\beta$ is called the power (or specifity) of the test. Friedman's MFL-method, interpreted as a statistical test (for the "null hypothesis" of English text against the "alternative hypothesis" of random text), has a power of $\approx 67 \%$ for English textstrings of length 10 and $\alpha=2.4 \%$. This α-value was chosen because it is the largest one below 5% that really occurs in the sixth column of Table 3.2.

To set up a test the statistician faces two choices. First she has to choose between "first" and "second" kind depending on the severity of the errors in the actual context. In our case she wants to bound the number of missed true plaintexts at a very low level-a missed plaintext renders the complete cryptanalysis obsolete. On the other hand keeping too many random strings increases the effort of the analysis, but this of somewhat less concern.

The second choice is the error level α. By these two choices the statistician adapts the test to the context of the decision problem.

Remark. We won't discuss the trick of raising the power by exhausting the α-level, randomizing the decision at the threshold value.

Note. There is another ("Bayesian") way to look at the decision problem. The predictive values give the probabilities that texts are actually what we decide them to be. If we decide "random" for texts with MFL score ≤ 4, we'll be correct for about 671 of 1000 random texts and err for 24 of 1000 English texts. This makes 695 decisions for random of which 671 are correct. The predictive value of our "random" decision is $96.5 \% \approx 671 / 695$. The decision "English" for an MFL score >4 will be correct for 976 of 1000 English texts and false for 329 of 1000 random texts. Hence the predictive value of the decision "English" is about $75 \% \approx 976 / 1305$. That means that if we pick up texts (of length 10) with a score of at least 5 , then (in the long run) one out of four selected texts will be random.

Other Languages: German and French

Table 3.3: Distribution of MFL scores for $r=10$

	$p=0.751$ (German)		$p=0.791$ (French)	
Score	Probability	Total	Probability	Total
0	0.000	0.000	0.000	0.000
1	0.000	0.000	0.000	0.000
2	0.000	0.000	0.000	0.000
3	0.003	0.003	0.001	0.001
$\mathbf{4}$	0.016	$\mathbf{0 . 0 1 9}$	0.007	0.008
$\mathbf{5}$	0.058	0.077	0.031	$\mathbf{0 . 0 3 9}$
6	0.145	0.222	0.098	0.137
7	0.250	0.471	0.212	0.350
8	0.282	0.754	0.301	0.651
9	0.189	0.943	0.253	0.904
10	0.057	1.000	0.096	1.000

German: The ten most frequent letters are ENIRSATDHU. They make up 75.1% of an average German text.

French: The ten most frequent letters are EASNTIRULO. They make up 79.1% of an average French text.

With these values we supplement Table 3.2 by Table 3.3 .
As before for English we get as conclusions for textstrings of length 10:
German: With a threshold of $T=4$ and $\alpha=1.9 \%$ the MFL-test has a power of 67%. The predictive value for "German" is $75 \% \approx 981 / 1310$.

French: With a threshold of $T=5$ and $\alpha=3.9 \%$ the MFL-test has a power of 86%. The predictive value for "French" is $87 \% \approx 961 / 1103$.

Textstrings of length 20

Table 3.4: Distribution of MFL scores for $r=20$

| | Random | | English | | German | | French | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Score | Prob | Total | Prob | Total | Prob | Total | Prob | Total |
| 0 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1 | 0.001 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2 | 0.005 | 0.005 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 3 | 0.017 | 0.022 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 4 | 0.045 | 0.067 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 5 | 0.090 | 0.157 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 6 | 0.140 | 0.297 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 7 | 0.175 | 0.472 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 8 | 0.178 | 0.650 | 0.001 | 0.001 | 0.001 | 0.001 | 0.000 | 0.000 |
| 9 | 0.148 | 0.798 | 0.004 | 0.006 | 0.003 | 0.004 | 0.001 | 0.001 |
| $\mathbf{1 0}$ | 0.102 | $\mathbf{0 . 9 0 0}$ | 0.013 | $\mathbf{0 . 0 1 9}$ | 0.010 | 0.013 | 0.003 | 0.004 |
| $\mathbf{1 1}$ | 0.058 | $\mathbf{0 . 9 5 8}$ | 0.034 | 0.053 | 0.026 | $\mathbf{0 . 0 4 0}$ | 0.010 | 0.013 |
| $\mathbf{1 2}$ | 0.027 | $\mathbf{0 . 9 8 5}$ | 0.072 | 0.125 | 0.060 | 0.100 | 0.028 | $\mathbf{0 . 0 4 1}$ |
| 13 | 0.010 | 0.996 | 0.125 | 0.250 | 0.111 | 0.211 | 0.064 | 0.105 |
| 14 | 0.003 | 0.999 | 0.178 | 0.428 | 0.168 | 0.379 | 0.121 | 0.226 |
| 15 | 0.001 | 1.000 | 0.201 | 0.629 | 0.202 | 0.581 | 0.184 | 0.410 |
| 16 | 0.000 | 1.000 | 0.178 | 0.807 | 0.191 | 0.772 | 0.217 | 0.627 |
| 17 | 0.000 | 1.000 | 0.119 | 0.925 | 0.135 | 0.907 | 0.193 | 0.820 |
| 18 | 0.000 | 1.000 | 0.056 | 0.981 | 0.068 | 0.975 | 0.122 | 0.942 |
| 19 | 0.000 | 1.000 | 0.017 | 0.998 | 0.022 | 0.997 | 0.049 | 0.991 |
| 20 | 0.000 | 1.000 | 0.002 | 1.000 | 0.003 | 1.000 | 0.009 | 1.000 |

The distribution is given in Table 3.4. We conclude:
English: With a threshold of $T=10$ and $\alpha=1.9 \%$ the MFL-test has a power of 90% and a predictive value of $91 \% \approx 981 / 1081$.

German: With a threshold of $T=11$ and $\alpha=4.0 \%$ the MFL-test has a power of 96% and a predictive value of $96 \% \approx 960 / 1002$.

French: With a threshold of $T=12$ and $\alpha=4.1 \%$ the MFL-test has a power of 98.5% and a predictive value of $98.5 \% \approx 959 / 974$.

3.2 Empirical Results on MFL Scores

The power calculations for the tests-not the tests themselves!-relied on the independency of the letters in a string. This assumption is clearly false for natural languages. Therefore getting experimental results for the distributions of the MFL scores makes sense. The description of the experiments is in Appendix D

The empirical values for English amount to a power of 68% (instead of 67%) and a predictive value of $75 \%(75 \%)$, a power of 63% (theory: 67%) and a predictive value of $75 \%(75 \%)$ for German, and a power of $87 \%(86 \%)$ and a predictive value of $88 \%(87 \%)$ for French.

3.3 Application to the Cryptanalysis of the Bellaso Cipher

The Friedman procedure doesn't need contiguous plaintext. It also works when we pick out isolated letters from a meaningful text. In particular it works in a (semi-) automated approach to adjusting the columns of a BELLASO ciphertext.

As an example we consider the ciphertext
UMHOD BLRHT SCWWJ NHZWB UWJCP ICOLB AWSWK CLJDO WWJOD L
We assume a Bellaso cipher with period 4. (The Kasiski analysis yields a single significant repetition WWJ at a distance of 28.) The four columns (written horizontally) are

UDHWHUPLSLWD MBTWZWIBWJWL HLSJWJCAKDJ ORCNBCOWCOO
For an exhaustion attack we complete the alphabets (i. e. we increment the letters step by step) and count the MFL scores for letter combinations in each row, see Table 3.5 .

We pick up the most promising result for each column:

```
Column 1: RAETERMIPITA
Column 2: ETLOROATOBOD
Column 3: PTARERKISLR
Column 4: ADOZNOAIOAA or EHSDRSEMSEE
```

Only for column 4 we have more than one choice. However the first choice yields an ugly "plaintext". We drop it and keep

```
Col 1: RAETERMIPITA
Col 2: ETLOROATOBOD
Col 3: PTARERKISLR
Col 4: EHSDRSEMSEE
```

Table 3.5: MFL scores for the example

UDHWHUPLSLWD	5	MBTWZWIBWJWL	2	HLSJJWJCAKDJ 4	ORCNBCOWCOO 6	
VEIXIVQMTMXE 5	NCUXAXJCXKXM	2	IMTKXKDBLEK	4	PSDOCDPXDPP	5
WFJYJWRNUNYF	3	ODVYBYKDYLYN	4	JNULYLECMFL	2	QTEPDEQYEQQ
XGGKZKXSOVOZG	3	PEWZCZLEZMZO	3	KOVMZMFDNGM	3	RUFQERRZFRR
Y						

From this scheme we read the solution columnwise:
Repeat the last order. Errors make it impossible to read.
Exercise. What was the encryption key used in this example?
Remark. Friedman in his Riverbank Publication No. 16 [7 uses the MLF method also for polyalphabetic ciphers with non-standard, but known, primary alphabets.

3.4 Recognizing Plaintext: Sinkov's Log-Weight Test

The MFL-test is simple and efficient. Sinkov in [25] proposed a more refined test that uses the information given by all single letter frequencies, not just by separating the letters into two classes. We won't explore the power of this method but treat it only as a motivation for Section 3.5 .

As in Section 3.1 we assign a probability p_{s} to each letter s of the alphabet Σ. We enumerate the alphabet as $\left(s_{1}, \ldots, s_{n}\right)$ and write $p_{i}:=p_{s_{i}}$. For a string $a=\left(a_{1}, \ldots, a_{r}\right) \in \Sigma^{r}$ we denote by $N_{i}(a)=\#\left\{j \mid a_{j}=s_{i}\right\}$ the multiplicity of the letter s_{i} in a. Then for an n-tuple $k=\left(k_{1}, \ldots, k_{n}\right) \in \mathbb{N}^{n}$ of natural numbers the probability for a string a to have multiplicities exactly given by k follows the multinomial distribution:

$$
P\left(a \in \Sigma^{r} \mid N_{i}(a)=k_{i} \text { for all } i=1, \ldots, n\right)=\frac{r!}{k_{1}!\cdots k_{n}!} \cdot p_{1}^{k_{1}} \cdots p_{n}^{k_{n}} .
$$

The Log-Weight (LW) Score

A heuristic derivation of the LW-score of a string $a \in \Sigma^{r}$ considers the "null hypothesis" $\left(\mathrm{H}_{0}\right)$: a belongs to a given language with letter probabilities p_{i}, and the "alternative hypothesis" $\left(\mathrm{H}_{1}\right): a$ is a random string. The probabilities for a having k as its set of multiplicities if $\left(\mathrm{H}_{1}\right)$ or $\left(\mathrm{H}_{0}\right)$ is true, are (in a somewhat sloppy notation)

$$
P\left(k \mid \mathrm{H}_{1}\right)=\frac{r!}{k_{1}!\cdots k_{n}!} \cdot \frac{1}{n^{r}}, \quad P\left(k \mid \mathrm{H}_{0}\right)=\frac{r!}{k_{1}!\cdots k_{n}!} \cdot p_{1}^{k_{1}} \cdots p_{n}^{k_{n}} .
$$

The quotient of these two values, the "likelihood ratio"

$$
\lambda(k)=\frac{P\left(k \mid \mathrm{H}_{0}\right)}{P\left(k \mid \mathrm{H}_{1}\right)}=n^{r} \cdot p_{1}^{k_{1}} \cdots p_{n}^{k_{n}},
$$

makes a good score for deciding between $\left(\mathrm{H}_{0}\right)$ and $\left(\mathrm{H}_{1}\right)$.

Usually one takes the reciprocal value, that is H_{1} in the numerator, and H_{0} in the denominator. We deviate from this convention because we want to have the score large for true texts and small for random texts.

For convenience one considers the logarithm (to any base) of this number:

$$
\log \lambda(k)=r \log n+\sum_{i=1}^{n} k_{i} \cdot \log p_{i}
$$

(We assume all $p_{i}>0$, otherwise we would omit s_{i} from our alphabet.) Noting that the summand $r \log n$ is the same for all $a \in \Sigma^{r}$ one considers

$$
\log \lambda(k)-r \log n=\sum_{i=1}^{n} k_{i} \cdot \log p_{i}=\sum_{j=1}^{r} \log p_{a_{j}}
$$

Because $0<p_{i}<1$ the summands are negative. Adding a constant doesn't affect the use of this score, so finally we define Sinkov's Log-Weight (LW) score as
$S_{1}(a):=\sum_{i=1}^{n} k_{i} \cdot \log \left(1000 \cdot p_{i}\right)=\sum_{j=1}^{r} \log \left(1000 \cdot p_{a_{j}}\right)=r \cdot \log 1000+\sum_{j=1}^{r} \log p_{a_{j}}$.
The numbers $\log \left(1000 \cdot p_{i}\right)$ are the "log weights". More frequent letters have higher weights. Table 3.6 gives the weights for the English alphabet with base-10 logarithms (so $\log 1000=3$). The MFL-method in contrast uses the weights 1 for ETOANIRSHD, and 0 else.

Note that the definition of the LW score doesn't depend on its heuristic motivation. Just take the weights given in Table 3.6 and use them for the definition of S_{1}.

Examples

We won't analyze the LW-method in detail, but rework the examples from Section 3.1. The LW scores for the CaESAR example are in Table 3.7.

The correct solution stands out clearly, the order of the non-solutions is somewhat permuted compared with the MFL score.

For the period-4 example the LW scores are in Tables 3.8 to 3.11 . The method unambiguously picks the correct solution except for column 3 where the top score occurs twice.

In summary the examples show no clear advantage of the LW-method over the MFL-method, notwithstanding the higher granularity of the information used to compute the scores.

As for MFL scores we might define the LW rate as the quotient of the LW score be the length of the string. This makes the values for strings of different lengths comparable.

Table 3.6: Log weights of the letters for English (base-10 logarithms)

s	A	B	C	D	E	F	G
$1000 p_{s}$	82	15	28	43	127	22	20
Log weight	1.9	1.2	1.4	1.6	2.1	1.3	1.3
s	H	I	J	K	L	M	N
$1000 p_{s}$	61	70	2	8	40	24	67
Log weight	1.8	1.8	0.3	0.9	1.6	1.4	1.8
s	O	P	Q	R	S	T	U
$1000 p_{s}$	75	19	1	60	63	91	28
Log weight	1.9	1.3	0.0	1.8	1.8	1.9	1.4
s	V	W	X	Y	Z		
$1000 p_{s}$	10	23	1	20	1		
Log weight	1.0	1.4	0.0	1.3	0.0		

Table 3.7: $L W$ scores for the exhausion of a shift cipher

FDHVDU	8.7	OMQEMD	8.4	XVZNVM	5.2	
GEIWEV	9.7	PNRFNE	10.1	$<--$	YWAOWN	9.7
HFJXFW	6.1	QOSGOF	8.2		ZXBPXO	4.4
IGKYGX	6.6	RPTHPG	9.4		AYCQYP	7.2
JHLZHY	6.8	SQUIQH	6.8		BZDRZQ	4.6
KIMAIZ	7.8	TRVJRI	8.6		CAESAR	$10.9<===$
LJNBJA	7.1	USWKSJ	7.6		DBFTBS	9.0
MKOCKB	7.7	VTXLTK	7.3		ECGUCT	9.5
NLPDLC	9.3	WUYMUL	8.5			

Exercise. Give a more detailed analysis of the distribution of the LW scores for English and for random texts (with "English" weights). You may use the Perl script LWscore.pl in the directory http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/ Perl/.

Table 3.12 gives log weights for German and French.

Table 3.8: LW scores for column 1 of a period 4 cipher

```
UDHWHUPLSLWD 18.7 DMQFQDYUBUFM 13.9 MVZOZMHDKDOV 14.5
VEIXIVQMTMXE 14.5 ENRGREZVCVGN 17.4 NWAPANIELEPW 20.4 <--
WFJYJWRNUNYF 15.4 FOSHSFAWDWHO 19.9 OXBQBOJFMFQX 10.5
XGKZKXSOVOZG 11.0 GPTITGBXEXIP 15.9 PYCRCPKGNGRY 16.9
YHLALYTPWPAH 19.1 HQUJUHCYFYJQ 12.3 QZDSDQLHOHSZ 13.9
ZIMBMZUQXQBI 10.2 IRVKVIDZGZKR 13.9 RAETERMIPITA 21.7 <==
AJNCNAVRYRCJ 16.7 JSWLWJEAHALS 17.9 SBFUFSNJQJUB 13.8
BKODOBWSZSDK 16.2 KTXMXKFBIBMT 13.9 TCGVGTOKRKVC 16.7
CLPEPCXTATEL 18.5 LUYNYLGCJCNU 16.6
```

Table 3.9: LW scores for column 2 of a period 4 cipher

MBTWZWIBWJWL	15.0	VKCFIFRKFSFU	16.2	ETLOROATOBOD $21.6<==$	
NCUXAXJCXKXM	10.5	WLDGJGSLGTGV	16.4	FUMPSPBUPCPE	17.2
ODVYBYKDYLYN	16.8	XMEHKHTMHUHW	17.7	GVNQTQCVQDQF 11.3	
PEWZCZLEZMZO	13.2	YNFILIUNIVIX	17.4	HWORURDRERG $20.1<--$	
QFXADAMFANAP	16.3	ZOGJMJVOJWJY 11.4	IXPSVSEXSFSH 16.5		
RGYBEBNGBOBQ	16.3	APHKNKWPKXKZ	13.1	JYQTWTFYTGTI 16.3	
SHZCFCOHCPCR	17.3	BQILOLXQLYLA	14.5	KZRUXUGZUHUJ 11.7	
TIADGDPIDQDS	18.2	CRJMPMYRMZMB	14.7	LASVYVHAVIVK 17.0	
UJBEHEQJERET	17.1	DSKNQNZSNANC	16.6		

Table 3.10: LW scores for column 3 of a period 4 cipher

HLSJWJCAKDJ	13.3	QUBSFSLJTMS	14.5		ZDKBOBUSCVB
IMTKXDBLEK	14.3	RVCTGTMKUNT	16.7	AELCPCVTDWC	17.0
IMTKXL					
JNULYLECMFL	15.8	SWDUHUNLVOU	17.1	BFMDQDWUEXD	13.6
KOVMZMFDNGM	14.0	TXEVIVOMWPV	14.8	CGNEREXVFYE	16.2
LPWNANGEOHN	18.7 <- UYFWJWPNXQW	11.6	DHOFSFYWGZF	15.0	
MQXOBOHFPIO	14.5	VZGXKXQOYRX	8.2	EIPGTGZXHAG	14.7
NRYPCPIGQJP	13.6	WAHYLYRPZSY	15.5	FJQHUHAYIBH	14.6
OSZQDQJHRKQ	10.1	XBIZMZSQATZ	10.0	GKRIVIBZJCI	13.3
PTARERKISLR	18.7	<- YCJANATRBUA	16.8		

Table 3.11: LW scores for column 4 of a period 4 cipher

ORCNBCOWCOO	18.0	XALWKLXFLXX	10.3	GJUFTUGOUGG	14.8
PSDOCDPXDPP	15.1	YBMXLMYGMYY	13.5	HKVGUVHPVHH	15.1
QTEPDEQYEQQ	12.4	ZCNYMNZHNZZ	11.3	ILWHVWIQWII	15.8
RUFQEFRZFRR	14.6	ADOZNOAIOAA	18.5	JMXIWXJRXJJ	7.6
SVGRFGSAGSS	17.1	BEPAOPBJPBB	14.9	KNYJXYKSYKK	11.4
TWHSGHTBHTT	18.7 <-	CFQBPQCKQCC	10.3	LOZKYZLTZLL	12.4
UXITHIUCIUU	16.1	DGRCQRDLRDD	16.1	MPALZAMUAMM	15.6
VYJUIJVDJVV	11.0	EHSDRSEMSEE 20.4 <=	NQBMABNVBNN	15.1	

Table 3.12: Log weights of the letters for German and French (base-10 logarithms)

s	A	B	C	D	E	F	G
German	1.8	1.3	1.4	1.7	2.2	1.2	1.5
French	1.9	1.0	1.5	1.6	2.2	1.1	1.0
s	H	I	J	K	L	M	N
German	1.6	1.9	0.5	1.2	1.5	1.4	2.0
French	0.8	1.8	0.5	0.0	1.8	1.4	1.9
s	O	P	Q	R	S	T	U
German	1.5	1.0	0.0	1.9	1.8	1.8	1.6
French	1.7	1.4	1.0	1.8	1.9	1.9	1.8
s	V	W	X	Y	Z		
German	1.0	1.2	0.0	0.0	1.0		
French	1.2	0.0	0.6	0.3	0.0		

3.5 Recognizing Plaintext: The Log-Weight Method for Bigrams

In the last four sections we used only the single letter frequencies of a natural language. In other words, we treated texts as sequences of independent letters. But a characteristic aspect of every natural language is how letters are combined as bigrams (letter pairs). We may hope to get good criteria for recognizing a language by evaluating the bigrams in a text. Of course this applies to contiguous text only, in particular it is useless for the polyalphabetic example of Sections 3.3 and 3.4 .

In analogy with the LW score we define a Bigram Log-Weight (BLW) score for a string. Let $p_{i j}$ be the probability (or average relative frequency) of the bigram $s_{i} s_{j}$ in the base language. Because these numbers are small we multiply them by 10000 .

Tables containing these bigram frequencies for English, German, and French are in http://www.staff.uni-mainz.de/pommeren/Cryptology /Classic/8_Transpos/Bigrams.html

In contrast to the single letter case we cannot avoid the case $p_{i j}=0$: some letter pairs never occur as bigrams in a meaningful text. Therefore we count the frequencies $k_{i j}$ of the bigrams $s_{i} s_{j}$ in a string $a \in \Sigma^{r}$, and define the BLW-score by the formula

$$
S_{2}(a):=\sum_{i, j=1}^{n} k_{i j} \cdot w_{i j} \quad \text { where } w_{i j}= \begin{cases}\log \left(10000 \cdot p_{i j}\right) & \text { if } 10000 \cdot p_{i j}>1, \\ 0 & \text { otherwise }\end{cases}
$$

Note. We implicitly set $\log 0=0$. This convention is not as strange as it may look at first sight: For $p_{i j}=0$ we'll certainly have $k_{i j}=0$, and setting $0 \cdot \log 0=0$ is widespread practice.
To calculate the BLW score we go through the bigrams $a_{t} a_{t+1}$ for $t=1, \ldots, r-1$ and add the \log weight $w_{i j}=\log \left(10000 \cdot p_{i j}\right)$ of each bigram. This approach is somewhat naive because it implicitly considers the bigrams - even the overlapping ones!-as independent. This criticism doesn't mean that we are doing something mathematically wrong, but only that the usefulness of the score might be smaller than expected.

We prepare matrices for English, German, and French that contain the relative frequencies of the bigrams in the respective language. These are in the files eng_rel.csv, ger_rel.csv, fra_rel.csv in the directory http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/ Files/ as comma-separated tables. The corresponding bigram log-weights are in the files eng_blw.csv, ger_blw.csv, fra_blw.csv, Programs that compute BLW scores for English, German, or French are BLWscE.pl, BLWscD.pl, and BLWscF.pl in the Perl directory.

As an example we compute the scores for the Caesar example, see Table 3.13. The correct solution is evident in all three languages.

Table 3.13: BLW scores for the exhaustion of a CAESAR cipher

BLW scores	English	German	French
FDHVDU	1.4	3.1	2.2
GEIWEV	$5.8<---$	$7.3<===$	4.3
HFJXFW	0.9	0.3	0.0
IGKYGX	2.2	2.1	1.3
JHLZHY	0.5	1.9	0.3
KIMAIZ	$5.9<---$	5.2	4.9
LJNBJA	1.1	2.4	0.9
MKOCKB	2.7	4.2	0.8
NLPDLC	3.0	2.8	1.4
OMQEMD	3.5	3.8	3.6
PNRFNE	3.6	4.7	3.6
QOSGOF	$5.8<---$	4.0	3.4
RPTHPG	4.5	2.6	2.7
SQUIQH	2.3	0.6	$6.3<---$
TRVJRI	4.1	4.3	4.9
USWKSJ	3.3	3.7	2.0
VTXLTK	1.3	2.0	1.1
WUYMUL	3.1	2.9	2.7
XVZNVM	0.6	1.3	1.0
YWAOWN	5.5	2.3	0.0
ZXBPXO	0.0	0.0	0.0
AYCQYP	3.2	0.0	0.3
BZDRZQ	1.0	2.1	1.1
CAESAR	$7.7<===$	$7.5<===$	$8.4<===$
DBFTBS	4.7	3.5	0.6
ECGUCT	5.5	3.6	5.5

3.6 Empirical Results on BLW Scores

The heuristic motivation of the BLW score, like for all the scores in this chapter, relies on independence assumptions that are clearly violated by natural languages. Therefore again it makes sense to get empirical results by analyzing a large sample of concrete texts.

The empirical results for the 5%-level of the error of the first kind are as follows, see Appendix D.

English. We take the threshold value $T=11$ for English texts. Then 86 of 2000 English scores are $\leq T$, the error of the first kind is $\alpha=$ $86 / 2000=4.2 \%$. For random texts 1964 of 2000 scores are $\leq T$, the power is $1964 / 2000=99.5 \%$. There are 36 random scores and 1914 English scores > T, the predictive value for English is 1914/1950 = 98.2%.

German. We take the threshold value $T=12$ for German texts. Then 84 of 2000 German scores are $\leq T$, the error of the first kind is $\alpha=$ $84 / 2000=4.2 \%$. For random texts 1991 of 2000 scores are $\leq T$, the power is $1991 / 2000=99.6 \%$. There are 9 random scores and 1916 German scores $>T$, the predictive value for German is 1916/1925 $=$ 99.5%.

French. We take the threshold value $T=11$ for French texts. Then 58 of 2000 French scores are $\leq T$, the error of the first kind is $\alpha=58 / 2000=$ 2.9%. For random texts 1967 of 2000 scores are $\leq T$, the power is $1967 / 2000=98.3 \%$. There are 33 random scores and 1942 French scores $>T$, the predictive value for French is $1942 / 1975=98.3 \%$.

The BLW score is significantly stronger than the MFL score.

3.7 Coincidences of Two Texts

The first six sections of this chapter introduced efficient methods for recognizing plaintext in comparison with noise. These methods break down for encrypted texts because they ignore properties that remain invariant under encryption. One such invariant property - at least for monoalphabetic substitution - is the equality of two letters, no matter what the concrete value of these letters is.

This is the main idea that we work out in the next sections: Look for identical letters in one or more texts, or in other words, for coincidences.

Definition

Let Σ be a finite alphabet. Let $a=\left(a_{0}, \ldots, a_{r-1}\right)$ and $b=\left(b_{0}, \ldots, b_{r-1}\right) \in \Sigma^{r}$ be two texts of the same length $r \geq 1$. Then

$$
\kappa(a, b):=\frac{1}{r} \cdot \#\left\{j \mid a_{j}=b_{j}\right\}=\frac{1}{r} \cdot \sum_{j=0}^{r-1} \delta_{a_{j} b_{j}}
$$

is called coincidence index of a and b (where $\delta=$ Kronecker symbol).
For each $r \in \mathbb{N}_{1}$ this defines a map

$$
\kappa: \Sigma^{r} \times \Sigma^{r} \longrightarrow \mathbb{Q} \subseteq \mathbb{R} .
$$

The scaling factor $\frac{1}{r}$ makes results for different lengths comparable.
A Perl program is in the Web: http://www.staff.uni-mainz.de/ pommeren/Cryptology/Classic/Perl/kappa.pl.

Remarks

1. Always $0 \leq \kappa(a, b) \leq 1$.
2. $\kappa(a, b)=1 \Longleftrightarrow a=b$.
3. By convention $\kappa(\emptyset, \emptyset)=1$ (where \emptyset denotes the empty string by abuse of notation).
4. Note that up to scaling the coincidence index is a converse of the Hamming distance that counts non-coincidences.

Example 1: Two English Texts

We compare the first four verses (text 1) of the poem "If ..." by Rudyard Kipling and the next four verses (text 2). (The lengths differ, so we crop the longer one.)

```
IFYOU CANKE EPYOU RHEAD WHENA LLABO UTYOU ARELO OSING THEIR
IFYOU CANMA KEONE HEAPO FALLY OURWI NNING SANDR ISKIT ONONE
|||| ||| |
SANDB LAMIN GITON YOUIF YOUCA NTRUS TYOUR SELFW HENAL LMEND
TURNO FPITC HANDT OSSAN DLOOS EANDS TARTA GAINA TYOUR BEGIN
                                    |
OUBTY OUBUT MAKEA LLOWA NCEFO RTHEI RDOUB TINGT OOIFY OUCAN
NINGS ANDNE VERBR EATHE AWORD ABOUT YOURL OSSIF YOUCA NFORC
```

EYOUR HEART ANDNE RVEAN DSINE WTOSE RVEYO URTUR NLONG AFTER
| |
INLIE SORBE INGHA TEDDO NTGIV EWAYT OHATI NGAND YETDO NTLOO
THEYA REGON EANDS OHOLD ONWHE NTHER EISNO THING INYOU EXCEP
|
KTOOG OODNO RTALK TOOWI SEIFY OUCAN DREAM ANDNO TMAKE DREAM
TTHEW ILLWH ICHSA YSTOT HEMHO LDONI FYOUC ANTAL KWITH CROWD
| | || |
SYOUR MASTE RIFYO UCANT HINKA NDNOT MAKET HOUGH TSYOU RAIMI
SANDK EEPYO URVIR TUEOR WALKW ITHKI NGSNO RLOOS ETHEC OMMON
|
FYOUC ANMEE TWITH TRIUM PHAND DISAS TERAN DTREA TTHOS ETWOI
TOUCH IFNEI THERF OESNO RLOVI NGFRI ENDSC ANHUR TYOUI FALLM
| | |
MPOST ORSAS THESA MEIFY OUCAN BEART OHEAR THETR UTHYO UVESP
ENCOU NTWOR THYOU BUTNO NETOO MUCHI FYOUC ANFIL LTHEU NFORG
|| ||
OKENT WISTE DBYKN AVEST OMAKE ATRAP FORFO OLSOR WATCH THETH
IVING MINUT EWITH SIXTY SECON DSWOR THOFD ISTAN CERUN YOURS
| | |
INGSY OUGAV EYOUR LIFEF ORBRO KENAN DSTOO PANDB UILDE MUPWI
ISTHE EARTH ANDEV ERYTH INGTH ATSIN ITAND WHICH ISMOR EYOUL
| |
THWOR NOUTT OOLS
LBEAM ANMYS ON

```
    I

In these texts of length 562 we find 35 coincidences, the coincidence index is \(\frac{35}{562}=0.0623\).

\section*{Invariance}

The coincidence index of two texts is an invariant of polyalphabetic substitution (the keys being equal):

Proposition 1 (Invariance) Let \(f: \Sigma^{*} \longrightarrow \Sigma^{*}\) be a polyalphabetic encryption function. Then
\[
\kappa(f(a), f(b))=\kappa(a, b)
\]
for all \(a, b \in \Sigma^{*}\) of the same length.
Note that Proposition 1 doesn't need any assumptions on periodicity or on relations between the alphabets used. It only assumes that the encryption function uses the same alphabets at the corresponding positions in the texts.

\section*{Mean Values}

For a fixed \(a \in \Sigma^{r}\) we determine the mean value of \(\kappa(a, b)\) taken over all \(b \in \Sigma^{r}\) :
\[
\begin{aligned}
\frac{1}{n^{r}} \cdot \sum_{b \in \Sigma^{r}} \kappa(a, b) & =\frac{1}{n^{r}} \cdot \sum_{b \in \Sigma^{r}}\left[\frac{1}{r} \cdot \sum_{j=0}^{r-1} \delta_{a_{j} b_{j}}\right] \\
& =\frac{1}{r n^{r}} \cdot \sum_{j=0}^{r-1} \underbrace{\left[\sum_{b \in \Sigma^{r}} \delta_{a_{j} b_{j}}\right]}_{n^{r-1}} \\
& =\frac{1}{r n^{r}} \cdot r \cdot n^{r-1}=\frac{1}{n}
\end{aligned}
\]
because, if \(b_{j}=a_{j}\) is fixed, there remain \(n^{r-1}\) possible values for \(b\).
In an analogous way we determine the mean value of \(\kappa\left(a, f_{\sigma}(b)\right.\) for fixed \(a, b \in \Sigma^{r}\) over all permutations \(\sigma \in \mathcal{S}(\Sigma)\) :
\[
\begin{aligned}
\frac{1}{n!} \cdot \sum_{\sigma \in \mathcal{S}(\Sigma)} \kappa\left(a, f_{\sigma}(b)\right) & =\frac{1}{n!} \cdot \frac{1}{r} \sum_{\sigma \in \mathcal{S}(\Sigma)} \#\left\{j \mid \sigma b_{j}=a_{j}\right\} \\
& =\frac{1}{r n!} \cdot \#\left\{(j, \sigma) \mid \sigma b_{j}=a_{j}\right\} \\
& =\frac{1}{r n!} \cdot \sum_{j=0}^{r-1} \#\left\{\sigma \mid \sigma b_{j}=a_{j}\right\} \\
& =\frac{1}{r n!} \cdot r \cdot(n-1)!=\frac{1}{n}
\end{aligned}
\]
because exactly \((n-1)\) ! permutations map \(a_{j}\) to \(b_{j}\).
Note that this conclusion also works for \(a=b\).
This derivation shows:
Proposition 2 (i) The mean value of \(\kappa(a, b)\) over all texts \(b \in \Sigma^{*}\) of equal length is \(\frac{1}{n}\) for all \(a \in \Sigma^{*}\).
(ii) The mean value of \(\kappa(a, b)\) over all \(a, b \in \Sigma^{r}\) is \(\frac{1}{n}\) for all \(r \in \mathbb{N}_{1}\).
(iii) The mean value of \(\kappa\left(a, f_{\sigma}(b)\right)\) over all monoalphabetic substitutions with \(\sigma \in \mathcal{S}(\Sigma)\) is \(\frac{1}{n}\) for each pair \(a, b \in \Sigma^{*}\) of texts of equal length.
(iv) The mean value of \(\kappa\left(f_{\sigma}(a), f_{\tau}(b)\right)\) over all pairs of monoalphabetic substitutions, with \(\sigma, \tau \in \mathcal{S}(\Sigma)\), is \(\frac{1}{n}\) for each pair \(a, b \in \Sigma^{*}\) of texts of equal length.

\section*{Interpretation}
- For a given text \(a\) and a "random" text \(b\) of the same length \(\kappa(a, b) \approx\) \(\frac{1}{n}\).
- For "random" texts \(a\) and \(b\) of the same length \(\kappa(a, b) \approx \frac{1}{n}\).
- For given texts \(a\) and \(b\) of the same length and a "random" monoalphabetic substitution \(f_{\sigma}\) we have \(\kappa\left(a, f_{\sigma}(b)\right) \approx \frac{1}{n}\). This remark justifies treating a nontrivially monoalphabetically encrypted text as random with respect to \(\kappa\) and plaintexts.
- For given texts \(a\) and \(b\) of the same length and two "random" monoalphabetic substitutions \(f_{\sigma}, f_{\tau}\) we have \(\kappa\left(f_{\sigma}(a), f_{\tau}(b)\right) \approx \frac{1}{n}\).
- The same holds for "random" polyalphabetic substitutions because counting the coincidences is additive with respect to arbitrary decompositions of texts.

Values that significantly differ from these mean values are suspicious for the cryptanalyst, they could have a non-random cause. For more precise statements we should assess the variances (or standard deviations) or, more generally, the distribution of \(\kappa\)-values in certain "populations" of texts.

\section*{Variance}

First fix \(a \in \Sigma^{r}\) and vary \(b\) over all of \(\Sigma^{r}\). Using the mean value \(\frac{1}{n}\) we calculate the variance:
\[
\begin{aligned}
V_{\Sigma^{r}}(\kappa, a) & =\frac{1}{n^{r}} \cdot \sum_{b \in \Sigma^{r}} \kappa(a, b)^{2}-\frac{1}{n^{2}} \\
& =\frac{1}{n^{r}} \cdot \sum_{b \in \Sigma^{r}}\left[\frac{1}{r} \cdot \sum_{j=0}^{r-1} \delta_{a_{j}} b_{j}\right]^{2}-\frac{1}{n^{2}}
\end{aligned}
\]

Evaluating the square of the sum in brackets we get the quadratic terms
\[
\begin{gathered}
\sum_{j=0}^{r-1} \delta_{a_{j} b_{j}}^{2}=\sum_{j=0}^{r-1} \delta_{a_{j} b_{j}}=r \cdot \kappa(a, b) \quad \text { because } \quad \delta_{a_{j} b_{j}}=0 \text { or } 1 \\
\sum_{b \in \Sigma^{r}} \sum_{j=0}^{r-1} \delta_{a_{j} b_{j}}^{2}=r \cdot \sum_{b \in \Sigma^{r}} \kappa(a, b)=r \cdot n^{r} \cdot \frac{1}{n}=r \cdot n^{r-1}
\end{gathered}
\]
and the mixed terms
\[
2 \cdot \sum_{j=0}^{r-1} \sum_{k=j+1}^{r-1} \delta_{a_{j} b_{j}} \delta_{a_{k} b_{k}} \quad \text { where } \quad \delta_{a_{j} b_{j}} \delta_{a_{k} b_{k}}= \begin{cases}1 & \text { if } a_{j}=b_{j} \text { and } a_{k}=b_{k} \\ 0 & \text { else }\end{cases}
\]

If we fix two letters \(b_{j}\) and \(b_{k}\), we are left with \(n^{r-2}\) different \(b\) 's that give the value 1 . The total sum over the mixed terms evaluates as
\[
\sum_{b \in \Sigma^{r}}\left(2 \cdot \sum_{j=0}^{r-1} \sum_{k=j+1}^{r-1} \delta_{a_{j} b_{j}} \delta_{a_{k} b_{k}}\right)=2 \cdot \sum_{j=0}^{r-1} \sum_{k=j+1}^{r-1} \underbrace{\sum_{b \in \Sigma^{r}} \delta_{a_{j} b_{j}} \delta_{a_{k} b_{k}}}_{n^{r-2}}
\]

Substituting our intermediary results we get
\[
\begin{aligned}
V_{\Sigma^{r}}(\kappa, a) & =\frac{1}{n^{r} r^{2}}\left(r \cdot n^{r-1}+r \cdot(r-1) \cdot n^{r-2}\right)-\frac{1}{n^{2}} \\
& =\frac{1}{r n}+\frac{r-1}{r n^{2}}-\frac{1}{n^{2}}=\frac{1}{r n}-\frac{1}{r n^{2}}=\frac{1}{r}\left(\frac{1}{n}-\frac{1}{n^{2}}\right)
\end{aligned}
\]

Next we let \(a\) and \(b\) vary and calculate the variance of \(\kappa\) :
\[
\begin{aligned}
V_{\Sigma^{r}}(\kappa) & =\frac{1}{n^{2 r}} \sum_{a, b \in \Sigma^{r}} \kappa(a, b)^{2}-\frac{1}{n^{2}} \\
& =\frac{1}{n^{r}} \sum_{a \in \Sigma^{r}} \underbrace{\left(\frac{1}{n^{r}} \sum_{b \in \Sigma^{r}} \kappa(a, b)^{2}\right)}_{\frac{1}{r}\left(\frac{1}{n}-\frac{1}{n^{2}}\right)+\frac{1}{n^{2}}}-\frac{1}{n^{2}} \\
& =\frac{1}{r}\left(\frac{1}{n}-\frac{1}{n^{2}}\right)+\frac{1}{n^{2}}-\frac{1}{n^{2}}=\frac{1}{r}\left(\frac{1}{n}-\frac{1}{n^{2}}\right)
\end{aligned}
\]

We have shown:
Proposition 3 (i) The mean value of \(\kappa(a, b)\) over all texts \(b\) of equal length \(r \in \mathbb{N}_{1}\) is \(\frac{1}{n}\) with variance \(\frac{1}{r}\left(\frac{1}{n}-\frac{1}{n^{2}}\right)\) for all \(a \in \Sigma^{r}\).
(ii) The mean value of \(\kappa(a, b)\) over all \(a, b \in \Sigma^{r}\) is \(\frac{1}{n}\) with variance \(\frac{1}{r}\left(\frac{1}{n}-\frac{1}{n^{2}}\right)\) for all \(r \in \mathbb{N}_{1}\).

For the 26 letter alphabet \(\mathrm{A} . . \mathrm{Z}\) we have the mean value \(\frac{1}{26} \approx 0.0385\), independently from the text length \(r\). The variance is \(\approx \frac{0.03370}{r}\), the standard deviation \(\approx \frac{0.19231}{\sqrt{r}}\). From this we get the second row of Table 3.14 .

Table 3.14: Standard deviations and \(95 \%\) quantiles of \(\kappa\) for random text pairs of length \(r\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline\(r\) & 10 & 40 & 100 & 400 & 1000 & 10000 \\
\hline Std dev & 0.0608 & 0.0304 & 0.0192 & 0.0096 & 0.0061 & 0.0019 \\
\hline \(95 \%\) quantile & 0.1385 & 0.0885 & 0.0700 & 0.0543 & 0.0485 & 0.0416 \\
\hline
\end{tabular}

For statistical tests (one-sided in this case) we would like to know the \(95 \%\) quantiles. If we take the values for a normal distribution as approximations, that is "mean value +1.645 times standard deviation", we get the values in the third row of Table 3.14. These raw estimates show that the \(\kappa\)-statistic in this form is weak in distinguishing "meaningful" texts from random texts, even for text lengths of 100 letters, and strong only for texts of several thousand letters.

Distinguishing meaningful plaintext from random noise is evidently not the main application of the \(\kappa\)-statistic. The next section will show the true relevancy of the coincidence index.

\subsection*{3.8 Empirical Values for Natural Languages}

\section*{Empirical Observations}

Some additional explicit examples are on the web page http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/ 3_Coincid/EmpNat.html These examples show some tendencies that will be empirically or mathematically founded later in this section:
- The typical coincidence index of two German texts is about 0.08.
- The typical coincidence index of two English texts is about 0.06.
- The typical coincidence index of a German and an English text is about 0.06 to 0.07 .
- The typical coincidence index of a plaintext and ciphertext is about 0.03 to 0.05 , that is near the "random" value \(\frac{1}{26} \approx 0.0385\). The same is true for two independent ciphertexts.
- If the same key is used for two polyalphabetic ciphertexts this fact reveals itself by a coincidence index that resembles that of two plaintexts.

This latter statement is the first application of coincidence counts. No matter whether the encryption is periodic or not-if we get several ciphertexts encrypted in the same way, we can arrange them in parallel rows ("in depth") and get monoalphabetically encrypted columns that eventually can be decrypted.

\section*{Historical Example}

The Polish cryptanalyst Rejewski was the first who successfully broke early military versions of the German cipher machine Enigma, see Chapter 6. He detected that ciphertexts were "in phase" by coincidence counts. It is unknown whether he knew Friedman's approach, or whether he found it
for himself. Friedman's early publications were not classified and published even in France.

For example Rejewski noted that the two ciphertexts
RFOWL DOCAI HWBGX EMPTO BTVGG INFGR OJVDD ZLUWS JURNK KTEHM RFOWL DNWEL SCAPX OAZYB BYZRG GCJDX NGDFE MJUPI MJVPI TKELY
besides having the initial six letters identical also had a suspicious number of coincidences between the remaining 44 letters ( \(5 / 44 \approx 0.114\) ).

Exercise. How many coincidences among 44 letters would you expect for independently encrypted texts?

Rejewski assumed that the first six letters denoted a "message key" that was identical for the two messages, and from this, that the Enigma operators prefixed their messages by a six letter message key. (Later on he even detected that in fact they used a repeated three letter key.)

Source: F. L. Bauer: Mathematik besiegte in Polen die unvernünftig gebrauchte ENIGMA. Informatik Spektrum 1. Dezember 2005, 493-497.]

\section*{Empirical Results on the Kappa Distribution}

We want to learn more about the distribution of coincidence indices \(\kappa(a, b)\) for English texts (or text chunks) \(a\) and \(b\). To this end we again perform experiments whose results are in Appendix D.

\section*{Applications}

To test whether a text \(a\) belongs to a certain language we would take one (or maybe several) fixed texts of the language and would test \(a\) against them. Because the values for natural languages are quite similar this test would only make sense for testing against random. This test is much weaker then the MFL, LW and BLW tests.

Also adjusting the columns of a disk cipher could be tested this way: If two alphabets are relatively shifted, the corresponding columns behave like random texts with respect to each other. If the alphabets are properly adjusted, the columns represent meaningful texts encrypted by the same monoalphabetic substitution, therefore they belong to the same language and show the typical coincidence index - up to statistical noise. Note that we need quite long columns for this test to work in a sensible way!

In the following sections we'll see some better tests for these problems. The main application of the coincidence index in its pure form is detecting identically encrypted polyalphabetic ciphertexts. Moreover it is the basis of some refined methods.

\subsection*{3.9 Autoincidence of a Text}

\section*{Introduction}

For the cryptanalysis of periodic polyalphabetic ciphers the following construction is of special importance: Let \(a \in \Sigma^{*}\), and let \(a_{(q)}\) and \(a_{(-q)}\) be the cyclic shifts of \(a\) by \(q\) positions to the right resp. to the left. That is
\[
\begin{array}{lllllllllll}
a & = & a_{0} & a_{1} & a_{2} & \ldots & a_{q-1} & a_{q} & a_{q+1} & \ldots & a_{r-1} \\
a_{(q)} & = & a_{r-q} & a_{r-q+1} & a_{r-q+2} & \ldots & a_{r-1} & a_{0} & a_{1} & \ldots & a_{r-q-1} \\
a_{(-q)} & = & a_{q} & a_{q+1} & a_{q+2} & \ldots & a_{2 q-1} & a_{2 q} & a_{2 q+1} & \ldots & a_{q-1}
\end{array}
\]

Clearly \(\kappa\left(a, a_{(q)}\right)=\kappa\left(a, a_{(-q)}\right)\).
Definition. For a text \(a \in \Sigma^{*}\) and a natural number \(q \in \mathbb{N}\) the number \(\kappa_{q}(a):=\kappa\left(a, a_{(q)}\right)\) is called the \(q\)-th autocoincidence index of \(a\).

Note. This is not a common notation. Usually this concept is not given an explicit name.

Example. We shift a text by 6 positions to the right:
```

COINCIDENCESBETWEENTHETEXTANDTHESHIFTEDTEXT <-- original text
EDTEXTCOINCIDENCESBETWEENTHETEXTANDTHESHIFT <-- shifted by 6
| | | | | <- 6 coincidences

```

\section*{Properties}

The \(q\)-th autocoincidence index \(\kappa_{q}\) defines a map
\[
\kappa_{q}: \Sigma^{*} \longrightarrow \mathbb{Q}
\]

Clearly \(\kappa_{q}(a)=\kappa_{r-q}(a)\) for \(a \in \Sigma^{r}\) and \(0<q<r\), and \(\kappa_{0}\) is a constant map.

\section*{Application}

Take a ciphertext \(c\) that is generated by a periodic polyalphabetic substitution. If we determine \(\kappa_{q}(c)\), we encounter two different situations: In the general case \(q\) is not a multiple of the period \(l\). Counting the coincidences we encounter letter pairs that come from independent monoalphabetic substitutions. By the results of Section 3.7 we expect an index \(\kappa_{q}(c) \approx \frac{1}{n}\).

In the special case where \(l \mid q\) however we encounter the situation
\[
\begin{array}{llllll}
\sigma_{0} a_{0} & \sigma_{1} a_{1} & \ldots & \sigma_{0} a_{q} & \sigma_{1} a_{q+1} & \ldots \\
& & & \sigma_{0} a_{0} & \sigma_{1} a_{1} & \ldots
\end{array}
\]
where the letters below each other come from the same monoalphabetic substitution. Therefore they coincide if and only if the corresponding plaintext letters coincide. Therefore we expect an index \(\kappa_{q}(c)\) near the coincidence index \(\kappa_{M}\) that is typical for the plaintext language \(M\).

More precisely for a polyalphabetic substitution \(f\) of period \(l\), plaintext \(a\), and ciphertext \(c=f(a)\) :
1. For \(l\) not a divisor of \(q\) or \(r-q\) we expect \(\kappa_{q}(c) \approx \frac{1}{n}\).
2. For \(l \mid q\) and \(q\) small compared with \(r\) we expect \(\kappa_{q}(c) \approx \kappa_{q}(a)\), and this value should be near the typical coincidence index \(\kappa_{M}\).

This is the second application of coincidence counts, detecting the period of a polyalphabetic substitution by looking at the autocoincidence indices of the ciphertext. Compared with the search for repetitions after Kasiski this method also takes account of repetitions of length 1 or 2 . In this way we make much more economical use of the traces that the period leaves in the ciphertext.

\section*{Example}

We want to apply these considerations to the autocoincidence analysis of a polyalphabetic ciphertext using the Perl program coinc.pl from http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Perl/. We start with the cryptogram that we already have solved in Chapter 2 by repetition analysis:
\begin{tabular}{llllllllll}
00 & 05 & 10 & 15 & 20 & 25 & 30 & 35 & 40 & 45
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & & & & & & & \\
\hline 0050 & YUHCE & HZ & MOOKQ & VZ & RMVVP & JOWHR & JRMWK & мНСмм & OHFSE & \\
\hline 0100 & IK & LAQDX & MWRMH & XGTHX & MXNBY & RTAHJ & RA & OBJ & TCYJA & U \\
\hline 0150 & HCQ & NGKLA & WYNRJ & BRVRZ & IDXT & LPUEL & AI & MKAQ & MVBCB & WVYUX \\
\hline 0200 & KQXYZ & NFP & CHOSO & nTMCM & JPI & PO & RBSIA & OZZZC & YPOBJ & ZNNJP \\
\hline 0250 & UB & WАНО0 & JUWOB & CLQAW & CYT & HFPGL & KMGKH & Ahtyg & VKBSK & Q \\
\hline 0300 & voEQW & EALTM & HKOBN & CMVKO & BJUPA & XFAV & NKJAB & VKNX & IJVOP & Q \\
\hline 0350 & MZR & UE & ZOOR & SIAOV & VLNUK & EMVYY & VMSNT & UHIWZ & WSYPG & \\
\hline 0400 & NQK & ZZMG & OYXAO & KJBZV & LAQZQ & AIRMV & UKVJO & UKC & YEALJ & ZCVKJ \\
\hline 0450 & GJO & WMVCO & ZZZPY & WMWQM & ZUKRE & PX & BAHZV & NHJSJ & ZNSXP & G \\
\hline 0500 & KUOMY & PUELA & IZAMC & AEWOD & QCHEW & OAQZQ & OE & ZHAWU & NRIAA & QYKWX \\
\hline 0550 & EJVUF & UZSBL & RNYDX & QZMnY & AONYT & AUDXA & WYHUH & OBOYN & QJFVH & GGZ \\
\hline 0600 & RVOFQ & JISVZ & JGJME & VEHGD & XSVKF & UKxmV & LXQEO & NWYnk & vomwV & - \\
\hline 0650 & JUPAX & FANYN & VJPOR & BSIAO & XIYYA & JETJT & FQKUZ & ZZMGK & OMYK & IZGAW \\
\hline 0700 & KNR & AIOF & KFAHV & MVXKD & BMDUK & XOMYN & Kvox & YPYWM & QT & EOYVZ \\
\hline 左50 & FUJA & GD & GVJ & & , & & & & & \\
\hline
\end{tabular}
\begin{tabular}{lllllll}
0800 & AJBOS YXQMC AQTYA SABBY ZICOB XMZUK POOUM HEAUE WQUDX TVZCG \\
0850 & JJMVP MHJAB VZSUM CAQTY AJPRV ZINUO NYLMQ KLVHS VUKCW YPAQJ \\
0900 & ABVLM GKUOM YKIZG AVLZU VIJVZ OGJMO WVAKH CUEYN MXPBQ YZVJP \\
0950 & QHYVG JBORB SIAOZ HYZUV PASMF UKFOW QKIZG ASMMK ZAUEW YNJAB \\
1000 & VWEYK GNVRM VUAAQ XQHXK GVZHU VIJOY ZPJBB OOQPE OBLKM DVONV \\
1050 & KNUJA BBMDU HCQNY PQJBA HZMIB HWVTH UGCTV ZDIKG OWAMV GKBBK \\
1100 & KMEAB HQISG ODHZY UWOBR ZJAJE TJTFU K
\end{tabular}

The Autocoincidence Indices
\begin{tabular}{ccccccccc} 
This is & the sequence of & \multicolumn{2}{c}{ autocoincidence } & indices & of & \multicolumn{2}{c}{ our cryptogram } \\
\(\kappa_{1}\) & \(\kappa_{2}\) & \(\kappa_{3}\) & \(\kappa_{4}\) & \(\kappa_{5}\) & \(\kappa_{6}\) & \(\kappa_{7}\) & \(\kappa_{8}\) \\
0.0301 & 0.0345 & 0.0469 & 0.0354 & 0.0371 & 0.0354 & \(\mathbf{0 . 0 8 2 2}\) & 0.0416 \\
\(\kappa_{9}\) & \(\kappa_{10}\) & \(\kappa_{11}\) & \(\kappa_{12}\) & \(\kappa_{13}\) & \(\kappa_{14}\) & \(\kappa_{15}\) & \(\kappa_{16}\) \\
0.0265 & 0.0309 & 0.0416 & 0.0389 & 0.0327 & \(\mathbf{0 . 0 7 8 7}\) & 0.0460 & 0.0345 \\
\(\kappa_{17}\) & \(\kappa_{18}\) & \(\kappa_{19}\) & \(\kappa_{20}\) & \(\kappa_{21}\) & \(\kappa_{22}\) & \(\kappa_{23}\) & \(\kappa_{24}\) \\
0.0460 & 0.0309 & 0.0327 & 0.0309 & \(\mathbf{0 . 0 7 6 9}\) & 0.0318 & 0.0309 & 0.0327 \\
\(\kappa_{25}\) & \(\kappa_{26}\) & \(\kappa_{27}\) & \(\kappa_{28}\) & \(\kappa_{29}\) & \(\kappa_{30}\) & \(\kappa_{31}\) & \(\kappa_{32}\) \\
0.0318 & 0.0309 & 0.0416 & \(\mathbf{0 . 0 8 7 5}\) & 0.0477 & 0.0416 & 0.0442 & 0.0354 \\
\(\kappa_{33}\) & \(\kappa_{34}\) & \(\kappa_{35}\) & \(\kappa_{36}\) & & & & \\
0.0318 & 0.0389 & \(\mathbf{0 . 0 6 1 0}\) & 0.0371 & & & &
\end{tabular}

The period 7 stands out, as it did with the period analysis after KASISKI in the last chapter. This is also clearly seen in the graphical representation, see Figure 3.1.


Figure 3.1: Autocoincidence spectrum of a sample ciphertext
The values other than at multiples of 7 fluctuate around the "random" value \(\frac{1}{26} \approx 0.0385\) as expected. The values in the peaks fluctuate around the typical coincidence index near 0.08 of the plaintext language German, for which we gave empirical evidence in the last section. This effect has an easy explanation.

\section*{The Autocoincidence Spectrum}

To analyze the effect seen in Figure 3.1, let \(c\) be the ciphertext from a polyalphabetic encryption of a text \(a \in M\) with period \(l\). What values can we expect for the \(\kappa_{q}(c)\) ?
\begin{tabular}{rlll|lll}
\(c=\) & \(c_{0}\) & \(\ldots\) & \(c_{q-1}\) & \(c_{q}\) & \(\ldots\) & \(c_{r-1}\) \\
\(c_{(q)}=\) & \(c_{r-q}\) & \(\ldots\) & \(c_{r-1}\) & \(c_{0}\) & \(\ldots\) & \(c_{r-q-1}\) \\
\hline expected coinc.: & \(q \cdot \kappa_{M}\) & if & \(l \mid r-q\), & \((r-q) \cdot \kappa_{M}\) & if & \(l \mid q\), \\
& \(q \cdot \kappa_{\Sigma^{*}}\) & else & & \((r-q) \cdot \kappa_{\Sigma^{*}}\) & else
\end{tabular}

Adding these up we get the following expected values for the autocoincidence spectrum:
1. case, \(l \mid r\)
\[
\kappa_{q}(c) \approx \begin{cases}\frac{q \cdot \kappa_{M}+(r-q) \cdot \kappa_{M}}{r}=\kappa_{M} & \text { if } l \mid q, \\ \frac{q \cdot \kappa_{\Sigma^{*}}+(r-q) \cdot \kappa_{\Sigma^{*}}}{r}=\kappa_{\Sigma^{*}} & \text { else } .\end{cases}
\]
2. case, \(l \nmid r\)
\[
\kappa_{q}(c) \approx \begin{cases}\frac{q \cdot \kappa_{\Sigma^{*}}+(r-q) \cdot \kappa_{M}}{r} & \text { if } l \mid q, \\ \frac{q \cdot \kappa_{M}+(r-q) \cdot \kappa_{\Sigma^{*}}}{r} & \text { if } l \mid r-q, \\ \kappa_{\Sigma^{*}} & \text { else. }\end{cases}
\]

In particular for \(q \ll r\)
\[
\kappa_{q}(c) \approx \begin{cases}\kappa_{M} & \text { if } l \mid q, \\ \kappa_{\Sigma^{*}} & \text { else } .\end{cases}
\]

This explains the autocoincidence spectrum that we observed in the example. Typical autocoincidence spectra are shown in Figures 3.2 and 3.3.

Since in the second case the resulting image may be somewhat blurred, one could try to calculate autocoincidence indices not by shifting the text cyclically around but by simply cutting off the ends.

Definition. The sequence ( \(\left.\kappa_{1}(a), \ldots, \kappa_{r-1}(a)\right)\) of autocoincidence indices of a text \(a \in \Sigma^{r}\) of length \(r\) is called the autocoincidence spectrum of \(a\).

Note. that this notation too is not common in the literature, but seems adequate for its evident cryptanalytical importance.

Exercise 1. Determine the autocoincidence spectrum of the ciphertext that you already broke by a KASISKI analysis. Create a graphical representation of it using graphic software of your choice.

Exercise 2. Cryptanalyze the ciphertext


Figure 3.2: Text length is multiple of period


Figure 3.3: Text length not multiple of period
ECWUL MVKVR SCLKR IULXP FFXWL SMAEO HYKGA ANVGU GUDNP DBLCK
MYEKJ IMGJH CCUJL SMLGU TXWPN FQAPU EUKUP DBKQO VYTUJ IVWUJ
IYAFL OVAPG VGRYL JNWPK FHCGU TCUJK JYDGB UXWTT BHFKZ UFSWA
FLJGK MCUJR FCLCB DBKEO OUHRP DBVTP UNWPZ ECWUL OVAUZ FHNQY
XYYFL OUFFL SHCTP UCCWL TMWPB OXNKL SNWPZ IIXHP DBSWZ TYJFL
NUMHD JXWTZ QLMEO EYJOP SAWPL IGKQR PGEVL TXWPU AODGA ANZGY
BOKFH TMAEO FCFIH OTXCT PMWUO BOK

\subsection*{3.10 The Inner Coincidence Index of a Text}

\section*{Definition}

Let \(a \in \Sigma^{r}(r \geq 2)\) be a text, and \(\left(\kappa_{1}(a), \ldots, \kappa_{r-1}(a)\right)\) be its autocoincidence spectrum. Then the mean value
\[
\varphi(a):=\frac{1}{r-1}\left[\kappa_{1}(a)+\cdots+\kappa_{r-1}(a)\right]
\]
is called the (inner) coincidence index of \(a\).
It defines a map
\[
\varphi: \Sigma^{(\geq 2)} \longrightarrow \mathbb{Q}
\]

See the Perl program phi.pl from http://www.staff.uni-mainz.de/ pommeren/Cryptology/Classic/Perl/.

\section*{Another description}

Pick up the letters from two random positions of a text \(a\). How many "twins" will you find? That means the same letter \(s \in \Sigma\) at the two positions, or a "coincidence"?

Let \(m_{s}=m_{s}(a)=\#\left\{j \mid a_{j}=s\right\}\) be the number of occurrences of \(s\) in \(a\). Then the answer is
\[
\frac{m_{s} \cdot\left(m_{s}-1\right)}{2}
\]
times. Therefore the total number of coincidences is
\[
\sum_{s \in \Sigma} \frac{m_{s} \cdot\left(m_{s}-1\right)}{2}=\frac{1}{2} \cdot \sum_{s \in \Sigma} m_{s}^{2}-\frac{1}{2} \cdot \sum_{s \in \Sigma} m_{s}=\frac{1}{2} \cdot \sum_{s \in \Sigma} m_{s}^{2}-\frac{r}{2}
\]

We count these coincidences in another way by the following algorithm: Let \(z_{q}\) be the number of already found coincidences with a distance of \(q\) for \(q=1, \ldots, r-1\), and initialize it as \(z_{q}:=0\). Then execute the nested loops
```

for i=0,···,r-2 [loop through the text a]
for j=i+1,···,r-1
if }\mp@subsup{a}{i}{}=\mp@subsup{a}{j}{
increment }\mp@subsup{z}{j-i}{
increment }\mp@subsup{z}{r+i-j}{
[loop through the remaining text]
[coincidence detected]
[with distance j-i]
[and with distance r +i-j]

```

After running through these loops the variables \(z_{1}, \ldots, z_{r-1}\) have values such that

Lemma 2 (i) \(z_{1}+\cdots+z_{r-1}=\sum_{s \in \Sigma} m_{s} \cdot\left(m_{s}-1\right)\).
(ii) \(\kappa_{q}(a)=\frac{z_{q}}{r}\) for \(q=1, \ldots, r-1\).

Proof. (i) We count all coincidences twice.
(ii) \(\kappa_{q}(a)=\frac{1}{r} \cdot \#\left\{j \mid a_{j+q}=a_{j}\right\}\) by definition (where the indices are taken \(\bmod r) . \diamond\)

\section*{The Kappa-Phi Theorem}

Theorem 3 (Kappa-Phi Theorem) The inner coincidence index of a text \(a \in \Sigma^{*}\) of length \(r \geq 2\) is the proportion of coincidences among all letter pairs of \(a\).

Proof. The last term of the equation
\[
\begin{aligned}
\varphi(a) & =\frac{\kappa_{1}(a)+\cdots \kappa_{r-1}(a)}{r-1}=\frac{z_{1}+\cdots+z_{r-1}}{r \cdot(r-1)} \\
& =\frac{\sum_{s \in \Sigma} m_{s} \cdot\left(m_{s}-1\right)}{r \cdot(r-1)}=\frac{\sum_{s \in \Sigma} \frac{m_{s} \cdot\left(m_{s}-1\right)}{2}}{\frac{r \cdot(r-1)}{2}}
\end{aligned}
\]
has the total number of coincidences in its numerator, and the total number of letter pairs in its denominator.

Corollary 1 The inner coincidence index may be expressed as
\[
\varphi(a)=\frac{r}{r-1} \cdot \sum_{s \in \Sigma}\left(\frac{m_{s}}{r}\right)^{2}-\frac{1}{r-1}
\]

Proof. This follows via the intermediate step
\[
\varphi(a)=\frac{\sum_{s \in \Sigma} m_{s}^{2}-r}{r \cdot(r-1)}
\]

Note that this corollary provides a much faster algorithm for determining \(\varphi(a)\). The definition formula needs \(r-1\) runs through a text of length \(r\), making \(r \cdot(r-1)\) comparisons. The above algorithm reduces the costs to \(\frac{r \cdot(r-1)}{2}\) comparisons. Using the formula of the corollary we need only one pass through the text, the complexity is linear in \(r\). For a Perl program implementing this algorithm see the Perl script coinc.pl on the web page http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Perl/

Corollary 2 The inner coincidence index of a text is invariant under monoalphabetic substitution.

Proof. The number of letter pairs is unchanged.

\subsection*{3.11 The Distribution of the Inner Coincidence Index}

First we calculate the exact mean value of the inner coincidence index \(\varphi(a)\) for \(a \in \Sigma^{r}\). Then we determine empirical values for mean value and variance for English, German, and random texts by simulation, as we did for \(\kappa\).

The exact value of the variance leads to a somewhat more complicated calculation. We omit it.

\section*{Mean Value}

We calculate the mean value of the letter frequencies \(m_{s}(a)\) over \(a \in \Sigma^{r}\) for each \(s \in \Sigma\). Because of the symmetry in \(s\) all these values are identical, therefore we have
\[
n \cdot \sum_{a \in \Sigma^{r}} m_{s}(a)=\sum_{s \in \Sigma} \sum_{a \in \Sigma^{r}} m_{s}(a)=\sum_{a \in \Sigma^{r}} \underbrace{\sum_{s \in \Sigma} m_{s}(a)}_{r}=r \cdot n^{r}
\]

This gives the mean value
\[
\frac{1}{n^{r}} \sum_{a \in \Sigma^{r}} m_{s}(a)=\frac{r}{n}
\]
for each letter \(s \in \Sigma\).
Next we calculate the mean value of \(\kappa_{q}(a)\) over \(a \in \Sigma^{r}\). We treat the indices of the letters of the texts \(a\) as elements of the cyclic additive group \(\mathbb{Z} / n \mathbb{Z}\). Then we have
\[
\begin{aligned}
\sum_{a \in \Sigma^{r}} \kappa_{q}(a) & =\sum_{a \in \Sigma^{r}} \frac{1}{r} \#\left\{j \in \mathbb{Z} / n \mathbb{Z} \mid a_{j+q}=a_{j}\right\} \\
& =\frac{1}{r} \sum_{j \in \mathbb{Z} / n \mathbb{Z}} \sum_{a \in \Sigma^{r}} \delta_{a_{j+q}, a_{j}} \\
& =\frac{1}{r} \sum_{j \in \mathbb{Z} / n \mathbb{Z}} \underbrace{\#\left\{a \in \Sigma^{r} \mid a_{j+q}=a_{j}\right\}}_{n^{r-1}} \\
& =n^{r-1}
\end{aligned}
\]
because in the underbraced count for \(a\) we may choose \(r-1\) letters freely, and then the remaining letter is fixed. This gives the mean value
\[
\frac{1}{n^{r}} \sum_{a \in \Sigma^{r}} \kappa_{q}(a)=\frac{1}{n}
\]
for each \(q=1, \ldots, r-1\).
Now for \(\varphi\). We use the additivity of the mean value.
\[
\begin{aligned}
\frac{1}{n^{r}} \sum_{a \in \Sigma^{r}} \varphi(a) & =\frac{1}{r-1}\left[\frac{1}{n^{r}} \sum_{a \in \Sigma^{r}} \kappa_{1}(a)+\cdots+\frac{1}{n^{r}} \sum_{a \in \Sigma^{r}} \kappa_{r-1}(a)\right] \\
& =\frac{1}{r-1} \cdot(r-1) \cdot \frac{1}{n}=\frac{1}{n}
\end{aligned}
\]

We have shown:
Proposition 4 The mean values of the \(q\)-th autocoincidence index for \(q=\) \(1, \ldots, r-1\) and of the inner coincidence index over \(a \in \Sigma^{r}\) each are \(\frac{1}{n}\).

And for the letter frequencies we have:
Corollary 3 The sum of the letter frequencies \(m_{s}(a)\) over \(a \in \Sigma^{r}\) is
\[
\sum_{a \in \Sigma^{r}} m_{s}(a)=r \cdot n^{r-1}
\]
for all letters \(s \in \Sigma\).
Corollary 4 The sum of the squares \(m_{s}(a)^{2}\) of the letter frequencies over \(a \in \Sigma^{r}\) is
\[
\sum_{a \in \Sigma^{r}} m_{s}(a)^{2}=r \cdot(n+r-1) \cdot n^{r-2}
\]
for all letters \(s \in \Sigma\).
Proof. By the Kappa-Phi Theorem we have
\[
\sum_{t \in \Sigma}\left[\sum_{a \in \Sigma^{r}} m_{s}(a)^{2}-\sum_{a \in \Sigma^{r}} m_{s}(a)\right]=r \cdot(r-1) \cdot \sum_{a \in \Sigma^{r}} \varphi(a)=r \cdot(r-1) \cdot n^{r-1}
\]

Substituting the result of the previous corollary and using the symmetry of the sum of squares with respect to \(s\) we get
\(n \cdot \sum_{a \in \Sigma^{r}} m_{s}(a)^{2}=\sum_{t \in \Sigma} \sum_{a \in \Sigma^{r}} m_{s}(a)^{2}=r \cdot(r-1) \cdot n^{r-1}+r n \cdot n^{r-1}=r \cdot n^{r-1} \cdot(r-1+n)\)
Dividing by \(n\) we get the above formula. \(\diamond\)

\section*{Empirical Results}

For empirical results on the distribution of the inner coincidence index \(\varphi\) for English, German, and random texts we again refer to Appendix D.

\section*{Applications}

To which questions from the introduction do these results apply?
We can decide whether a text is from a certain language. This includes texts that are monoalphabetically encrypted because \(\varphi\) is invariant under monoalphabetic substitution. And we can recognize a monoalphabetically encrypted ciphertext.

For both of these decision problems we calculate the coincidence index \(\varphi(a)\) of our text \(a\) and decide "belongs to language" or "is monoalphabetically encrypted"-depending on our hypothesis - if \(\varphi(a)\) reaches or surpasses the \(95 \%\) quantile of \(\varphi\) for random texts of the same length-if we are willing to accept an error rate of the first kind of \(5 \%\).

For a text of 100 letters the threshold for \(\varphi\) is about 0.0451 by Table D.12. Tables D.10 and D.11 show that English or German texts surpass this threshold with high probability: For both languages the test has a power of nearly \(100 \%\).

It makes sense to work with the more ambitious "significance level" of \(1 \%=\) bound for the error of the first kind. For this we set the threshold to the \(99 \%\) quantile of the \(\varphi\) distribution for random texts. Our experiment for texts of length 100 gives the empirical value of 0.0473 , failing the empirical minimum for our 2000 English 100 letter texts, and sitting far below the empirical minimum for German. Therefore even at the \(1 \%\)-level the test has a power of nearly \(100 \%\).

\section*{The Phi Distribution for 26 Letter Texts}

Since the \(\varphi\) test performs so excellently for 100 letter texts we dare to look at 26 letter texts-a text length that occurs in the Meet-in-the-Middle attack against rotor machines.

The results are in Appendix D.
The decision threshold on the \(5 \%\)-level is 0.0585 . For English texts the test has a power of only \(50 \%\), for German, near \(75 \%\). So we have a method to recognize monoalphabetic ciphertext that works fairly well for texts as short as 26 letters.

\subsection*{3.12 Sinkov's Formula}

Let's apply the approximative formulas for \(\kappa_{q}(c)\) from Section 3.9 to the coincidence index of a periodically polyalphabetically encrypted text \(c=\)
\(f(a)\) with \(a \in M\) of length \(r\). In the case \(l \mid r\) we get:
\[
\begin{aligned}
\varphi(c) & =\frac{1}{r-1} \cdot\left[\kappa_{1}(c)+\cdots+\kappa_{r-1}(c)\right] \\
& \approx \frac{1}{r-1} \cdot\left[\left(\frac{r}{l}-1\right) \cdot \kappa_{M}+\left(r-\frac{r}{l}\right) \cdot \kappa_{\Sigma^{*}}\right] \\
& =\frac{r-l}{r-1} \cdot \frac{1}{l} \cdot \kappa_{M}+\frac{r(l-1)}{l(r-1)} \cdot \kappa_{\Sigma^{*}} \\
& \approx \frac{1}{l} \cdot \kappa_{M}+\frac{l-1}{l} \cdot \kappa_{\Sigma^{*}},
\end{aligned}
\]
since \(\frac{r}{l}-1\) summands scatter around \(\kappa_{M}\), the other \(r-\frac{r}{l}\) ones around \(\kappa_{\Sigma^{*}}\).
In the same way for \(l \chi r\) we get:
\[
\begin{aligned}
\varphi(c) \approx & \frac{1}{r-1} \cdot\left[\frac{r-1}{l} \cdot \frac{q \cdot \kappa_{\Sigma^{*}}+(r-q) \cdot \kappa_{M}}{r}\right. \\
& \left.+\frac{r-1}{l} \cdot \frac{q \cdot \kappa_{M}+(r-q) \cdot \kappa_{\Sigma^{*}}}{r}+(r-1) \cdot\left(1-\frac{2}{l}\right) \cdot \kappa_{\Sigma^{*}}\right] \\
= & \frac{1}{l} \cdot \frac{r \cdot \kappa_{\Sigma^{*}}+r \cdot \kappa_{M}}{r}+\left(1-\frac{2}{l}\right) \cdot \kappa_{\Sigma^{*}} \\
= & \frac{1}{l} \cdot \kappa_{M}+\frac{l-1}{l} \cdot \kappa_{\Sigma^{*}},
\end{aligned}
\]
that is the same approximative formula in both cases. Note that this is a weighted mean.
\[
\varphi(c) \approx \frac{1}{l} \cdot \kappa_{M}+\frac{l-1}{l} \cdot \kappa_{\Sigma^{*}}
\]

For the example \(M=\) "German" and \(l=7\) we therefore expect
\[
\varphi(c) \approx \frac{1}{7} \cdot 0.0762+\frac{6}{7} \cdot 0.0385 \approx 0.0439
\]
and this is in accordance with the empirical value from the former example. In general Table 3.15 and Figure 3.4 show the connection between period and expected coincidence index for a polyalphabetically encrypted German text. The situation for English is even worse.

If we solve the above formula for the period length \(l\), we get Sinkov's formula:
\[
\begin{gathered}
l \cdot \varphi(c) \approx \kappa_{M}+(l-1) \cdot \kappa_{\Sigma^{*}}, \\
l \cdot\left[\varphi(c)-\kappa_{\Sigma^{*}}\right] \approx \kappa_{M}-\kappa_{\Sigma^{*}}, \\
l \approx \frac{\kappa_{M}-\kappa_{\Sigma^{*}}}{\varphi(c)-\kappa_{\Sigma^{*}}} .
\end{gathered}
\]

Table 3.15: Coincidence index and period length (for German)
\begin{tabular}{|l|ccccc|}
\hline period & 1 & 2 & 3 & 4 & 5 \\
Coinc. index & 0.0762 & 0.0574 & 0.0511 & 0.0479 & 0.0460 \\
\hline & 6 & 7 & 8 & 9 & 10 \\
& 0.0448 & 0.0439 & 0.0432 & 0.0427 & 0.0423 \\
\hline \hline period & 10 & 20 & 30 & 40 & 50 \\
Coinc index & 0.0423 & 0.0404 & 0.0398 & 0.0394 & 0.0393 \\
\hline & 60 & 70 & 80 & 90 & 100 \\
& 0.0391 & 0.0390 & 0.0390 & 0.0389 & 0.0389 \\
\hline
\end{tabular}


Figure 3.4: Coincidence index and period length (for German)

Remark. There are "more exact" versions of this formula. But these don't give better results due to the variation of \(\varphi(c)\) and the numerical instability of the small denominator.

For our sample cryptanalysis we get
\[
l \approx \frac{0.0762-0.0385}{0.0440-0.0385} \approx 6.85 .
\]

This is also evidence for 7 being the length of the period.
The problem with Sinkov's formula is the lack of numerical stability: the larger the period, the closer the coincidence index is to the value for random texts, as the table shows, that is, the closer the denominator in the formula is to 0 .

Therefore the autocoincidence spectrum usually yields a better guess of the period. In fact Sinkov himself in his book [25] uses "his" formulaor rather the English equivalents of Table 3.15 and Figure 3.4 only for distinguishing between monoalphabetic and polyalphabetic ciphertexts. For determining the period he gives a very powerful test, see Section 3.13.

\subsection*{3.13 Sinkov's Test for the Period}

We want to test a pretended period \(l\) whether it is the real period. We write the text in rows of width \(l\) and consider the columns.
- If \(l\) is the correct period, each column is monoalphabetically encrypted and has its coincidence index near the coincidence index of the plaintext language.
- Otherwise the columns are random garbage and have coincidence indices near the random value \(\frac{1}{n}\). Or rather near the value for a polyalphabetic ciphertext of period (the true) \(l\).
Maybe the columns are quite short, thus their coincidence indices are diffuse and give no clear impression. However we can put all the indices together without bothering about the different monoalphabets, and get a much more precise value, based on all the letters of the text.

Definition For a text \(a \in \Sigma^{*}\) and \(l \in \mathbb{N}_{1}\) the mean value
\[
\bar{\varphi}_{l}(a):=\frac{1}{l} \cdot \sum_{i=0}^{l-1} \varphi\left(a_{i} a_{i+l} a_{i+2 l} \ldots\right)
\]
is called the Sinkov statistic of \(a\) of order \(l\).
Note that \(\bar{\varphi}_{1}=\varphi\).
A Perl program, phibar.pl, is in http://www.staff.uni-mainz.de/ Cryptology/Classic/Perl/.

\section*{Example}

Let us again examine the ciphertext from Section 3.9. We get the values:
\begin{tabular}{|l|c||c|c||c|c|}
\hline \(\bar{\varphi}_{1}(a)\) & 0.0442 & \(\bar{\varphi}_{7}(a)\) & \(\mathbf{0 . 0 8 2 9}\) & \(\bar{\varphi}_{13}(a)\) & 0.0444 \\
\(\bar{\varphi}_{2}(a)\) & 0.0439 & \(\bar{\varphi}_{8}(a)\) & 0.0443 & \(\bar{\varphi}_{14}(a)\) & \(\mathbf{0 . 0 8 3 9}\) \\
\(\bar{\varphi}_{3}(a)\) & 0.0440 & \(\bar{\varphi}_{9}(a)\) & 0.0427 & \(\bar{\varphi}_{15}(a)\) & 0.0432 \\
\(\bar{\varphi}_{4}(a)\) & 0.0438 & \(\bar{\varphi}_{10}(a)\) & 0.0421 & \(\bar{\varphi}_{16}(a)\) & 0.0439 \\
\(\bar{\varphi}_{5}(a)\) & 0.0430 & \(\bar{\varphi}_{11}(a)\) & 0.0426 & \(\bar{\varphi}_{17}(a)\) & 0.0444 \\
\(\bar{\varphi}_{6}(a)\) & 0.0435 & \(\bar{\varphi}_{12}(a)\) & 0.0432 & \(\bar{\varphi}_{18}(a)\) & 0.0419 \\
\hline
\end{tabular}

The period 7 is overwhelmingly evident. The values other than at the multiples of 7 are in almost perfect compliance with a (German) ciphertext of period around 7 .

\section*{A Short Ciphertext}

Our example ciphertext was quite long, and it is no surprise that the statistical methods perform very well. To get a more realistic picture let us examine the following ciphertext of length 148:
mDJJL DSKQB GYMZC YkByt ZvRyu PJTZn WPZXS KChFG EFYFs ENvFw
KORMX ZQGYT KEDIQ WRVPM OYMQV DQWDN UBQQM XEQCA CXYLP VUOSG
EJYDS PYYNA XOREC YJAFA MFCOF DQKTA CBAHW FYJUI LXBYA DTT
The Kasiski test finds no reptitions of length 3 or more. It finds 16 repetitions of length 2 and no eye-catching pattern. The common factors 10 or 20 could be a hint at the correct period, but repetitions of length 2 are not overly convincing.
\begin{tabular}{|l|c|c|c|c|c|c|c|c|}
\hline Repetition: & DS & SK & GY & YM & CY & BY & YT & TZ \\
Distance: & 98 & 28 & 47 & 60 & 100 & 125 & 40 & 8 \\
\hline \hline Repetition: & GE & FY & OR & MX & QW & DQ & AC & YJ \\
Distance: & 60 & 94 & 60 & 31 & 12 & 50 & 40 & 21 \\
\hline
\end{tabular}

The coincidence index of the text is 0.0386 and doesn't distinguish the ciphertext from random text. The first 40 values of the autocoincidence spectrum are
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline\(\kappa_{1}\) & \(\kappa_{2}\) & \(\kappa_{3}\) & \(\kappa_{4}\) & \(\kappa_{5}\) & \(\kappa_{6}\) & \(\kappa_{7}\) & \(\kappa_{8}\) \\
0.0270 & 0.0203 & 0.0541 & 0.0405 & 0.0405 & 0.0338 & 0.0405 & \(\mathbf{0 . 0 6 7 6}\) \\
\hline\(\kappa_{9}\) & \(\kappa_{10}\) & \(\kappa_{11}\) & \(\kappa_{12}\) & \(\kappa_{13}\) & \(\kappa_{14}\) & \(\kappa_{15}\) & \(\kappa_{16}\) \\
0.0270 & 0.0473 & 0.0270 & \(\mathbf{0 . 0 6 7 6}\) & 0.0405 & 0.0473 & 0.0541 & 0.0541 \\
\hline\(\kappa_{17}\) & \(\kappa_{18}\) & \(\kappa_{19}\) & \(\kappa_{20}\) & \(\kappa_{21}\) & \(\kappa_{22}\) & \(\kappa_{23}\) & \(\kappa_{24}\) \\
0.0203 & 0.0203 & \(\mathbf{0 . 0 6 0 8}\) & 0.0473 & 0.0473 & 0.0135 & 0.0541 & 0.0270 \\
\hline\(\kappa_{25}\) & \(\kappa_{26}\) & \(\kappa_{27}\) & \(\kappa_{28}\) & \(\kappa_{29}\) & \(\kappa_{30}\) & \(\kappa_{31}\) & \(\kappa_{32}\) \\
0.0338 & 0.0405 & 0.0541 & \(\mathbf{0 . 0 8 1 1}\) & 0.0338 & 0.0338 & 0.0405 & 0.0203 \\
\hline\(\kappa_{33}\) & \(\kappa_{34}\) & \(\kappa_{35}\) & \(\kappa_{36}\) & \(\kappa_{37}\) & \(\kappa_{38}\) & \(\kappa_{39}\) & \(\kappa_{40}\) \\
0.0068 & 0.0473 & 0.0473 & 0.0270 & 0.0405 & 0.0066 & 0.0203 & 0.0473 \\
\hline
\end{tabular}

Values above 0.06 occur for shifts of \(8,12,19,28\), the latter being the largest one. This makes a diffuse picture, giving slight evidence for a period of 28. Finally let's try Sinkov's test. It gives as its first 40 values:
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \(\bar{\varphi}_{1}\) & \(\bar{\varphi}_{2}\) & \(\bar{\varphi}_{3}\) & \(\bar{\varphi}_{4}\) & \(\bar{\varphi}_{5}\) & \(\bar{\varphi}_{6}\) & \(\bar{\varphi}_{7}\) & \(\bar{\varphi}_{8}\) \\
0.0386 & 0.0413 & 0.0386 & 0.0492 & 0.0421 & 0.0441 & 0.0433 & 0.0471 \\
\hline \(\bar{\varphi}_{9}\) & \(\bar{\varphi}_{10}\) & \(\bar{\varphi}_{11}\) & \(\bar{\varphi}_{12}\) & \(\bar{\varphi}_{13}\) & \(\bar{\varphi}_{14}\) & \(\bar{\varphi}_{15}\) & \(\bar{\varphi}_{16}\) \\
0.0330 & 0.0505 & 0.0265 & \(\mathbf{0 . 0 5 9 1}\) & 0.0333 & 0.0486 & 0.0444 & 0.0410 \\
\hline \(\bar{\varphi}_{17}\) & \(\bar{\varphi}_{18}\) & \(\bar{\varphi}_{19}\) & \(\bar{\varphi}_{20}\) & \(\bar{\varphi}_{21}\) & \(\bar{\varphi}_{22}\) & \(\bar{\varphi}_{23}\) & \(\bar{\varphi}_{24}\) \\
0.0280 & 0.0395 & 0.0439 & \(\mathbf{0 . 0 5 8 9}\) & 0.0357 & 0.0264 & 0.0476 & 0.0548 \\
\hline \(\bar{\varphi}_{25}\) & \(\bar{\varphi}_{26}\) & \(\bar{\varphi}_{27}\) & \(\bar{\varphi}_{28}\) & \(\bar{\varphi}_{29}\) & \(\bar{\varphi}_{30}\) & \(\bar{\varphi}_{31}\) & \(\bar{\varphi}_{32}\) \\
0.0507 & 0.0359 & 0.0444 & 0.0488 & 0.0368 & \(\mathbf{0 . 0 6 2 2}\) & 0.0312 & 0.0323 \\
\hline \(\bar{\varphi}_{33}\) & \(\bar{\varphi}_{34}\) & \(\bar{\varphi}_{35}\) & \(\bar{\varphi}_{36}\) & \(\bar{\varphi}_{37}\) & \(\bar{\varphi}_{38}\) & \(\bar{\varphi}_{39}\) & \(\bar{\varphi}_{40}\) \\
0.0091 & 0.0294 & 0.0429 & \(\mathbf{0 . 0 6 1 1}\) & 0.0541 & 0.0307 & 0.0256 & 0.0542 \\
\hline
\end{tabular}

The values for \(12,20,30\), and 36 stand somewhat out, followed by the values for 24,37 , and 40 , then 10 and 25 -again there is no clear favorite. Let's discuss the candidate values for the period and rate each criterion as "good", "weak", or "prohibitive".
\begin{tabular}{|c|l|}
\hline Period? & Pros and cons \\
\hline 8 & \begin{tabular}{l}
\(\varphi(c)\) should be slightly larger (weak). \\
Only 3 repetition distances are multiples of 8 (weak). \\
\(\kappa_{8}\) and \(\kappa_{16}\) are good, \(\kappa_{40}\) is weak, \(\kappa_{24}\) and \(\kappa_{32}\) are prohibitive. \\
\(\bar{\varphi}_{8}\) is weak, \(\bar{\varphi}_{16}\) and \(\bar{\varphi}_{32}\) are prohibitive, \(\bar{\varphi}_{24}\) and \(\bar{\varphi}_{40}\) are good.
\end{tabular} \\
\hline 10 & \begin{tabular}{l}
\(\varphi(c)\) should be slightly larger (weak). \\
7 repetition distances are multiples of 10 (good). \\
\(\kappa_{10}, \kappa_{20}\), and \(\kappa_{40}\) are weak, \(\kappa_{30}\) is prohibitive. \\
\(\bar{\varphi}_{10}, \bar{\varphi}_{20}, \bar{\varphi}_{30}\) and \(\bar{\varphi}_{40}\) are good.
\end{tabular} \\
\hline 12 & \begin{tabular}{l}
\(\varphi(c)\) should be slightly larger (weak). \\
4 repetition distances are multiples of 12 (good). \\
\(\kappa_{12}\) is good, \(\kappa_{24}\) and \(\kappa_{36}\) are prohibitive. \\
\(\bar{\varphi}_{12}, \bar{\varphi}_{24}\), and \(\bar{\varphi}_{36}\) are good.
\end{tabular} \\
\hline 19 & \begin{tabular}{l}
0 repetition distances are multiples of 19 (prohibitive). \\
\(\kappa_{19}\) is good, \(\kappa_{38}\) is prohibitive. \\
\(\bar{\varphi}_{19}\) and \(\bar{\varphi}_{38}\) are prohibitive.
\end{tabular} \\
\hline 20 & \begin{tabular}{l}
6 repetition distances are multiples of 20 (good). \\
\(\kappa_{20}\) and \(\kappa_{40}\) are weak. \\
\(\bar{\varphi}_{20}\) and \(\bar{\varphi}_{40}\) are good.
\end{tabular} \\
\hline 24 & \begin{tabular}{l}
0 repetition distances are multiples of 24 (prohibitive). \\
\(\kappa_{24}\) is prohibitive. \\
\(\bar{\varphi}_{24}\) is good.
\end{tabular} \\
\hline 28 & \begin{tabular}{l} 
Only 1 repetition distance is a multiple of 28 (weak). \\
\(\kappa_{28}\) is good. \\
\(\bar{\varphi}_{28}\) is weak.
\end{tabular} \\
\hline 30 & \begin{tabular}{l}
3 repetition distances are multiples of 30 (good). \\
\(\kappa_{30}\) is prohibitive. \\
\(\bar{\varphi}_{30}\) is good.
\end{tabular} \\
\hline 36 & 0 repetition distances are multiples of 36 (prohibitive). \\
\(\kappa_{36}\) is prohibitive. \\
\(\bar{\varphi}_{36}\) is good.
\end{tabular}

To assess these findings let us score the values "good" as +1 , "weak" as 0 , and "prohibitive" as -1 . Note that 3 repetitions for period 8 are weaker than 3 repetitions for period 30 . The candidates \(19,24,36\), and 37 have negative weights, the candidates 8 and 28 , zero weights. We skip them in the first round. Positive weights have 10 (3 of 9 ), 12 ( 3 of 8 ), 20 (3 of 5 ), and \(30(1\) of 3\()\). We rank them by their relative weights: 20 with score \(0.6=3 / 5\), then 12 with score 0.375 , then 10 and 30 with scores 0.333 .

The most promising approach to further cryptanalysis starts from the hypothetical period 20, see Section 3.15.

\subsection*{3.14 Kullback's Cross-Product Sum Statistic}

For a decision whether two texts \(a \in \Sigma^{r}, b \in \Sigma^{q}\) belong to the same language we could consider \(\varphi(a \| b)\), the coincidence index of the concatenated string \(a \| b\). It should approximately equal the coincidence index of the language, or-in the negative case - be significantly smaller. This index evaluates as
\[
\begin{gathered}
(q+r)(q+r-1) \cdot \varphi(a \| b)=\sum_{s \in \Sigma}\left[m_{s}(a)+m_{s}(b)\right]\left[m_{s}(a)+m_{s}(b)-1\right] \\
=\sum_{s \in \Sigma} m_{s}(a)^{2}+\sum_{s \in \Sigma} m_{s}(b)^{2}+2 \cdot \sum_{s \in \Sigma} m_{s}(a) m_{s}(b)-r-q
\end{gathered}
\]

In this expression we consider terms depending on only one of the texts as irrelevant for the decision problem. Omitting them we are left with the "cross-product sum"
\[
\sum_{s \in \Sigma} m_{s}(a) m_{s}(b)
\]

From another viewpoint we could consider the "Euclidean distance" of \(a\) and \(b\) in the \(n\)-dimensional space of single letter frequencies
\(d(a, b)=\sum_{s \in \Sigma}\left[m_{s}(a)-m_{s}(b)\right]^{2}=\sum_{s \in \Sigma} m_{s}(a)^{2}+\sum_{s \in \Sigma} m_{s}(b)^{2}-2 \cdot \sum_{s \in \Sigma} m_{s}(a) m_{s}(b)\)
and this also motivates considering the cross-product sum. It should be large for texts from the same language, and small otherwise.

\section*{Definition}

Let \(\Sigma\) be a finite alphabet. Let \(a \in \Sigma^{r}\) and \(b \in \Sigma^{q}\) be two texts of lengths \(r, q \geq 1\). Then
\[
\chi(a, b):=\frac{1}{r q} \cdot \sum_{s \in \Sigma} m_{s}(a) m_{s}(b)
\]
where \(m_{s}\) denotes the frequency of the letter \(s\) in a text, is called crossproduct sum of \(a\) and \(b\).

For each pair \(r, q \in \mathbb{N}_{1}\) this defines a map
\[
\chi: \Sigma^{r} \times \Sigma^{q} \longrightarrow \mathbb{Q} .
\]

A Perl program, chi.pl, is in http://www.staff.uni-mainz.de/Cryptology/ Classic/Perl/.

Transforming \(a\) and \(b\) by the same monoalphabetic substitution permutes the summands of \(\chi(a, b)\). Therefore \(\chi\) is invariant under monoalphabetic substitution.

Lemma 3 Always \(\chi(a, b) \leq 1\). Equality holds if and only if \(a\) and \(b\) consist of repetitions of the same single letter.

Proof. We use the Cauchy-Schwartz inequality:
\[
\begin{aligned}
\chi(a, b)^{2}=\left(\sum_{s \in \Sigma} \frac{m_{s}(a)}{r} \frac{m_{s}(b)}{q}\right)^{2} & \leq \sum_{s \in \Sigma}\left(\frac{m_{s}(a)}{r}\right)^{2} \cdot \sum_{s \in \Sigma}\left(\frac{m_{s}(b)}{q}\right)^{2} \\
& \leq \sum_{s \in \Sigma} \frac{m_{s}(a)}{r} \cdot \sum_{s \in \Sigma} \frac{m_{s}(b)}{q}=1
\end{aligned}
\]

Equality holds if and only if
- \(m_{s}(a)=c \cdot m_{s}(b)\) for all \(s \in \Sigma\) with a fixed \(c \in \mathbb{R}\),
- and all \(\frac{m_{s}(a)}{r}\) and \(\frac{m_{s}(b)}{q}\) are 0 or 1 .

These two conditions together are equivalent with both of \(a\) and \(b\) consisting of only one - the same - repeated letter. \(<\)

Considering the quantity \(\psi(a):=\chi(a, a)=\sum_{s} m_{s}(a)^{2} / r^{2}\) doesn't make much sense for Corollary 1 of the Kappa-Phi-Theorem gives a linear (more exactly: affine) relation between \(\psi\) and \(\varphi\) :

Lemma 4 For all \(a \in \Sigma^{r}, r \geq 2\),
\[
\varphi(a)=\frac{r}{r-1} \cdot \psi(a)-\frac{1}{r-1}
\]

\section*{Side Remark: Cohen's Kappa}

In statistical texts one often encounters a related measure of coincidence between two series of observations: Cohen's kappa. It combines Friedman's kappa and Kullback's chi. Let \(a=\left(a_{1}, \ldots, a_{r}\right), b=\left(b_{1}, \ldots, b_{r}\right) \in \Sigma^{r}\) be two texts over the alphabet \(\Sigma\) (or two series of observations of data of some type). Then consider the matrix of frequencies
\[
m_{s t}(a, b)=\#\left\{i \mid a_{i}=s, b_{i}=t\right\} \quad \text { for } s, t \in \Sigma
\]

Its row sums are
\[
m_{s}(a)=\#\left\{i \mid a_{i}=s\right\}=\sum_{t \in \Sigma} m_{s t}(a, b)
\]
its column sums are
\[
m_{t}(b)=\#\left\{i \mid b_{i}=t\right\}=\sum_{s \in \Sigma} m_{s t}(a, b),
\]
its diagonal sum is
\[
\sum_{s \in \Sigma} m_{s s}(a, b)=\sum_{s \in \Sigma} \#\left\{i \mid a_{i}=b_{i}=s\right\}=\#\left\{i \mid a_{i}=b_{i}\right\} .
\]

The intermediate values from which Cohen's kappa is calculated are
\[
p_{0}=\frac{1}{r} \cdot \sum_{s \in \Sigma} m_{s s}(a, b)=\kappa(a, b) \quad \text { and } \quad p_{e}=\frac{1}{r^{2}} \cdot \sum_{s \in \Sigma} m_{s}(a) m_{s}(b)=\chi(a, b)
\]

Cohen's kappa is defined for \(a \neq b\) by
\[
\mathrm{K}(a, b):=\frac{p_{0}-p_{e}}{1-p_{e}}=\frac{\kappa(a, b)-\chi(a, b)}{1-\chi(a, b)}
\]

If \(a\) and \(b\) are random strings with not necessarily uniform letter probabilities \(p_{s}\), then K is asymptotically normally distributed with expectation 0 and variance
\[
\frac{p_{0} \cdot\left(1-p_{0}\right)}{r \cdot\left(1-p_{0}\right)^{2}}
\]

Therefore its use is convenient for large series of observations - or large strings-but in cryptanalysis we mostly have to deal with short strings, and considering \(\kappa\) and \(\chi\) separately may retain more information.

\section*{Mean Values}

For a fixed \(a \in \Sigma^{r}\) we determine the mean value of \(\kappa(a, b)\) taken over all \(b \in \Sigma^{q}\) :
\[
\begin{aligned}
\frac{1}{n^{q}} \cdot \sum_{b \in \Sigma^{q}} \chi(a, b) & =\frac{1}{n^{q}} \cdot \sum_{b \in \Sigma^{q}}\left[\frac{1}{r q} \cdot \sum_{s \in \Sigma} m_{s}(a) m_{s}(b)\right] \\
& =\frac{1}{r q n^{q}} \cdot \sum_{s \in \Sigma} m_{s}(a) \underbrace{\sum_{b \in \Sigma^{q}} m_{s}(b)}_{q \cdot n^{q-1}} \\
& =\frac{1}{r q n^{q}} \cdot r \cdot q \cdot n^{q-1}=\frac{1}{n}
\end{aligned}
\]
where we used the corollary of Proposition 4.
In an analogous way we determine the mean value of \(\chi\left(a, f_{\sigma}(b)\right)\) for fixed \(a, b \in \Sigma^{r}\) over all permutations \(\sigma \in \mathcal{S}(\Sigma)\) :
\[
\frac{1}{n!} \cdot \sum_{\sigma \in \mathcal{S}(\Sigma)} \chi\left(a, f_{\sigma}(b)\right)=\frac{1}{r q n!} \cdot \sum_{\sigma \in \mathcal{S}(\Sigma)} \sum_{s \in \Sigma} m_{s}(a) m_{s}\left(f_{\sigma}(b)\right)
\]

As usual we interchange the order of summation, and evaluate the sum
\[
\begin{aligned}
\sum_{\sigma \in \mathcal{S}(\Sigma)} m_{s}\left(f_{\sigma}(b)\right) & =\frac{1}{n} \cdot \sum_{t \in \Sigma} \sum_{\sigma \in \mathcal{S}(\Sigma)} m_{t}\left(f_{\sigma}(b)\right) \\
& =\frac{1}{n} \cdot \sum_{\sigma \in \mathcal{S}(\Sigma)} \underbrace{\sum_{t \in \Sigma} m_{t}\left(f_{\sigma}(b)\right)}_{q}=\frac{1}{n} \cdot n!\cdot q=(n-1)!\cdot q
\end{aligned}
\]
using the symmetry with respect to \(s\). Therefore
\[
\begin{aligned}
\frac{1}{n!} \cdot \sum_{\sigma \in \mathcal{S}(\Sigma)} \chi\left(a, f_{\sigma}(b)\right) & =\frac{1}{r q n!} \cdot \sum_{s \in \Sigma} m_{s}(a) \cdot \sum_{\sigma \in \mathcal{S}(\Sigma)} m_{s}\left(f_{\sigma}(b)\right) \\
& =\frac{1}{r q n!} \cdot r \cdot(n-1)!\cdot q=\frac{1}{n}
\end{aligned}
\]

Note that this conclusion also holds for \(a=b\).
This derivation shows:
Proposition 5 (i) The mean value of \(\chi(a, b)\) over all texts \(b \in \Sigma^{*}\) of a fixed length \(q\) is \(\frac{1}{n}\) for all \(a \in \Sigma^{*}\).
(ii) The mean value of \(\chi(a, b)\) over all \(a \in \Sigma^{r}\) and \(b \in \Sigma^{q}\) is \(\frac{1}{n}\) for all \(r, q \in \mathbb{N}_{1}\).
(iii) The mean value of \(\chi\left(a, f_{\sigma}(b)\right)\) over all monoalphabetic substitutions with \(\sigma \in \mathcal{S}(\Sigma)\) is \(\frac{1}{n}\) for each pair \(a, b \in \Sigma^{*}\).
(iv) The mean value of \(\chi\left(f_{\sigma}(a), f_{\tau}(b)\right)\) over all pairs of monoalphabetic substitutions, with \(\sigma, \tau \in \mathcal{S}(\Sigma)\), is \(\frac{1}{n}\) for each pair \(a, b \in \Sigma^{*}\).

\section*{Interpretation}
- For a given text \(a\) and a "random" text \(b\) we have \(\chi(a, b) \approx \frac{1}{n}\).
- For "random" texts \(a\) and \(b\) we have \(\chi(a, b) \approx \frac{1}{n}\).
- For given texts \(a\) and \(b\) and a "random" monoalphabetic substitution \(f_{\sigma}\) we have \(\chi\left(a, f_{\sigma}(b)\right) \approx \frac{1}{n}\). This remark justifies treating a nontrivially monoalphabetically encrypted text as random with respect to \(\chi\) and plaintext.
- For given texts \(a\) and \(b\) and two "random" monoalphabetic substitutions \(f_{\sigma}, f_{\tau}\) we have \(\chi\left(f_{\sigma}(a), f_{\tau}(b)\right) \approx \frac{1}{n}\).

\section*{Empirical Results}

The results are in Tables D.16, D.17, and D.18. We see that \(\chi\)-in contrast with the coincidence index \(\kappa\) - performs extremely well, in fact in our experiments it even completely separates English and German texts from random texts of length 100 . It is a test with power near \(100 \%\) and error probability near \(0 \%\). The \(\chi\) test even distinguishes between English and German texts at the \(5 \%\) error level with a power of almost \(75 \%\). For this assertion compare the \(95 \%\) quantile for English with the first quartile for German.

The results for 26 letter texts are in Tables D.19, D.20, and D.21. The \(\chi\)-test is quite strong even for 26 letters: At the \(5 \%\) error level its power is around \(91 \%\) for English, \(98 \%\) for German.

\subsection*{3.15 Adjusting the Columns of a Disk Cipher}

As a last application in this chapter we look at the problem: How to adjust the alphabets in the columns of a disk cipher? From Chapter 2 we know that this works only when the primary alphabet is known.

Imagine a ciphertext from a disk cipher whose period \(l\) we know already. Write the ciphertext in rows of length \(l\). Then the columns are monoalphabetically encrypted, each with (in most cases) another alphabet. By Proposition 5 (iv) we expect a \(\chi\)-value of about \(\frac{1}{n}\) for each pair of columns. Since the alphabets for the columns are secondary alphabets of a disk cipher they differ only by a relative shift in the alphabet. There are 26 different possible shifts. These can be checked by exhaustion: We try all 26 possibilities (including the trivial one, bearing in mind that two columns can have the same alphabet). The perfect outcome would be 25 values near \(\frac{1}{n}\), and one outcome around the coincidence index of the plaintext language, clearly indicating the true alphabet shift. The experimental results of Section D.5 give hope that real outcome should approximate the ideal one in a great number of cases.

\section*{Example 1}

Let us try out this idea for the ciphertext from Section 3.9. We are pretty sure that the period is 7 . (And we also adjusted the columns by visual inspection in Chapter 2.) The first two columns are

\section*{ARCYPMEAZKRWKHZLRXTRTMYYRLMTVYCMRBZZKOLKKTKOTCUKKOMVBLYUYYZALR OEKWZMWZZRYZOOTUYURMTYYSOZEKLYVUYBYTZYKOVMYYMZMZVYROKYTYMUWZ PZTZLSPLYLZVYYYBYMQMWWRXZYOKKMYZTZAKQZZT \\ OMZYYDMYPQMHMFKAMMAACDNNZPIMYZHCJSCNCJQMMYLEMMPNNPZYSNYHPNMOAM CAJMPZIVNMPADAHNKFNNAHNVFJHFXNYPNSYFMKNFMDNPZFGJMVMCMXYZZMQC MSYIMVAMKZOANZVSZFKMYEMQHZQMNDPMHDMKIYJF}

Using the Perl script adjust.pl we get the results
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Shift: & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\
\(\chi \vdots\) & 0.0499 & 0.0365 & 0.0348 & 0.0285 & 0.0320 & 0.0341 & 0.0298 \\
\hline 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 \\
0.0416 & 0.0307 & 0.0421 & 0.0402 & 0.0448 & \(\mathbf{0 . 0 7 9 9}\) & 0.0495 & 0.0373 \\
\hline 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 \\
0.0375 & 0.0293 & 0.0330 & 0.0276 & 0.0307 & 0.0306 & 0.0316 & 0.0352 \\
\hline 23 & 24 & 25 & & & & & \\
0.0338 & 0.0461 & 0.0529 & & & & & \\
\hline
\end{tabular}

The result is clear without ambiguity: The correct shift is 12 . Going through all \(7 \times 6 / 2=21\) pairs of columns we use the Perl script coladj.pl and get results in Table 3.16 that are consistent with each other and with the results of Chapter 2.

Table 3.16: The optimal alphabet shifts for 7 columns
\begin{tabular}{|c|rrrrrr|}
\hline Column: & 0 & 1 & 2 & 3 & 4 & 5 \\
\hline 1 & 12 & & & & & \\
2 & 4 & 18 & & & & \\
3 & 15 & 3 & 11 & & & \\
4 & 10 & 24 & 6 & 21 & & \\
5 & 24 & 12 & 20 & 9 & 14 & \\
6 & 3 & 17 & 25 & 14 & 19 & 5 \\
\hline
\end{tabular}

\section*{Example 2}

The best guess for the period of the short ciphertext of Section 3.13 was \(l=20\). Therefore we consider 20 columns of lengths 8 or 7 :
```

M D J J L D S K Q B G Y M Z C Y K B Y T
Z V R Y U P J T Z N W P Z X S K C H F G
E F Y F S E N V F W K O R M X Z Q G Y T
K E D I Q W R V P M O Y M Q V D Q W D N
U B Q Q M X E Q C A C X Y L P V U O S G
E J Y D S P Y Y N A X O R E C Y J A F A
MFCOFDQKTACBAH WFY J U I
L X B Y A D T T

```

We have to assume the primary alphabet as known in order to know how to shift the columns, that is, how to identify the distance of the secondary alphabets of two columns relative to each other. The primary alphabet is QWERTZUABCDFGHIJKLMNOPSVXY, the complete alphabet table is in Table 3.17

The method from Example 1 gives \(20 \times 19 / 2=190\) proposals for optimal shifts between columns. However even for the first columns we already get inconsistent results. We face a complex optimization problem. Instead of continuing with the next columns we better would follow a proposal by Sinkov: Pick up the highest \(\chi\)-values and try to build clusters of fitting columns. But also this approach fails. After several hours off the track we try to understand why.

Let us imagine a plaintext of the same length, written in rows of length 20, columns of length 7 or 8 . Take two columns that each have one letter twice and five or six single letters. Shifting the alphabets in such a way that the "twins" become identical letters, they contribute a summand of
\[
\frac{4}{49} \approx 0.0818 \text { for lengths } 7 / 7, \frac{4}{56} \approx 0.0714 \text { for } 8 / 7, \frac{4}{64} \approx 0.0625 \text { for } 8 / 8
\]

Table 3.17: The alphabet table used in the example
abcdefghijklmnopqrstuveyz
Q W E R T Z U A B C D F G H I J K L M N O P S V X Y W ERTZUABCDFGHIJKLMNOPSVXYQ ERTZUABCDFGHIJKLMNOPSVXYQW R T Z U A B C D F G H I J K L M N O P S V X Y Q W E T Z U A B C D F G H I J K L M N O P S V X Y Q W ER Z U A B C D F G H I J K L M N O P S V X Y Q W E R T U A B C D F G H I J K L M N O P S V X Y Q W ER T Z A B C D F G H I J K L M N O P S V X Y Q W ERTZ U B C D F G H I J K L M N O P S V X Y Q W ER T Z U A C D F G H I J K L M N O P S V X Y Q WERTZUAB D F G H I J K L M N O P S V X Y Q W ERTZUABC F G H I J K L M N O P S V X Y Q W ER T Z U A B C D GHIJKLMNOPSVXYQWERTZUABCDF H I J K L M N O P S V X Y Q W ER T Z U A B C D F G I J K L M N O P SVXY Q WERTZUABCDFGH J K L M N O P S V X Y Q W E R T Z U A B C D F G H I K L M N O P S V X Y Q W E R T Z U A B C D F G H I J L M N O P S V X Y Q W ER T Z U A B C D F G H I J K M N O P S V X Y Q W E R T Z U A B C D F G H I J K L N O P SVXYQWERTZUABCDFGHIJKLM O P S V X Y Q W ERTZUABCDFGHIJKLMN P S V X Y Q W E R T Z U A B C D F G H I J K L M N O S V X Y Q W E R T Z U A B C D F G H I J K L M N O P V X Y Q W E R T Z U A B C D F G H I J K L M N O P S X Y Q W ER T Z U A B C D F G H I J K L M N O P S V Y Q W E R T Z U A B C D F G H I J K L M N O P S V X
to the \(\chi\)-value. If accidentally there is another common letter, these values rise to
\[
\frac{5}{49} \approx 0.1020 \text { for lengths } 7 / 7, \frac{5}{56} \approx 0.0893 \text { for } 8 / 7, \frac{5}{64} \approx 0.0781 \text { for } 8 / 8
\]

And therefore we'll get many false alarms that will make the task of finding the correct solution very time-consuming. An experiment with plaintext comfirms this. Here all shifts should be 0 , however we found the maximal \(\chi\)-value for a shift of 0 in less then \(20 \%\) of all cases.

To get better chances for success we need some known plaintext or more ciphertext or luck. We had luck and got more ciphertext. The following two messages \(b\) and \(c\),
```

AWYFN DHZPE PENES YGAVO YHGAD VTNLL TFKKH FHGYT DOGJI HJHHB
OOYFV EWDSJ MOIFY DRTLA BRRFE ZQGYQ AVYCH BQZPR RZTTH IONZE
SCEFH EFJBJ RNRWE TGVZR EYIIQ IZRWT OLGOC ICLFS EMYAH E
LIGJC KTNLF KBMZH XYWFB UWVPC RNYAJ WEVKV BRVPN PXYOT KVGLE
MBVHE WFZSM UOWFI EYXLB XRRKC XKGPT YONFY DKZLU CXRDC YJWZT
UWPDS VZWNU KORLK WUXUO WVHFL IEGXJ ZUKGC YJVDN EFYDK GJZON
BYXEV EWQSD MMHSS GJ

```
could be encrypted with the same key. Number 1 and 2 have a coincidence index \(\kappa(a, b) \approx 0.0411\) only. But \(\kappa(a, c) \approx 0.0811, \kappa(b, c) \approx 0.1027\). For both \(b\) and \(c\) the period 20 is confirmed by the SinKOV statistic and also by the autocoincidence spectrum. Therefore we align all three messages below each other with rows of length 20 . From bad experience we know we should proceed very thoughtfully. Therefore we first look at the letter frequencies in the single columns (of lengths 22 to 25 ). The columns 2, 3, and 12 contain a letter in 7 exemplars. We try to adjust these columns in such a way that the most frequent letters match. For column 3 relative to column 2 we get a \(\chi\)-value of 0.1072 for a shift of 14 , the next \(\chi\)-value being 0.0608 . If we write the columns as rows, the result looks like this
```

Column 02: JRYDQYCBYGGIYEIYGVYWNPHYH
Column 03: JYFIQDOYFAJFCFIAJPOFFDFDS
shifted: RHYEIXBHYPRYVYEPRCBYYXYXD

```

In both cases the most frequent letter with 7 occurrences is Y. For column 12 we get the optimal shift 22 relative to column 2 with a \(\chi\)-value of 0.1273 , the next \(\chi\)-value being 0.0836 . This also looks good and gives the result
```

Column 02: JRYDQYCBYGGIYEIYGVYWNPHYH
Column 12: MZRMYRANKYRTRGMVVRRRKX
shifted: IWYIPYRJGPYQYBINNYYYGO

```

Also in the shifted column 12 the letter Y occurs 7 times. If we are right, comparing columns 3 and 12 should lead to the same result. Indeed the optimal shift is 8 with \(\chi \approx 0.1109\), the next \(\chi\)-value being 0.0727 .

This makes us confident that we are on the right track, and encourages us to set Y it to plaintext e. We continue our task under the hypothesis that columns 2, 3, and 12 match with the given shifts as
```

JRYDQYCBYGGIYEIYGVYWNPHYH
RHYEIXBHYPRYVYEPRCBYYXYXD
IWYIPYRJGPYQYBINNYYYGO

```

We take this text fragment as cluster "A" and try to match further columns. First we take columns where the most frequent letters occur 6 or 5 times.
```

A vs 5: Optimal shift is 15 with chi = 0.0906 (next is 0.0683)
A vs 8: Optimal shift is 8 with chi = 0.1092 (next is 0.0758)
A vs 14: Optimal shift is 16 with chi = 0.1092 (next is 0.0859)
A vs 0: Optimal shift is 23 with chi = 0.0878 (next is 0.0817)
A vs 5: Optimal shift is 0 with chi = 0.0809 (next is 0.0619)
A vs 9: Optimal shift is 21 with chi = 0.0966 (next is 0.0663)

```

The most convincing match is with column 8 , therefore we join it to our cluster, forming cluster " B ":
```

JRYDQYCBYGGIYEIYGVYWNPHYH
RHYEIXBHYPRYVYEPRCBYYXYXD
BHNRLWGRYPYRKCYJYYYWUE
IWYIPYRJGPYQYBINNYYYGO

```

Looking at the distribution of letters the \(Y\) stands out by far-that is no surprise because we picked columns with the most frequent letters and matched these. As a more meaningful check we transform our cluster to (presumed) plaintext; this means decrypting the fragments with the secondary alphabet that transforms e to Y, that is PSUXYQWERTZUABCDFGHIJKLMNO. This gives the supposed plaintext fragment (to be read top down):
```

isehtdnseaiecehaioneededp
nsyiwgrieaeivoeueeeglh
tgetaeiuraefentyyeeerz

```

This looks promising. Trying to extend this cluster by a formal procedure is dangerous because there could be columns with a most frequent (plaintext) letter other then e. Instead we look at neighboring columns, say at column 4 that should give a readable continuation of columns 2 and 3 , in particular extending the digraph th in a meaningful way. The proposed shift should have a \(Y\) (for e) as 15 th letter, or maybe a \(P\) (for a), or an \(R\) (for i).

Cluster B versus column 4 yields the optimal shift 3 with \(\chi \approx 0.0753\), the 15 th letter being R (for i ). The next best values are \(\chi \approx 0.0664\) for a shift of 12 , the 15 th letter then being \(G\) (for \(r\) ), and \(\chi \approx 0.0604\) for a shift of 25 , the 15 th letter being \(Y\) (for e). To decide between these possible solutions we decrypt the shifted columns and get the proposed cleartext columns
```

zoeiaetpbswhvvivrrmwhezye
ixnrjncykbfqeereaavfqnihn
vkaewaplxosdrrernnisdavua

```

Joining them to columns 3 and 4 the first one looks somewhat inauspicuous but possible, the second one looks awkward, the third one looks best and is our first choice. This gives the three adjacent columns
```

uiepfeonerrtehtercegyases
isehtdnseaiecehaioneededp
vkaewaplxosdrrernnisdavua

```
and the new cluster "C" of (monoalphabetic) ciphertext, comprising columns \(2,3,4,8,12\) :
```

JRYDQYCBYGGIYEIYGVYWNPHYH
RHYEIXBHYPRYVYEPRCBYYXYXD
KZPYLPDUMCHXGGYGBBRHXPKJP
BHNRLWGRYPYRKCYJYYYWUE
IWYIPYRJGPYQYBINNYYYGO

```

Note that for joining further columns we must not work with the (proposed) plaintext columns because the transformation between plaintext and ciphertext is not a simple shift.

Comparing the adjacent columns with cluster C we obtain
C vs 1: Optimal shift is 1 with chi \(=0.0642\) (next is 0.0632 )
\(C\) vs 5: Optimal shift is 15 with chi \(=0.0844\) (next is 0.0686 )
\(C\) vs 7: Optimal shift is 20 with chi \(=0.0676\) (next is 0.0621 )
\(C\) vs 9: Optimal shift is 6 with chi \(=0.0695\) (next is 0.0653 )
\(C\) vs 11: Optimal shift is 5 with chi \(=0.0695\) (next is 0.0638 )
\(C\) vs 13: Optimal shift is 23 with chi \(=0.0684\) (next is 0.0588 )

The best value seems that for column 13, so let's try this one first (skipping the dead end via column 5). The new cluster D is
```

JRYDQYCBYGGIYEIYGVYWNPHYH
RHYEIXBHYPRYVYEPRCBYYXYXD
KZPYLPDUMCHXGGYGBBRHXPKJP vkaewaplxosdrrernnisdavua
BHNRLWGRYPYRKCYJYYYWUE nsyiwgrieaeivoeueeeglh
IWYIPYRJGPYQYBINNYYYGO tgetaeiuraefentyyeeerz
EPJVIYDYHBBWXLEHDHAICY hauctepesnngdwhspsmtoe

```

This looks good, and detecting the two th's between the cleartext columns 12 and 13 we try column 14 next.

D vs 14: Optimal shift is 16 with chi \(=0.0945\) (next is 0.0793 )
If we rely on this result, we get the next cluster E:
```

JRYDQYCBYGGIYEIYGVYWNPHYH
RHYEIXBHYPRYVYEPRCBYYXYXD
KZPYLPDUMCHXGGYGBBRHXPKJP
BHNRLWGRYPYRKCYJYYYWUE
IWYIPYRJGPYQYBINNYYYGO
EPJVIYDYHBBWXLEHDHAICY
PBDCAPHBYCIYIPYCIPPEPC
uiepfeonerrtehtercegyases
isehtdnseaiecehaioneededp
vkaewaplxosdrrernnisdavua
nsyiwgrieaeivoeueeeglh
tgetaeiuraefentyyeeerz
hauctepesnngdwhspsmtoe
anpomasneotetaeotaahao

```

Good! Let's continue with column 15:
```

E vs 15: Optimal shift is 0 with chi = 0.0719 (next is 0.0574)

```

Joining the resulting "cleartext" to columns 12, 13, 14 gives the disturbing result
```

tgetaeiuraefentyyeeerz
hauctepesnngdwhspsmtoe
anpomasneotetaeotaahao
evkpceqeqhktjtdngdegeh

```

Therefore we dismiss this proposal. Unfortunately also the next best \(\chi\) value gives no sensible result. On the other hand the shifts giving a possible complement to the th have a quite small \(\chi\)-value. Therefore we leave column 15 and retry column 1 :

E vs 1: Optimal shift is 1 with chi \(=0.0631\) (next is 0.0577 )
This would give us cluster F:

FXGRCKGYEIPPXDQNJEYPPEXGN JRYDQYCBYGGIYEIYGVYWNPHYH RHYEIXBHYPRYVYEPRCBYYXYXD KZPYLPDUMCHXGGYGBBRHXPKJP

BHNRLWGRYPYRKCYJYYYWUE

IWYIPYRJGPYQYBINNYYYGO
EPJVIYDYHBBWXLEHDHAICY
PBDCAPHBYCIYIPYCIPPEPC
qdriovrehtaadpfyuheaahdry uiepfeonerrtehtercegyases isehtdnseaiecehaioneededp vkaewaplxosdrrernnisdavua
nsyiwgrieaeivoeueeeglh
tgetaeiuraefentyyeeerz hauctepesnngdwhspsmtoe anpomasneotetaeotaahao

The plaintext now begins with .quiv.... A dictionary search finds hits such as "equivalent", "equivocal", and "a quiver". We compare cluster F with column 1 and look for shifts that make the first letter a ( P in our secondary alphabet) or e (Y). We have luck! The optimal shift gives e, so we take this as our favourite solution:

F vs 0: Optimal shift is 7 with chi \(=0.0717\) (next is 0.0696)
and form the next cluster \(G\) :
\begin{tabular}{ll} 
YGCVHCYXIULYIRCCXHEHUHBCY & erocsoedtlwetioodshslsnoe \\
FXGRCKGYEIPPXDQNJEYPPEXGN & qdriovrehtaadpfyuheaahdry \\
JRYDQYCBYGGIYEIYGVYNPHYH & uiepfeonerrtehtercegyases \\
RHYEIXBHYPRYYEPRCBYYYXD & isehtdnseaiecehaioneededp \\
KZPYLPDUMCHXGGYGBBRHXPKJP & vkaewaplxosdrrernnisdavua \\
\(\ldots\) & \\
BHNRLWGRYPYRKCYJYYYWUE & nsyiwgrieaeivoeueeeglh \\
\(\ldots\) & \\
IWYIPYRJGPYQYBINNYYYGO & tgetaeiuraefentyyeeerz \\
EPJVIYDYHBBWXLEHDHAICY & hauctepesnngdwhspsmtoe \\
PBDCAPHBYCIYIPYCIPPEPC & anpomasneotetaeotahao
\end{tabular}

Noting the fragments ciphe in "line" 4 (fourth column in the schema above) and ipher in "line" 14 , we cannot resist completing them as cipher.
```

G vs 5: Optimal shift is 11 with chi = 0.0708 (next is 0.0697)
G vs 19: Optimal shift is 21 with chi = 0.0775 (next is 0.0585)

```

Note that we now see how misleading our former results for column 5 were. This is caused by the six a's in this column that the \(\chi\)-method tried to associate with the e's of other columns.

Adding both of these results in one step gives cluster H :

YGCVHCYXIULYIRCCXHEHUHBCY FXGRCKGYEIPPXDQNJEYPPEXGN JRYDQYCBYGGIYEIYGVYWNPHYH RHYEIXBHYPRYVYEPRCBYYXYXD KZPYLPDUMCHXGGYGBBRHXPKJP YDLKHDYYYGEYVLRLZMZLYGRWW

BHNRLWGRYPYRKCYJYYYWUE

IWYIPYRJGPYQYBINNYYYGO
EPJVIYDYHBBWXLEHDHAICY PBDCAPHBYCIYIPYCIPPEPC

YAYIAECJYDPVXLRIHYYJIZ
erocsoedtlwetioodshslsnoe qdriovrehtaadpfyuheaahdry uiepfeonerrtehtercegyases isehtdnseaiecehaioneededp vkaewaplxosdrrernnisdavua alsrolaaandaysesgtgsanecc
nsyiwgrieaeivoeueeeglh
tgetaeiuraefentyyeeerz hauctepesnngdwhspsmtoe anpomasneotetaeotaahao
emetmhouepacdwitseeutk

We see that column 6 should start with \(1(\mathrm{U})\). And this is also the " \(\chi\) optimal" solution:

H vs 6: Optimal shift is 10 with chi \(=0.0734\) (next is 0.0554 )
And column 7 should start with e (Y):
H vs 7: Optimal shift is 20 with chi \(=0.0647\) (next is 0.0639 )
We are not amused, also the next best \(\chi\) is unwanted. However the shift that gives e has a \(\chi\)-value of 0.0639 that is acceptable. We fill in columns 6 and 7 :
\begin{tabular}{ll} 
YGCVHCYXIULYIRCCXHEHUHBCY & erocsoedtlwetioodshslsnoe \\
FXGRCKGYEIPPXDQNJEYPPEXGN & qdriovrehtaadpfyuheaahdry \\
JRYDQYCBYGGIYEIYGVYWNPHYH & uiepfeonerrtehtercegyases \\
RHYEIXBHYPRYYEPRCBYYYXD & isehtdnseaiecehaioneededp \\
KZPYLPUMCHXGGYGBBRHXPKJP & vkaewaplxosdrrernnisdavua \\
YDLKHDYYGEYVLRLZMZLYGRWW & alsrolaaandaysesgtgsanecc \\
UYRHGCDIVIYHDPJIRACQJGYY & leisroptctespautimofuree \\
YHUUCBYHIESHIXGEBPAIDPI & esllonesthbstdrhnamtpat \\
BHNRLWGRYPYRKCYJYYYWUE & nsyiwgrieaeivoeueeeglh \\
\(\ldots\) & \\
IWYIPYRJGPYYQYBINNYYYGO & tgetaeiuraefentyyeeerz \\
EPJVIYDYHBBWXLEHDHAICY & hauctepesnngdwhspsmtoe \\
PBDCAPHBYCIYIPYCIPPEPC & anpomasneotetaeotahao \\
... & \\
YAYIAECJYDPVXLRIHYYJIZ & emetmhouepacdwitseeutk
\end{tabular}

It's time, for easier reading, to arrange our findings in the right order where "columns" are columns:
```

equivalen...tha....e rdiskless...gan....m
oreeasily...eup....e ciphersli...tco....t
softworow...atm....m ovedalong...eea....h
eronpaper...ips....o denslats
theexacti...uen....u ltraonthe...rse....e
warisdeba...ano....p eatedasse...ent....a
tdecrypti...fge....c iphersadv...edt....d
oftheeuro...nwa....w oyears
duringthe...the....i shcontinu...yso....t
heenigmae...ypt....s sagessome...esa....e
layedafte...ema....e shadanupg...eth....u
ndseveral...roa....t oreduceth...zeo....k
eyspace

```

Now its easy to complete the text: In the first row read equivalent and complete column 9 . In the fourth row read cipher slide and complete column 10. Then read with in the first row and complete column 11. Then in the last two rows we recognize the size of ... keyspace, this allows us to complete column 15 . Now in the first two rows we read cipher disk and complete the remaining columns \(16,17,18\).

This is the final solution:
```

equivalentwithaciphe rdisklesselegantbutm
oreeasilymadeupisthe
softworowsthatmaybem
eronpaperstripsorwoo
theexactinfluenceofu
warisdebatedanoftrep
tdecryptionofgermanc
oftheeuropeanwarbytw
duringthewarthebriti
heenigmaencryptedmes
layedafterthemachine
ndseveralapproachest
rdisklesselegantbutm
ovedalongsideeachoth
denslats
ltraonthecourseofthe
eatedassessmentistha
iphersadvancedtheend
oyears
shcontinuallysolvedt
sagessometimesabitde
shadanupgradetheyfou
oreducethesizeofthek
eyspace

```

\subsection*{3.16 Modeling a Language by a Markov Process}

For deriving theoretical results a common model of language is the interpretation of texts as results of Markov processes. This model was introduced by Shannon in his fundamental papers published after World War II.

If we look at letter frequencies only, we define a Markov process of order 0 . If we also incorporate bigram frequencies into our model, it becomes a Markov process of order 1, if we include trigram frequencies, of order 2, and so on.

In this section we want to derive theoretical expectation values for \(\kappa, \varphi\), and \(\chi\). For this the order of the Markov model is irrelevant.

\section*{Message Sources}

Let the alphabet \(\Sigma\) be equipped with a probability distribution, assigning the probability \(p_{s}\) to the letter \(s \in \Sigma\). In particular \(\sum_{s \in \Sigma} p_{s}=1\). We call \((\Sigma, p)\) a message source and consider random variables \(X\) in \(\Sigma\), that is mappings \(X: \Omega \longrightarrow \Sigma\) where \(\Omega\) is a finite probability space with probability measure \(P\), such that \(P\left(X^{-1} s\right)=p_{s}\) for all \(s \in \Sigma\).

Picking a letter of \(\Sigma\) at random from the message source is modeled as evaluating \(X(\omega)\) for some \(\omega \in \Omega\). We calculate the expectation values of the Kronecker symbols for random variables \(X, Y: \Omega \longrightarrow \Sigma\) and letters \(s \in \Sigma\)
where \(Y\) may belong to a message source \((\Sigma, q)\) with a possibly different probability distribution \(q=\left(q_{s}\right)_{s \in \Sigma}\) :
\[
\delta_{s X}(\omega)=\left\{\begin{array}{ll}
1 & \text { if } X(\omega)=s \\
0 & \text { otherwise }
\end{array} \quad \delta_{X Y}(\omega)= \begin{cases}1 & \text { if } X(\omega)=Y(\omega) \\
0 & \text { otherwise }\end{cases}\right.
\]

Lemma 5 (i) \(\mathrm{E}\left(\delta_{s X}\right)=p_{s}\) for all \(s \in \Sigma\).
(ii) If \(X\) and \(Y\) are independent, then \(\mathrm{E}\left(\delta_{X Y}\right)=\sum_{s \in \Sigma} p_{s} q_{s}\).
(ii) If \(X\) and \(Y\) are independent, then \(\delta_{s X}\) and \(\delta_{s Y}\) are independent.

Proof. (i) Since \(\delta\) takes only the values 0 and 1, we have
\[
\mathrm{E}\left(\delta_{s X}\right)=1 \cdot P\left(X^{-1} s\right)+0 \cdot P\left(\Omega-X^{-1} s\right)=P\left(X^{-1} s\right)=p_{s}
\]
(ii) In the same way, using the independence of \(X\) and \(Y\),
\[
\begin{aligned}
\mathrm{E}\left(\delta_{X, Y}\right) & =1 \cdot P(\omega \mid X(\omega)=Y(\omega))+0 \cdot P(\omega \mid X(\omega) \neq Y(\omega)) \\
& =P(X=Y)=\sum_{s \in \Sigma} P\left(X^{-1} s \cap Y^{-1} s\right) \\
& =\sum_{s \in \Sigma} P\left(X^{-1} s\right) \cdot P\left(Y^{-1} s\right)=\sum_{s \in \Sigma} p_{s} q_{s}
\end{aligned}
\]
(iii) \(\delta_{s X}^{-1}(1)=\{\omega \mid X(\omega)=s\}=X^{-1} s\), and \(\delta_{s X}^{-1}(0)=\Omega-X^{-1} s\). The same for \(Y\). The assertion follows because \(P\left(X^{-1} s \cap Y^{-1} s\right)=P\left(X^{-1} s\right) \cdot P\left(Y^{-1} s\right)\). \(\diamond\)

Picking a random text of length \(r\) is modeled by evaluating an \(r\)-tuple of random variables at some \(\omega\). This leads to the following definition:

Definition. A message of length \(r\) from the message source \((\Sigma, p)\) is a sequence \(X=\left(X_{1}, \ldots, X_{r}\right)\) of random variables \(X_{1}, \ldots, X_{r}: \Omega \longrightarrow \Sigma\) such that \(P\left(X_{i}^{-1} s\right)=p_{s}\) for all \(i=1, \ldots, r\) and all \(s \in \Sigma\).

Note. In particular the \(X_{i}\) are identically distributed. They are not necessarily independent.

\section*{The Coincidence Index of Message Sources}

Definition. Let \(Y=\left(Y_{1}, \ldots, Y_{r}\right)\) be another message of length \(r\) from a possibly different message source \((\Sigma, q)\). Then the coincidence index of \(X\) and \(Y\) is the random variable
\[
\mathrm{K}_{X Y}: \Omega \longrightarrow \mathbb{R}
\]
defined by
\[
\mathrm{K}_{X Y}(\omega):=\frac{1}{r} \cdot \#\left\{i=1, \ldots, r \mid X_{i}(\omega)=Y_{i}(\omega)\right\}=\frac{1}{r} \cdot \sum_{i=1}^{r} \delta_{X_{i}(\omega), Y_{i}(\omega)}
\]

We calculate its expectation under the assumption that each pair of \(X_{i}\) and \(Y_{i}\) is independent. From Lemma 5, using the additivity of E , we get
\[
\mathrm{E}\left(\mathrm{~K}_{X Y}\right)=\frac{1}{r} \cdot \sum_{i=1}^{r} \mathrm{E}\left(\delta_{X_{i}, Y_{i}}\right)=\frac{1}{r} \cdot r \cdot \sum_{s \in \Sigma} p_{s} q_{s}=\sum_{s \in \Sigma} p_{s} q_{s}
\]
independently of the length \(r\). Therefore it is adequate to call this expectation the coincidence index \(\kappa_{L M}\) of the two message sources \(L, M\). We have proven:

Theorem 4 The coincidence index of two message sources \(L=(\Sigma, p)\) and \(M=(\Sigma, q)\) is
\[
\kappa_{L M}=\sum_{s \in \Sigma} p_{s} q_{s}
\]

Now we are ready to calculate theoretical values for the "typical" coincidence indices of languages under the assumption that the model "message source" fits their real behaviour:

Example 1, random texts versus any language \(M\) : Here all \(p_{s}=\) \(1 / n\), therefore \(\kappa_{\Sigma *}=n \cdot \sum_{s \in \Sigma} 1 / n \cdot q_{s}=1 / n\).

Example 2, English texts versus English: From Table 3.18 we get the value 0.0653 .

Example 3, German texts versus German: The table gives 0.0758 .
Example 4, English versus German: The table gives 0.0664.
Note that these theoretical values for the real languages differ slightly from the former empirical values. This is due to two facts:
- The model-as every mathematical model-is an approximation to the truth.
- The empirical values underly statistical variations and depend on the kind of texts that were evaluated.

\section*{The Cross-Product Sum of Message Sources}

For a message \(X=\left(X_{1}, \ldots, X_{r}\right)\) from a message source \((\Sigma, p)\) we define the (relative) letter frequencies as random variables
\[
\mathrm{M}_{s X}: \Omega \longrightarrow \mathbb{R}, \quad \mathrm{M}_{s X}=\frac{1}{r} \cdot \sum_{i=1}^{r} \delta_{s X_{i}},
\]

Table 3.18: Calculating theoretical values for coincidence indices
\begin{tabular}{|c|c|c|c|c|c|}
\hline Letter \(s\) & \begin{tabular}{c} 
English \\
\(p_{s}\)
\end{tabular} & \begin{tabular}{c} 
German \\
\(q_{s}\)
\end{tabular} & \begin{tabular}{c} 
Square \\
\(p_{s}^{2}\)
\end{tabular} & \begin{tabular}{c} 
Square \\
\(q_{s}^{2}\)
\end{tabular} & \begin{tabular}{c} 
Product \\
\(p_{s} q_{s}\)
\end{tabular} \\
\hline A & 0.082 & 0.064 & 0.006724 & 0.004096 & 0.005248 \\
B & 0.015 & 0.019 & 0.000225 & 0.000361 & 0.000285 \\
C & 0.028 & 0.027 & 0.000784 & 0.000729 & 0.000756 \\
D & 0.043 & 0.048 & 0.001849 & 0.002304 & 0.002064 \\
E & 0.126 & 0.175 & 0.015876 & 0.030625 & 0.022050 \\
F & 0.022 & 0.017 & 0.000484 & 0.000289 & 0.000374 \\
G & 0.020 & 0.031 & 0.000400 & 0.000961 & 0.000620 \\
H & 0.061 & 0.042 & 0.003721 & 0.001764 & 0.002562 \\
I & 0.070 & 0.077 & 0.004900 & 0.005929 & 0.005390 \\
J & 0.002 & 0.003 & 0.000004 & 0.000009 & 0.000006 \\
K & 0.008 & 0.015 & 0.000064 & 0.000225 & 0.000120 \\
L & 0.040 & 0.035 & 0.001600 & 0.001225 & 0.001400 \\
M & 0.024 & 0.026 & 0.000576 & 0.000676 & 0.000624 \\
N & 0.067 & 0.098 & 0.004489 & 0.009604 & 0.006566 \\
O & 0.075 & 0.030 & 0.005625 & 0.000900 & 0.002250 \\
P & 0.019 & 0.010 & 0.000361 & 0.000100 & 0.000190 \\
Q & 0.001 & 0.001 & 0.000001 & 0.000001 & 0.000001 \\
R & 0.060 & 0.075 & 0.003600 & 0.005625 & 0.004500 \\
S & 0.063 & 0.068 & 0.003969 & 0.004624 & 0.004284 \\
T & 0.091 & 0.060 & 0.008281 & 0.003600 & 0.005460 \\
U & 0.028 & 0.042 & 0.000784 & 0.001764 & 0.001176 \\
V & 0.010 & 0.009 & 0.000100 & 0.000081 & 0.000090 \\
W & 0.023 & 0.015 & 0.000529 & 0.000225 & 0.000345 \\
X & 0.001 & 0.001 & 0.000001 & 0.000001 & 0.000001 \\
Y & 0.020 & 0.001 & 0.000400 & 0.000001 & 0.000020 \\
Z & 0.001 & 0.011 & 0.000001 & 0.000121 & 0.000011 \\
\hline Sum & 1.000 & 1.000 & 0.0653 & 0.0758 & 0.0664 \\
\hline
\end{tabular}
or more explicitly,
\[
\mathrm{M}_{s X}(\omega)=\frac{1}{r} \cdot \#\left\{i \mid X_{i}(\omega)=s\right\} \quad \text { for all } \omega \in \Omega
\]

We immediately get the expectation
\[
\mathrm{E}\left(\mathrm{M}_{s X}\right)=\frac{1}{r} \cdot \sum_{i=1}^{r} \mathrm{E}\left(\delta_{s X_{i}}\right)=p_{s} .
\]

Definition. Let \(X=\left(X_{1}, \ldots, X_{r}\right)\) be a message from the source \((\Sigma, p)\), and \(Y=\left(Y_{1}, \ldots, Y_{t}\right)\), a message from the source \((\Sigma, q)\). Then the crossproduct sum of \(X\) and \(Y\) is the random variable
\[
\mathrm{X}_{X Y}: \Omega \longrightarrow \mathbb{R}, \quad \mathrm{X}_{X Y}:=\frac{1}{r t} \cdot \sum_{s \in \Sigma} \mathrm{M}_{s X} \mathrm{M}_{s Y} .
\]

To calculate its expectation we assume that each \(X_{i}\) is independent of all \(Y_{j}\), and each \(Y_{j}\) is independent of all \(X_{i}\). Under this assumption let us call the messages \(X\) and \(Y\) independent. Then from Lemma 5 and the formula
\[
\mathrm{X}_{X Y}:=\frac{1}{r t} \cdot \sum_{s \in \Sigma} \sum_{i=1}^{r} \sum_{j=1}^{t} \delta_{s X_{i}} \delta_{s Y_{j}}
\]
we get
\[
\mathrm{E}\left(\mathrm{X}_{X Y}\right)=\frac{1}{r t} \cdot \sum_{s \in \Sigma} \sum_{i=1}^{r} \sum_{j=1}^{t} \mathrm{E}\left(\delta_{s X_{i}}\right) \mathrm{E}\left(\delta_{s Y_{j}}\right)=\sum_{s \in \Sigma} p_{s} q_{s}
\]
again independently of the length \(r\). Therefore we call this expectation the cross-product sum \(\chi_{L M}\) of the two message sources \(L, M\). We have proven:

Theorem 5 The cross-product sum of two message sources \(L=(\Sigma, p)\) and \(M=(\Sigma, q)\) is
\[
\chi_{L M}=\sum_{s \in \Sigma} p_{s} q_{s}
\]

\section*{The Inner Coincidence Index of a Message Source}

Let \(X=\left(X_{1}, \ldots, X_{r}\right)\) be a message from a source \((\Sigma, p)\). In analogy with Sections 3.10 and D. 5 we define the random variables
\[
\Psi_{X}, \Phi_{X}: \Omega \longrightarrow \mathbb{R}
\]
by the formulas
\[
\Psi_{X}:=\sum_{s \in \Sigma} M_{s X}^{2}, \quad \Phi_{X}:=\frac{r}{r-1} \cdot \Psi_{x}-\frac{1}{r-1} .
\]

We try to calculate the expectation of \(\Psi_{X}\) first:
\[
\begin{aligned}
\Psi_{X} & =\frac{1}{r^{2}} \cdot \sum_{s \in \Sigma}\left(\sum_{i=1}^{r} \delta_{s X_{i}}\right)^{2} \\
& =\frac{1}{r^{2}} \cdot \sum_{s \in \Sigma}\left(\sum_{i=1}^{r} \delta_{s X_{i}}+\sum_{i=1}^{r} \sum_{j \neq i} \delta_{s X_{i}} \delta_{s X_{j}}\right)
\end{aligned}
\]
since \(\delta_{s X_{i}}^{2}=\delta_{s X_{i}}\). Taking the expectation value we observe that for a sensible result we need the assumption that \(X_{i}\) and \(X_{j}\) are independent for \(i \neq j\).

In the language of Markov chains this means that we assume a Markov chain of order 0: The single letters of the messages from the source are independent from each other.

Under this assumption we get
\[
\begin{aligned}
\mathrm{E}\left(\Psi_{X}\right) & =\frac{1}{r^{2}} \cdot \sum_{s \in \Sigma}\left(\sum_{i=1}^{r} p_{s}+\sum_{i=1}^{r} \sum_{j \neq i} \mathrm{E}\left(\delta_{s X_{i}}\right) \mathrm{E}\left(\delta_{s X_{j}}\right)\right) \\
& =\frac{1}{r^{2}} \cdot(\sum_{i=1}^{r} \underbrace{\sum_{s \in \Sigma} p_{s}}_{1}+\sum_{s \in \Sigma} p_{s}^{2} \cdot \underbrace{\sum_{i=1}^{r} \sum_{j \neq i} 1}_{r \cdot(r-1)}) \\
& =\frac{1}{r}+\frac{r-1}{r} \cdot \sum_{s \in \Sigma} p_{s}^{2} .
\end{aligned}
\]

For \(\Phi_{X}\) the formula becomes a bit more elegant:
\[
\mathrm{E}\left(\Phi_{X}\right)=\frac{r}{r-1} \cdot\left(\frac{r-1}{r} \cdot \sum_{s \in \Sigma} p_{s}^{2}+\frac{1}{r}\right)-\frac{1}{r-1}=\sum_{s \in \Sigma} p_{s}^{2} .
\]

Let us call this expectation \(\mathrm{E}\left(\Phi_{X}\right)\) the (inner) coincidence index of the message source ( \(\Sigma, p\) ), and let us call (by abuse of language) the message source of order 0 if its output messages are Markov chains of order 0 only. (Note that for a mathematically correct definition we should have included the "transition probabilities" into our definition of message source.) Then we have proved

Theorem 6 The coincidence index of a message source \(L=(\Sigma, p)\) of order 0 is
\[
\varphi_{L}=\sum_{s \in \Sigma} p_{s}^{2}
\]

The assumption of order 0 is relevant for small text lengths and negligeable for large texts, because for "natural" languages dependencies between letters affect small distances only. Reconsidering the tables in Section D. 4 we note in fact that the values for texts of lengths 100 correspond to the theoretical values, whereas for texts of lengths 26 the values are suspiciously smaller. An explanation could be that repeated letters, such as ee, oo, rr, are relatively rare and contribute poorly to the number of coincidences. This affects the power of the \(\varphi\)-test in an unfriendly way.

On the other hand considering Sinkov's test for the period in Section 3.13 we note that the columns of a polyalphabetic ciphertext are decimated excerpts from natural texts where the dependencies between letters are irrelevant: The assumption of order 0 is justified for Sinkov's test.

\subsection*{3.17 Stochastic Languages}

The stochastic model of language as a stationary Markov process easily led to useful theoretic results that fit well with empirical observations. On the other hand it is far from the computer scientific model that regards a language as a fixed set of strings with certain properties and that is intuitively much closer to reality. In fact the Markov model may produce every string in \(\Sigma^{*}\) with a non-zero probability! (We assume that each letter \(s \in \Sigma\) has a non-zero probability-otherwise we would throw it away.) Experience tells us that only a very small portion of all character strings represent meaningful texts in any natural language. Here we consider an alternative model that respects this facet of reality, but otherwise is somewhat cumbersome.

Recall from Chapter 1 that a language is a subset \(M \subseteq \Sigma^{*}\).

\section*{A Computer Theoretic Model}

The statistical cryptanalysis of the monoalphabetic substitution relied on the hypothesis - supported by empirical evidence - that the average relative frequencies of the letters \(s \in \Sigma\) in texts of sufficient length from this language approximate typical values \(p_{s}\). This is even true when we consider only fixed positions \(j\) in the texts, at least for almost all \(j\)-the first letters of texts for example usually have different frequencies.

Now we try to build a mathematical model of language that reflects this behaviour. Let \(M \subseteq \Sigma^{*}\) a language, and \(M_{r}:=M \cap \Sigma^{r}\) for \(r \in \mathbb{N}\) the set of texts of length \(r\). The average frequency of the letter \(s \in \Sigma\) at the position \(j \in[0 \ldots r-1]\) of texts in \(M_{r}\) is
\[
\mu_{s j}^{(r)}:=\frac{1}{\# M_{r}} \cdot \sum_{a \in M_{r}} \delta_{s a_{j}}
\]
(This sum counts the texts \(a \in M_{r}\) with the letter \(s\) at position \(j\).)

Example Let \(M=\Sigma^{*}\) Then
\[
\mu_{s j}^{(r)}:=\frac{1}{n^{r}} \cdot \sum_{a \in \Sigma^{r}} \delta_{s a_{j}}=\frac{1}{n} \quad \text { for all } s \in \Sigma, j=1, \ldots, r-1,
\]
because there are exactly \(n^{r-1}\) possible texts with fixed \(a_{j}=s\).

\section*{Definition}

The language \(M \subseteq \Sigma^{*}\) is called stochastic if there is at most a finite exceptional set \(J \subseteq \mathbb{N}\) of positions such that
\[
p_{s}:=\lim _{r \rightarrow \infty} \mu_{s j}^{(r)}
\]
exists uniformly in \(j\) and is independent from \(j\) for all \(j \in \mathbb{N}-J\) and all \(s \in \Sigma\).

The \(p_{s}\) are called the letter frequencies of \(M\) and obviously coincide with the limit values for the frequencies of the letters over the complete texts.

\section*{Examples and Remarks}
1. The exceptional set \(J\) for natural languages usually consists only of the start position 0 and the end position. That is, the first and last letters of texts may have different frequencies. For example in English the letter " t " is the most frequent first letter instead of "e", followed by "a" and "o". In German this is "d", followed by "w", whereas " t " almost never occurs as first letter.
2. The language \(M=\Sigma^{*}\) is stochastic.
3. Because always \(\sum_{s \in \Sigma} \mu_{s j}^{(r)}=1\), also \(\sum_{s \in \Sigma} p_{s}=1\).

Note that this notation is not standard in the literature.
Also note that we consider a theoretical model. For a natural language it may not be well-defined whether a given text is meaningful or not, not even if it is taken from a newspaper.

\section*{The Mean Coincidence Between Two Languages}

Let \(L, M \subseteq \Sigma^{*}\) two stochastic languages with letter frequencies \(q_{s}\) and \(p_{s}\) for \(s \in \Sigma\). We consider the mean value of the coincidences of texts of length \(r\) :
\[
\kappa_{L M}^{(r)}:=\frac{1}{\# L_{r}} \cdot \frac{1}{\# M_{r}} \cdot \sum_{a \in L_{r}} \sum_{b \in M_{r}} \kappa(a, b)
\]

Theorem 7 The mean coincidence of the stochastic languages \(L\) and \(M\) is asymptotically
\[
\lim _{r \rightarrow \infty} \kappa_{L M}^{(r)}=\sum_{s \in \Sigma} p_{s} q_{s}
\]

The proof follows.
Interpretation: The coincidence of sufficiently long texts of the same length is approximately
\[
\kappa(a, b) \approx \sum_{s \in \Sigma} p_{s} q_{s}
\]

\section*{An Auxiliary Result}

Lemma 6 Let \(M\) be a stochastic language. Then the average deviation for all letters \(s \in \Sigma\)
\[
\frac{1}{r} \cdot \sum_{j=0}^{r-1}\left(\mu_{s j}^{(r)}-p_{s}\right) \rightarrow 0 \quad \text { for } r \rightarrow \infty
\]

Proof. Fix \(\varepsilon>0\), and let \(r\) large enough that
1. \(r \geq 4 \cdot \frac{\# J}{\varepsilon}\),
2. \(\left|\mu_{s j}^{(r)}-p_{s}\right|<\frac{\varepsilon}{2}\) for all \(j \in[0 \ldots r]-J\).

For \(j \in J\) we have \(\left|\mu_{s j}^{(r)}-p_{s}\right| \leq\left|\mu_{s j}^{(r)}\right|+\left|p_{s}\right| \leq 2\). Therefore
\[
\frac{1}{r} \cdot \sum_{j=0}^{r-1}\left|\mu_{s j}^{(r)}-p_{s}\right|<\frac{1}{r} \cdot 2 \cdot \# J+\frac{r-\# J}{r} \cdot \frac{\varepsilon}{2} \leq \frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon .
\]

Remark The mean frequency of \(s\) in texts of length \(r\) is
\[
\mu_{s}^{(r)}=\frac{1}{r} \cdot \sum_{j=0}^{r-1} \mu_{s j}^{(r)}=\frac{1}{r} \cdot \frac{1}{\# M_{r}} \cdot \sum_{a \in M_{r}} \delta_{s a_{j}}
\]

For this we get the limit
Corollary \(5 \lim _{r \rightarrow \infty} \mu_{s}^{(r)}=p_{s}\)

\section*{Proof of the Theorem}
\[
\begin{aligned}
\kappa_{L M}^{(r)} & =\frac{1}{\# L_{r} \cdot \# M_{r}} \cdot \sum_{a \in L_{r}} \sum_{b \in M_{r}}\left(\frac{1}{r} \cdot \sum_{j=0}^{r-1} \sum_{s \in \Sigma} \delta_{s a_{j}} \delta_{s b_{j}}\right) \\
& =\sum_{s \in \Sigma} \frac{1}{r} \cdot \sum_{j=0}^{r-1}\left[\frac{1}{\# L_{r}} \sum_{a \in L_{r}} \delta_{s a_{j}}\right] \cdot\left[\frac{1}{\# M_{r}} \sum_{b \in M_{r}} \delta_{s b_{j}}\right] \\
& =\sum_{s \in \Sigma} \frac{1}{r} \cdot \sum_{j=0}^{r-1}\left[q_{s}+\varepsilon_{s j}\right] \cdot\left[p_{s}+\eta_{s j}\right] \\
& =\sum_{s \in \Sigma}\left[p_{s} q_{s}+\frac{p_{s}}{r} \cdot \sum_{j=0}^{r-1} \varepsilon_{s j}+\frac{q_{s}}{r} \cdot \sum_{j=0}^{r-1} \eta_{s j}+\frac{1}{r} \cdot \sum_{j=0}^{r-1} \varepsilon_{s j} \eta_{s j}\right]
\end{aligned}
\]

The second and third summands converge to 0 by the lemma. The fourth converges to 0 because \(\left|\varepsilon_{s j} \eta_{s j}\right| \leq 1\). Therefore the sum converges to \(\sum_{s \in \Sigma} p_{s} q_{s} . \diamond\)

\section*{Chapter 4}

\section*{Cylinder Ciphers}

\subsection*{4.1 Introduction}

See the web page http://www.staff.uni-mainz.de/pommeren /Cryptology/Classic/4_Cylinder/Cylinder.html

\subsection*{4.2 Idea and History of Cylinder Ciphers}

See the web page http://www.staff.uni-mainz.de/pommeren /Cryptology/Classic/4_Cylinder/HistCyl.html

\subsection*{4.3 Mathematical Description of Cylinder Ciphers}

This section assumes knowledge of the mathematical excursion to permutations in the Appendix to the Chapter on monoalphabetic ciphers.

\section*{Parameters}

A cylinder cipher depends on the following parameters:
- The number \(n=\# \Sigma\) of letters in the alphabet \(\Sigma\)
- The number \(q\) of disks, where \(q \geq 1\). If all disks are different, then \(q \leq(n-1)\) !. [See below for an explanation why we don't need to take \(n\) ! for the upper bound.]
- Each disk is characterized by a permutation \(\tau \in \mathcal{S}(\Sigma)\).
- Therefore the collection of disks can be described as a \(q\)-tuple \(\left(T_{1}, \ldots, T_{q}\right) \in \mathcal{S}(\Sigma)^{q}\).

Assume the disks are numbered from 1 to \(q\).
- The number \(l\) of selected disks, where \(1 \leq l \leq q\)
- The key is a sequence \(\left(\tau_{0}, \ldots, \tau_{l-1}\right)\) consisting of different members of the \(q\)-tuple ( \(T_{1}, \ldots, T_{q}\) ), and described by the corresponding sequence of numbers in \([1 \ldots q]\).
- The number of choices for the key is
\[
\# K=q \cdot(q-1) \cdots(q-l+1)=\frac{q!}{(q-l)!}
\]
some of which could coincide if some of the disks have identical alphabets.

\section*{Examples}

Jefferson cylinder: \(l=q=36, \# K=36\) !, effective key length \(\approx 138\).
Bazeries cylinder: \(l=q=20, \# K=20!\), effective key length \(\approx 61\).
M-94: \(l=q=25, \# K=25!\), effective key length \(\approx 84\).
M-138-A: \(l=30, q=100, \# K=100!/ 70!\), effective key length \(\approx 190\).

\section*{Encryption and Decryption}

The cylinder cipher is polyalphabetic with period \(l\), the number of disks on the cylinder.

Attention: Don't confuse the permutation \(\tau \in \mathcal{S}(\Sigma)\) written on the circumference of the disk with the permutation \(\sigma \in \mathcal{S}(\Sigma)\) that defines the substitution alphabet realized by the disk. We subsequently examine the relationship between these two permutations.

As usual identify the alphabet \(\Sigma\) (in a fixed order) with \(\mathbb{Z} / n \mathbb{Z}\), the integers \(\bmod n\). Then, using the first generatrix, encrypting a plaintext block \(\left(a_{0}, \ldots, a_{l-1}\right)\) looks like this:

where the center column \(\tau_{i}(0), \ldots, \tau_{i}(n-1)\) represents the marking of the \(i\)-th disk. Therefore
\[
c_{i}=\tau_{i}(x+1)=\tau_{i}\left(\tau_{i}^{-1} a_{i}+1\right)
\]

The corresponding decryption function is
\[
a_{i}=\tau_{i}\left(\tau_{i}^{-1} c_{i}-1\right)
\]

This derivation proves:
Theorem 8 (Cylinder Cipher Theorem) The relation between the permutation \(\tau \in \mathcal{S}(\Sigma)\) written on the circumference of the disk and the permutation \(\sigma \in \mathcal{S}(\Sigma)\) that defines the substitution alphabet realized by the disk using the first generatrix is given by the formulas
\[
\begin{aligned}
\sigma(a) & =\tau\left(\tau^{-1} a+1\right) \\
\sigma^{-1}(c) & =\tau\left(\tau^{-1} c-1\right)
\end{aligned}
\]

Or in other words: \(\sigma\) is a cyclic permutation and \(\tau\) is the cycle representation of \(\sigma\).

There are ( \(n-1\) )! different cycles of length \(n\). As \(n\) different disk definitions \(\tau\) result in the same cyclic permutation \(\sigma\) we could make the restriction \(q \leq(n-1)\) ! for the number of possible different disks.

Corollary 6 Using the \(j\)-th generatrix the formulas become
\[
\begin{aligned}
\sigma_{j}(a) & =\tau\left(\tau^{-1} a+j\right) \\
\sigma_{j}^{-1}(c) & =\tau\left(\tau^{-1} c-j\right)
\end{aligned}
\]
if we denote by \(\sigma_{j}\) the substitution by the \(j\)-th generatrix.
Example: Let \(\Sigma=\{\mathrm{A}, \ldots, \mathrm{Z}\}\), and let the disk inscription be
\[
\tau=\text { QWERTZUIOPASDFGHJKLYXCVBNM }
\]

Then \(\sigma\) is the permutation
```

abcdefghi jklmnopqrstuv wxyz
SNVFRGHJOKLYQMPAWTDZIBECXU

```

\subsection*{4.4 The Bazeries Cylinder}

See the web page http://www.staff.uni-mainz.de/pommeren /Cryptology/Classic/4_Cylinder/Bazeries.html

\subsection*{4.5 Cryptanalysis of Cylinder Ciphers}

See the web page http://www.staff.uni-mainz.de/pommeren /Cryptology/Classic/4_Cylinder/AnalysisCyl.html

\subsection*{4.6 Breaking the Bazeries Cylinder}

See the web page http://www.staff.uni-mainz.de/pommeren /Cryptology/Classic/4_Cylinder/deViaris.html

\subsection*{4.7 Consequences from Cryptanalysis}

See the web page http://www.staff.uni-mainz.de/pommeren /Cryptology/Classic/4_Cylinder/ConsCyl.html

\subsection*{4.8 Key Generators with Long Periods}

See the web page http://www.staff.uni-mainz.de/pommeren
/Cryptology/Classic/4_Cylinder/LongPeriods.html

\section*{Chapter 5}

\section*{Rotor Machines}

\subsection*{5.1 One-Rotor Ciphers}

See the web page http://www.staff.uni-mainz.de/pommeren/Cryptology /Classic/5_Rotor/OneRotor.html

\subsection*{5.2 Mathematical Description of Rotors}

Identify the alphabet \(\Sigma\) with \(\mathbb{Z} / n \mathbb{Z}\), the integers \(\bmod n\). Let \(\rho\) be the monoalphabetic substitution that the rotor performs in its initial position. Moving the rotor by one position forward the new substitution is
\[
\rho^{(1)}(a)=\rho(a-1)+1
\]

Denote by \(\tau\) the shift by 1 of the alphabet \(\Sigma=\mathbb{Z} / n \mathbb{Z}\), that is \(\tau(a)=a+1\). Then the formula looks like this:
\[
\rho^{(1)}(a)=\tau \rho \tau^{-1}(a)
\]

By induction we immediately get part (i) of the following theorem:

\section*{Theorem 9 (The secondary alphabets of a rotor)}
(i) If a rotor in its initial position performs the substitution with the primary alphabet \(\rho\), then after rotation by \(t\) positions forward it performs the substitution with the conjugate alphabet \(\rho^{(t)}=\tau^{t} \rho \tau^{-t}\). In particular all secondary alphabets have the same cycle type.
(ii) The diagonals of the corresponding alphabet table each contain the standard alphabet (cyclically wrapped around).

Proof. Assertion (i) is proved above. Assertion (ii) follows immediately by interpreting it as a formula:
\[
\rho^{(i)}(j)=\tau^{i} \rho \tau^{-i}(j)=\rho(j-i)+i=\rho^{(i-1)}(j-1)+1
\]
\(\diamond\)

The definition of "cycle type" is given in Appendix A.
The formula makes it obvious why-in contrast with the cipher diskfor a rotor the (unpermuted) standard alphabet is completely useless: It corresponds to the identity permutation, therefore all its conjugates are identical.

In general the conjugate alphabet \(\rho^{(t)}\) is identical with the primary alphabet \(\rho\) if and only if \(\rho\) is in the centralizer of the shift \(\tau^{t}\). The designer of a rotor might wish to avoid such wirings.

\section*{Examples.}
1. If \(n\) is a prime number, then all the shifts \(\tau^{t}\) for \(t=1, \ldots, n-1\) are cycles of length \(n\). Therefore all their centralizers are identical to the cyclic group \(<\tau>\) spanned by \(\tau\). If the designer avoids these \(n\) trivial wirings, then all the \(n\) conjugated alphabets are distinct.
2. If \(\operatorname{gcd}(t, n)=d>1\), then \(\tau^{t}\) splits into \(d\) cycles of length \(\frac{n}{d}, \tau^{t}=\) \(\pi_{1} \cdots \pi_{d}\), and centralizes all permutations of the type \(\pi_{1}^{s_{1}} \cdots \pi_{d}^{s_{d}}\). These are not in the cyclic group \(\langle\tau\rangle\) unless all exponents \(s_{i}\) are congruent \(\bmod \frac{n}{d}\).
3. In the case \(n=26\) the shifts \(\tau^{t}\) are cycles, if \(t\) is coprime with 26. However \(\tau^{t}\) splits into two cycles of length 13 , if \(t\) is even. All the powers \(\tau^{t}, t\) even, \(2 \leq t \leq 24\), span the same cyclic group because 13 is prime. The permutation \(\tau^{13}\) splits into 13 transpositions. For example \(\tau^{2}\) centralizes the permutation ( \(A C E \ldots Y\) ), and \(\tau^{13}\) centralizes the transposition \((A B)\), where we denoted the alphabet elements by the usual letters \(\mathrm{A}, \ldots, \mathrm{Z}\). Therefore in wiring the rotors the designer should avoid the centralizers of \(\tau^{2}\) and of \(\tau^{13}\).

\subsection*{5.3 Cryptanalysis of One-Rotor Ciphers (with Unknown Alphabet)}

See the web pagehttp://www.staff.uni-mainz.de/pommeren/Cryptology /Classic/5_Rotor/Anal1Rot.html

\subsection*{5.4 Rotor Machines}

\section*{General Description}

Rotor machines are electromechanical devices that consist of several rotors in series connection. Figure 5.1 gives an impression of the electric flow through such a machine.


Figure 5.1: Rotor machine circuit
With each input letter the rotors move in individual ways, some by one position, some by several positions, some only after several steps. The cryptographic security of a rotor machine depends on the number of rotors, the multitude of different settings, and, in a crucial way, on the complexity of the rotor movements.

\section*{Operating a Rotor Machine}

The operator hits a key on the keyboard that corresponds to the next plaintext letter. This action closes an electric circuit powering a lightbulb that corresponds to the ciphertext letter. Or it powers a type bar that prints the ciphertext letter. The rotors move according to their control logic, in general before the circuit is closed. See the FAQ at http://www.staff.uni-mainz.de/pommeren/Cryptology/FAQ.html.

Rotor machines are the state of the art in encryption during the period from 1920 until 1970. The mystic and irregularly rotating wheelwork that makes the desk tremble with each key hit looks very attractive and impresses the general or diplomat who wants to buy security.

\section*{Mathematical Description}

The following abstract model describes an idealized rotor machine. Concrete historic machines each have their own peculiar details.

As before we identify the alphabet \(\Sigma\) with \(\mathbb{Z} / n \mathbb{Z}\), the integers \(\bmod n\). A rotor machine has the following characteristic parameters:
- A set \(R \subseteq \mathcal{S}(\Sigma)\) of \(p=\# R\) rotors. Each of these defines a primary alphabet, that is a permutation \(\rho_{i} \in \mathcal{S}(\Sigma)\) that corresponds to the wiring of the rotor.
- A choice \(\rho=\left(\rho_{1}, \ldots, \rho_{q}\right) \in \mathcal{S}(\Sigma)^{q}\) of \(q\) different rotors \(\rho_{i} \in R\). There are \(p \cdot(p-1) \cdots(p-q+1)\) choices if we assume that all rotors are differently wired ( \(q \leq p\) ). This choice serves as "primary key" and is usually fixed for several messages, say for an entire day.
- A state vector \(z=\left(z_{1}, \ldots, z_{q}\right) \in(\mathbb{Z} / n \mathbb{Z})^{q}\) that describes the current rotor positions. The initial state \(z^{(0)}\) serves as "secondary key" that usually changes with each message. The number of different initial states is \(n^{q}\). Sometimes it is convenient to map the states to \(\mathbb{Z} / n^{q} \mathbb{Z}\), the integers \(\bmod n^{q}\), using the representation of integers in base \(n\). The state vector \(z=\left(z_{1}, \ldots, z_{q}\right) \in(\mathbb{Z} / n \mathbb{Z})^{q}\) then corresponds to the integer \(\zeta=z_{1} \cdot n^{q-1}+\cdots+z_{q}\).
- A state-transition function
\[
g: \mathbb{N} \times \Sigma^{q} \longrightarrow \Sigma^{q}
\]
that transforms the state at time \(i, z^{(i)}\), to the state at time \(i+1\), \(z^{(i+1)}=g\left(i, z^{(i)}\right)\), where "time" is discrete and simply counts the plaintext letters. This function \(g\) represents the control logic and is realized for example by more or less complex gear drives. In most rotor machines the state-transition function is independent of the time \(i\).
- The substitution in state \(z\) :
\[
\sigma_{z}:=\rho_{q}^{\left(z_{q}\right)} \circ \cdots \circ \rho_{1}^{\left(z_{1}\right)} \quad \text { where } \rho_{j}^{\left(z_{j}\right)}:=\tau^{z_{j}} \circ \rho_{j} \circ \tau^{-z_{j}}
\]

Ideally the map \(\Sigma^{q} \longrightarrow \mathcal{S}(\Sigma), z \mapsto \sigma_{z}\) would be injective, that is each state defines a different substitution. Unfortunately no useful general results seem to exist beyond the case \(q=1\) treated in Subsection 5.2.

Perl programs for encryption and decryption by rotor machines are in the web directory http://www.staff.uni-mainz.de/pommeren/Cryptology/ Classic/Perl/ as rotmach.pl and rotdecr.pl.

\section*{The Key Space}

By the description above a key of our idealized rotor machine consists of
- a choice of rotors
- an initial state

Therefore the key space \(K\) has
\[
\# K=n^{q} \cdot \frac{p!}{(p-q)!}
\]
elements. In a typical example (Hebern machine) we have \(p=q=5\), \(n=26, \# K=120 \cdot 26^{5}=712882560\), and the effective key length is \(d(F) \approx 29.4\). That was good enough in 1920. Today, against an enemy with a computer, this is much too little.

In fact the Hebern machine was not good enough even in 1920
because it allows attacks far more efficient than exhaustion.

\section*{Encryption and Decryption}

The plaintext \(a=\left(a_{1}, \ldots, a_{r}\right) \in \Sigma^{r}\) is encrypted by the formula
\[
c_{i}=\sigma_{z^{(i)}}\left(a_{i}\right)
\]

At full length this formula reads
\[
c_{i}=\tau^{z_{q}^{(i)}} \circ \rho_{q} \circ \tau_{q-1}^{z_{q}^{(i)}-z_{q}^{(i)}} \circ \cdots \circ \tau^{z_{1}^{(i)}-z_{2}^{(i)}} \circ \rho_{1} \circ \tau^{-z_{1}^{(i)}}\left(a_{i}\right)
\]

Decryption follows the formula
\[
a_{i}=\tau^{z_{1}^{(i)}} \circ \rho_{1}^{(-1)} \circ \tau_{2}^{z_{2}^{(i)}-z_{1}^{(i)}} \circ \cdots \circ \tau^{z_{q}^{(i)}-z_{q-1}^{(i)}} \circ \rho_{q}^{(-1)} \circ \tau^{-z_{q}^{(i)}}\left(c_{i}\right)
\]

Technically for decryption we simply have to route the current through the machine in the reverse direction, of course interchanging the keyboard and lightbulbs. The sequence of states is identical for encryption and decryption.

\section*{The Rotor Machine as a Finite-State Automaton}

Figure 5.2 shows an abstract model of a rotor machine.
Usually the state-transition function is independent of the step \(i\). Then it has the simpler form
\[
g: \Sigma^{q} \longrightarrow \Sigma^{q}
\]

This makes the states periodic as shown in the next subsection.

\section*{Periods of State Changes}

Let \(M\) be a finite set with \(m=\# M\). We may think of the elements of \(M\) as "states". Consider a map ("state transition")
\[
g: M \longrightarrow M
\]


Figure 5.2: Rotor machine as finite-state automaton


Figure 5.3: Period and preperiod

For each element ("initial state") \(x_{0} \in M\) we define a sequence \(\left(x_{i}\right)_{i \in \mathbb{N}}\) in \(M\) by the recursion formula \(x_{i}=g\left(x_{i-1}\right)\) for \(i \geq 1\). After a preperiod of length \(\mu\) this sequence becomes periodic with a period of \(\nu\), see Figure 5.3, an explanation follows below.

Since \(M\) is finite there are smallest integers \(\mu \geq 0\) and \(\nu \geq 1\) such that \(x_{\mu+\nu}=x_{\mu}\) : Take for \(\mu\) the smallest index such that the element \(x_{\mu}\) reappears somewhere in the sequence, and for \(\mu+\nu\) the index where the first repetition occurs. Then also
\[
x_{i+\nu}=x_{i} \quad \text { for } i \geq \mu .
\]

Obviously \(0 \leq \mu \leq m-1,1 \leq \nu \leq m, \mu+\nu \leq m\). The values \(x_{0}, \ldots, x_{\mu+\nu-1}\) are all distinct, and the values \(x_{0}, \ldots, x_{\mu-1}\) never reappear in the sequence.

Definition: \(\mu\) is called (length of the) preperiod, \(\nu\) is called (length of the) period.

\subsection*{5.5 The Control Logic of a Rotor Machine}

We treat several approaches to rotor stepping. The first three are streamlined versions of real control mechanisms that in practice are implemented in a more complex way: the odometer, the gear drive with gaps, the gear drive with different number of cogs. We also treat the ultimate mechanism: the
pseudorandom stepping, and a historical one: the Hebern mechanism. For the stepping of the Enigma we refer to Chapter 6.

The insight that an irregular movement is the essential ingredient for a secure rotor machine is apparently due to Friedman after he broke he Hebern machine. He himself, together with his collaborator Rowlett, then in several steps developed the top-level rotor machine, the SIGABA.

\section*{Example 1: The Odometer Logic}

The rotors step like in a mechanical counter or electricity meter. Assume the rotors are mounted as in Figure 5.4. The rightmost rotor moves by one position for each input letter. Each rotor, after completing one revolution, by some kind of protrusion makes its left neighbor move by one position.


Figure 5.4: Odometer logic
Using the identification of the states with the integers \(\bmod n^{q}\) the sequence of states simply corresponds to the natural sequence of numbers beginning with the initial state.

\section*{Remarks}
1. In this example the rightmost rotor, rotor number \(q\), is a "fast" rotor, it moves with every step.
2. The leftmost rotor, number 1 , is a "slow" rotor. It moves only after \(n^{q-1}\) steps, that is almost never, or only for very long messages. For this reason it makes little sense to use more then three rotors with odometer stepping. The effect of all additional rotors together only amounts to a fixed substitution. In the best case they could move once during encryption, effecting two different fixed substitutions.
3. Of course we could also implement the converse stepping where rotor 1 is fast and rotor \(q\) is slow.
4. The sequence of states has period \(n^{q}\).

\section*{Example 2: Gaps}

Figure 5.5 shows the principle of this control logic. For an implementation we have several mechanical options, for example a pin wheel.


Figure 5.5: Gear drive with tooth gaps
A single wheel is characterized by a binary vector
\[
u_{(j)}=\left(u_{j 0}, \ldots, u_{j, t-1}\right) \in \mathbb{F}_{2}^{t} \quad \text { for } j=0, \ldots, t-1
\]
where \(t\) is the circumference of the wheel, not necessarily \(t=n\). A 1 denotes a cog, a 0 , a gap. We may describe all the wheels together by a binary matrix
\[
u=\left(\begin{array}{ccc}
u_{10} & \ldots & u_{1, t-1} \\
\vdots & \ddots & \vdots \\
u_{q 0} & \ldots & u_{q, t-1}
\end{array}\right) \in M_{q t}\left(\mathbb{F}_{2}\right)
\]

The column vectors
\[
u^{(i)}=\left(u_{1 i}, \ldots, u_{q i}\right) \in \mathbb{F}_{2}^{q} \quad \text { for } i=0, \ldots, q-1
\]
apply one after the other from left to right, cyclically repeated. This gives a sequence of period \(t\) for the states of the gear drive. The states of the rotors generally have a much larger period.

In the simplest case this logic steps the rotor \(j\)
- by one position, if \(u_{j i}=1\),
- not at all, if \(u_{j i}=0\),
for the \(i\)-th plaintext letter. This gives the formula
\[
z^{(i+1)}=z^{(i)}+u^{(i)}
\]
where addition is vector addition in \((\mathbb{Z} / n \mathbb{Z})^{q}\).
Another way to use gap wheels is turning them around a full turn in each step. Then the each of the rotors moves a number of steps given by the corresponding row sum in the matrix. This logic is equivalent with Example 3 below.

\section*{Example 3: Different Gear Wheels}

Each rotor is driven by its own gear wheel. These share a common axis and make a full turn in each step. If wheel \(i\) has \(n_{i}\) cogs, then rotor \(i\) moves by \(n_{i}\) positions. The states occur with a period of \(\operatorname{lcm}\left(n_{1}, \ldots, n_{q}\right)\).

The first models of Enigma (A and B) had a control like this.

\section*{Example 4: Pseudorandom Stepping}

The rotor stepping is controlled by a (pseudo-) random generator, that is a mechanism or an algorithm that generates numbers indinguishable from pure random such as generated with the help of dice. This is easy for a computer simulation. For an (electro-) mechanical rotor machine one can use a key generating mechanism such as in one of the (later) Hagelin machines.

Friedman was the first to detect the weaknesses of a regular rotor stepping when he analyzed the then current rotor machines in the 1920's. He came up with the idea of an irregular stepping by a pseudorandom mechanism. First he tried a punched paper tape, but this proved not robust enough. Then Rowlett had the idea of realizing the stepping control by another set of rotors. Thus the American super rotor machine SIGABA was invented.

For details see the book
Stephen J. Kelly: Big Machines. Aegean Park Press, Walnut
Creek 2001, ISBN 0-89412-290-8.

\section*{Example 5: The Hebern Machine}

The Hebern machine has \(q=5\) rotors and uses the standard alphabet with \(n=26\). The stepping follows an odometer logic, but with a complex mechanism that doesn't affect the neighboring rotor but another one, in more detail:
- Rotors 2 and 4 don't rotate at all. They are "stators".
- Rotor 5 moves by 1 position with every step, it is a fast rotor.
- Rotor 1 moves by 1 position with each complete turn of rotor 5 . It is a "semi-fast" rotor.
- Rotor 3 moves by 1 position with each complete turn of rotor 1 . It is a slow rotor.

Moreover the rotors move in the other direction compared with the description in Section 5.2.

The equation for the state change - not yet the correct one!- is
\[
g\left(z_{1}, z_{2}, z_{3}, z_{4}, z_{5}\right)=\left(z_{1}+\lambda\left(z_{5}\right), z_{2}, z_{3}+\lambda\left(z_{1}\right) \lambda\left(z_{5}\right), z_{4}, z_{5}+1\right)
\]
where \(\lambda(x)=\delta_{x, 25}\) is the Kronecker symbol. The states occur with period \(26^{3}=17576\).

\section*{Characteristic features:}
- That the rotors 2 and 4 are static doesn't harm the security of the machine. By the odometer logic they would move only after \(26^{3}\) or \(26^{4}\) steps, that is only for extremely long messages.
- The stepping of rotor 1 (resp. 3) is induced by rotor 5 (resp. 1) moving from position " N " to position " O ". The correct equation for the state change is left as an exercise to the reader.
- The wiring between the keyboard and rotor 1 as well as from rotor 5 to the light bulbs is irregular but static. It therefore is assumed as known to the enemy. We may interpret this wiring as two additional stators, one at each end of the rotor pack.
- For decryption there is a switch "direct/reverse" that interchanges input contacts and output contacts.
- The Hebern rotors are symmetric: they may be mounted with their sides interchanged. This makes the number of possible primary keys larger by a factor of \(2^{5}\).

\subsection*{5.6 Historical Rotor Machines}

See the web pagehttp://www.staff.uni-mainz.de/pommeren/Cryptology /Classic/5_Rotor/HistRot.html

\subsection*{5.7 Historical Data on Cryptanalysis}

See the web pagehttp://www.staff.uni-mainz.de/pommeren/Cryptology /Classic/5_Rotor/AnalHist.html

\subsection*{5.8 Cryptanalysis of Rotor Machines}

The cryptanalysis of rotor machines is complex and depends on the details of the machine under examination. The book by Deavours and Kruh [4] is a standard work and contains many elaborate examples. Here we only depict some general ideas:
- Superimposition
- Meet-in-the-middle
- Isomorphs

\section*{Superimposition}

Assume that the cryptanalyst got hold of several ciphertexts that are encrypted with the same key, then he may align them in such a way that he gets monoalphabetically encrypted columns. Note that this is a ciphertext-only attack. However it needs lots of messages.

Note that operators impede this attack by changing the key (or initial position) for each message. Nevertheless in some scenarios they have to send many messages, think of war. Then with high probability the cryptanalyst will observe many ciphertexts that are produced by the same rotor positions, not necessarily at the same position in the text. She identifies these concordances by extensive calculation of coincidence indices.

\section*{Identification of a Fast Rotor}

Assume that the set of rotors is known but not their actual choice. Assume that the last rotor at the output side steps by one position with each letter, and that the other rotors move infrequently. The attacker has no known plaintext.

Enumerate the rotors from 1 (= input rotor, slow) to \(q\) (= output rotor, fast), and assume the current flows from left to right as in Figure 5.6 .

Now assume we have a ciphertext section of length \(m\) where only rotor \(q\) moved, and for simplicity use the indices 1 to \(m\) for this sequence of ciphertext letters. The rotors 1 to \(q-1\) together effect a constant substitution \(\mu\).


Figure 5.6: Identifying the fast rotor
Therefore this part of the encryption follows the schema
\[
\begin{array}{cccccc}
a_{1} & \mapsto & b_{1}:=\mu\left(a_{1}\right) & \mapsto & \rho_{q}^{\left(z_{1}\right)} \mu\left(a_{1}\right) & =c_{1} \\
a_{2} & \mapsto & b_{2}:=\mu\left(a_{2}\right) & \mapsto & \rho_{q}^{\left(z_{1}+1\right)} \mu\left(a_{2}\right) & =c_{2} \\
\vdots & & \vdots & & & \vdots \\
a_{m} & \mapsto & b_{m}:=\mu\left(a_{m}\right) & \mapsto & \rho_{q}^{\left(z_{1}+m-1\right)} \mu\left(a_{m}\right) & =c_{m}
\end{array}
\]

Here \(b=\left(b_{1}, \ldots, b_{m}\right) \in \Sigma^{m}\) is a monoalphabetic image of \(a=\left(a_{1}, \ldots, a_{m}\right)\). We can also look at \(b\) "from the other side":
\[
\begin{aligned}
b_{1}= & {\left[\rho_{q}^{\left(z_{1}\right)}\right]^{-1}\left(c_{1}\right) } \\
b_{2}= & {\left[\rho_{q}^{\left(z_{1}+1\right)}\right]^{-1}\left(c_{2}\right) } \\
\vdots & \vdots \\
b_{m}= & {\left[\rho_{q}^{\left(z_{1}+m-1\right)}\right]^{-1}\left(c_{m}\right) }
\end{aligned}
\]

These formulas enable an exhaustion of the \(p\) choices for rotor \(q\) and of the \(n\) choices for its initial position \(z_{1}\).
- A wrong choice of the rotor or its initial position makes \(b\) look as a random text having coincidence index \(\varphi(b) \approx \frac{1}{n}\).
- For the correct choice \(b\) is a monoalphabetically encrypted meaningful text having coincidence index \(\varphi(b) \approx \kappa_{M}\), the coincidence index of the plaintext language.

This observation may lead to the identification of the fast rotor and its state for this section of the text at the price of \(n \cdot p\) calculations of coincidence indices of texts of length \(m\). But note that the coincidence test for \(m=26\) has little power, it will miss most positive events.

\section*{Remarks}
1. In principle the method works at each position of the text. Therefore the very beginning of the text is worth a try.
2. In the unfavourable case one of the other rotors moved during the encryption of the \(m\) letters. Then the intermediate ciphertext \(b\) consists of two different monoalphabetic pieces. With a bit of luck this also leads to a somewhat conspicuous coincidence index.

\section*{Continuation of the Attack}

As soon as the fast rotor is identified we can strip its effect off like a superencryption. In this way the intermediate ciphertext \(\left(b_{1}, \ldots, b_{m}\right)\) extends to a ciphertext \(c^{\prime} \in \Sigma^{r}\) that is the result of encrypting the plaintext \(a\) by a much simpler machine.

If for example the rotors move like an odometer, and if the ciphertext is long enough ( \(\approx n^{2}\) ), then in a similar way we can identify the next rotor and strip its effect off.

Or we try to cryptanalyze the monoalphabetic parts of \(c^{\prime}\) that we expect \(\left\lfloor\frac{r}{n}\right\rfloor\) in number of length \(n\) plus one or two fragments of total length \(r \bmod n\).

We also might first try to find the locations were the second rotor moves.

\section*{Known Plaintext Attack}

Assume we know or guess a piece of plaintext \(a=\left(a_{1}, \ldots, a_{m}\right)\), say a probable word. An essential step is finding text chunks with identical numerical patterns, also called isomorphs. Therefore this attack is known as Method of Isomorphs. More generally looking at an intermediate step of an encryption algorithm from both sides, is called Meet-in-the-Middle.

\section*{Identification of a Fast Output Rotor}

If we have a piece of known plaintext we may identify a fast rotor by simple pattern comparisons without calculating coincidence indices: Check if the intermediate text \(\left(b_{1}, \ldots, b_{m}\right)\) shows the same numerical pattern as \(\left(a_{1}, \ldots, a_{m}\right)\).

\section*{Identification of a Fast Input Rotor}

Known plaintext \(a=\left(a_{1}, \ldots, a_{m}\right)\) also allows the identification of the fast rotor for a reverse odometer control where the left rotor is the fast one. In this case we consider the situation of Figure 5.7.


Figure 5.7: Identifying a fast input rotor
This part of the encryption follows the schema
\[
\begin{array}{cccccc}
a_{1} & \mapsto & b_{1}:=\rho_{1}^{\left(z_{1}\right)}\left(a_{1}\right) & \mapsto & \mu\left(b_{1}\right) & =c_{1} \\
a_{2} & \mapsto & b_{2}:=\rho_{1}^{\left(z_{1}+1\right)}\left(a_{2}\right) & \mapsto & \mu\left(b_{2}\right) & =c_{2} \\
\vdots & & \vdots & \vdots & & \\
\vdots & & b_{m}:=\rho_{1}^{\left(z_{1}+m-1\right)}\left(a_{m}\right) & \mapsto & \mu\left(b_{m}\right) & =c_{m}
\end{array}
\]

Here \(b=\left(b_{1}, \ldots, b_{m}\right)\) is a monoalphabetic image of \(c=\left(c_{1}, \ldots, c_{m}\right)\). We try all \(p\) rotors in all their \(n\) initial positions until the numerical patterns of \(b\) and \(c\) coincide.

\section*{Chapter 6}

\section*{The Enigma}

\subsection*{6.1 General Description}

For a general description of this German World War II cipher machine see the web page http://www.staff.uni-mainz.de/pommeren/Cryptology/ Classic/6_Enigma/EnigmaDescr.html.


Figure 6.1: Current flow through Enigma

\subsection*{6.2 Mathematical Description}

Here we give a mathematical description of the Enigma I ("WehrmachtsEnigma") with 5 selectable rotors denoted by the roman numerals I to V (whereas the arabic numerals 1 to 3 denote the order in which three rotors are mounted). For a bit of mathematical background on permutations see Appendix A.

\section*{The Key Space}

The key of an Enigma message has several components:
- The operator choses 3 rotors from a set of 5 and mounts them in a certain order. This gives \(\frac{5!}{2!}=60\) different options ("Walzenlage").
- He adjusts each of the 3 alphabet rings to one of 26 possible positions. This gives another \(26^{3}=17576\) options. Since the alphabet ring of the slow rotor has no effect on the encryption, only \(26^{2}=676\) of these options contribute to the key space.
- He inserts 10 plugs into the plugboard. Each plug connects 2 letters. He has \(\frac{26!}{\left(2^{10 \cdot 10!} \cdot 6!\right)}=150,738,274,937,250 \approx 1.5 \cdot 10^{14} \approx 2^{47}\) different choices. This formula is derived in Appendix A. If the operator is allowed to use also less than the maximum 10 plugs this number grows to about \(2.1 \cdot 10^{14}\).
- Finally he sets the rotors to their initial positions, another \(26^{3}=17576\) possibilities.

Multiplied together these numbers make up a key space of
\(60 \cdot 676 \cdot 150,738,274,937,250 \cdot 17576=107,458,687,327,250,619,360,000\)
\[
\approx 10^{23} \approx 1.4 \times 2^{76}
\]
or a key length of 76 bits (in modern language). However it is not clear at all (and even hardly likely) that all keys define different substitutions. Therefore we can conclude only that the effective key length is at most 76 bits. And 47 of these bits are due to the plug-board.

\section*{The Control Logic}

The current flows through the three movable rotors first from right to left. Accordingly we denote the fast rotor by 1 , the middle one by 2 , and the slow one by 3 . Taking the irregularity in the stepping of rotor 2 into account, and denoting the position of the notch that moves the next rotor by \(m_{i}\), the formula for the state transition function is
\[
g\left(z_{1}, z_{2}, z_{3}\right)=\left(z_{1}, z_{2}+\lambda_{1}\left(z_{1}\right)+\lambda_{1}\left(z_{1}\right) \lambda_{2}\left(z_{2}\right), z_{3}+\lambda_{1}\left(z_{1}\right) \lambda_{2}\left(z_{2}\right)\right)
\]
where \(\lambda_{i}(x)=\delta_{x, m_{i}}\) is the Kronecker symbol.
Due to the direction of the labeling of the rotors and the corresponding wiring between input keys or output bulbs and rotors, the substitution by a single rotor in step \(i\) is \(\rho^{(i)}=\tau^{-i} \circ \rho \circ \tau^{i}\) where \(\rho\) is the rotor substitution and \(\tau\) the alphabet shift, as explained in Chapter 5 .

\section*{The Enigma Substitution}

The rotors being in the state \(z=\left(z_{1}, z_{2}, z_{3}\right)\) the rotor substitution describes the effect of transversing them from right to left:
\[
\sigma_{z}:=\rho_{3}^{\left(z_{3}\right)} \circ \rho_{2}^{\left(z_{2}\right)} \circ \rho_{1}^{\left(z_{1}\right)}
\]

The effect of the reflecting rotor is a proper involution \(\pi\), no element is mapped to itself. The plug-board also provides an involution, \(\eta\). Together this gives the Enigma substitution in state \(z\) :
\[
\rho_{z}=\eta^{-1} \circ \sigma_{z}^{-1} \circ \pi \circ \sigma_{z} \circ \eta
\]
or, with more details, the Enigma equation for encryption
\[
c_{i}=\eta^{-1} \tau^{-z_{1}} \rho_{1}^{-1} \tau^{z_{1}-z_{2}} \rho_{2}^{-1} \tau^{z_{2}-z_{3}} \rho_{3}^{-1} \tau^{z_{3}} \pi \tau^{-z_{3}} \rho_{3} \tau^{z_{3}-z_{2}} \rho_{2} \tau^{z_{2}-z_{1}} \rho_{1} \tau^{z_{1}} \eta\left(a_{i}\right)
\]

Theorem 10 The Enigma substitution \(\rho_{z}\) in state \(z\) is a proper involution.
Proof. a) Involution:
\[
\rho_{z}^{-1}=\eta^{-1} \circ \sigma_{z}^{-1} \circ \pi^{-1} \circ \sigma_{z} \circ \eta=\rho_{z}
\]
since \(\pi^{-1}=\pi\).
b) Proper: Assume \(\rho_{z}(s)=s\) for a letter \(s \in \Sigma\). Then
\[
\sigma_{z} \eta(s)=\sigma_{z} \eta \rho_{z}(s)=\pi \sigma_{z} \eta(s)
\]
hence \(\pi(t)=t\) for \(t=\sigma_{z} \eta(s) \in \Sigma\). This contradicts the fact that \(\pi\) is a proper involution. \(\diamond\)

Note. The proof didn't use the fact that \(\eta\) is an involution. This limitation of the plug-board had purely practical reasons: It reduced errors in operation. Variable plugs between the keyboard or light-bulbs and the first rotor would give more degrees of freedom. But this would require 26 cables instead of the 10 double-plug cables.

\subsection*{6.3 Cryptanalysis of Enigma: General Remarks}

The number of variants of Enigma and of the corresponding appropriate approaches to cryptanalysis is hardly manageable in an introductory text. For this reason we only treat three selected topics:
1. The Enigma without plugboard
2. Message key analysis after Rejewski
3. Wehrmacht-Enigma and known plaintext

\section*{Special Features of Enigma}
- Control logic: Because the middle rotor moves only after 26 steps, and the slow rotor moves almost never, the ciphertext essentially consists of sections of length 26 where only the fast rotor moves by one position with each step.
- The decomposition of a rotor permutation into cycles is not affected by the plugboard. The substitution by the set of rotors is simply conjugated by the plugboard substitution.
- If the attacker has enough known plaintext she finds cycles, see Section 6.7.
- The diverse rotor orders differ by their cycle types [REJEWSkI's catalogue, TURING's "classes"].
- In this way the attacker gets information on the rotor order.
- Negative pattern search allows to narrow down the position of known plaintext.

In World War II this last effect allowed for the detection of test messages by the Italians that consisted only of LLL...LLL. This was a stroke of genius by the british cryptanalyst Mavis Lever who noticed that several cipher messages didn't contain any L. This observation turned out to be an essential step in uncovering the wiring of newly introduced rotors.

\subsection*{6.4 Cryptanalysis of the Enigma Without Plugboard}

\section*{The Commercial Enigma}

The types C and D of Enigma had a reflecting rotor but no plugboard. They were sold on the free market and could be comprehensively analyzed by everyone.

In the Spanish civil war all parties used the Enigma D. All big powers broke it.

The substitution of the commercial Enigma simplifies to
\[
c_{i}=\sigma_{z}^{-1} \pi \sigma_{z}\left(a_{i}\right)
\]
where \(\sigma_{z}\) is the substitution by the three rotors in state \(z=\left(z_{1}, z_{2}, z_{3}\right)\). The reflecting rotor was fixed during encryption but could be inserted in any of 26 positions.

\section*{Searching for Isomorphs}

In a section of the text where only rotor 1 moves, the two inner rotors together with the reflecting rotor yield a constant involution \(\tilde{\pi}\). If the plaintext for this section (say of length \(m\) ) is known, then we have equations
\[
\begin{aligned}
c_{1} & =\left[\rho_{1}^{\left(z_{1}\right)}\right]^{-1} \tilde{\pi} \rho_{1}^{\left(z_{1}\right)}\left(a_{1}\right) \\
c_{2} & =\left[\rho_{1}^{\left(z_{1}+1\right)}\right]^{-1} \tilde{\pi} \rho_{1}^{\left(z_{1}+1\right)}\left(a_{2}\right) \\
& \cdots \\
c_{m} & =\left[\rho_{1}^{\left(z_{1}+m-1\right)}\right]^{-1} \tilde{\pi} \rho_{1}^{\left(z_{1}+m-1\right)}\left(a_{m}\right)
\end{aligned}
\]

Hence for \(i=1, \ldots, m\) the intermediate text
\[
c_{i}^{\prime}=\rho_{1}^{\left(z_{1}+i-1\right)}\left(c_{i}\right)=\tilde{\pi} \rho_{1}^{\left(z_{1}+i-1\right)}\left(a_{i}\right)
\]
is the monoalphabetic image \(c_{i}^{\prime}=\tilde{\pi}\left(a_{i}^{\prime}\right)\) of the intermediate text
\[
a_{i}^{\prime}=\rho_{1}^{\left(z_{1}+i-1\right)}\left(a_{i}\right)
\]
under the involution \(\tilde{\pi}\).


Figure 6.2: Searching for isomorphs
Therefore pattern search identifies the fast rotor and its state by testing all rotors and all initial states. For determining \(a_{i}^{\prime}\) from \(a_{i}\) we have to test all three rotors with all 26 start positions, and determine \(c_{i}^{\prime}\) from \(c_{i}\) with the same rotor in the same position. This exhaustion comprises \(3 \times 26=\) 78 different constellations, each of which has to be tested for a matching pattern. Probably there are several false solutions in addition to the correct one.

The next sieving step uses the fact that \(\tilde{\pi}\) is a fixed involution. If for a possible solution we find a coincidence \(c_{i}^{\prime}=a_{j}^{\prime}\) with \(j \neq i\), then we test for
\[
a_{i}^{\prime} \mapsto c_{i}^{\prime}=a_{j}^{\prime} \mapsto c_{j}^{\prime} \stackrel{?}{\stackrel{?}{2}} a_{i}^{\prime}
\]

If no, we discard the solution. If yes, we even identified a 2 -cycle of \(\tilde{\pi}\), reducing the number of \(26^{2}=676\) possible states of the two inner rotors. A useful tool for this is a precomputed table of length 676 for each of the 6 different combinations of these two rotors that contains the cycle decomposition of \(\tilde{\pi}\) for all states, making a total of \(6 \times 676=4056\) involutions.

Precomputing the lookup table is easy: Let the cycles of \(\pi\) be \(\left(a_{1}, b_{1}\right), \ldots,\left(a_{13}, b_{13}\right)\). Let \(\xi=\rho_{3}^{\left(z_{3}\right)} \circ \rho_{2}^{\left(z_{2}\right)}\) be the combined substitution by rotors 2 and 3 . Then the cycle decomposition of \(\tilde{\pi}=\xi^{-1} \circ \pi \circ \xi\) is
\[
\tilde{\pi}=\left(\xi^{-1} a_{1}, \xi^{-1} b_{1}\right), \ldots,\left(\xi^{-1} a_{13}, \xi^{-1} b_{13}\right)
\]

We only need to apply the fixed substitution \(\xi^{-1}\) to the string \(a_{1} b_{1} \ldots a_{13} b_{13}\).
The location of known plaintext, if not known a priori, may be narrowed down by negative pattern search.

\section*{Conclusion}

The introduction of the reflecting rotor aimed at a significant gain for the security of Enigma by doubling the number of rotor passages. This turned out to be an illusory complication. The attack by isomorphs reduces the cryptanalysis to the exhaustion of position and state of three rotors only, and even this is reduced in a substantial manner.

To prevent this attack the Wehrmacht (= army) introduced the plugboard when adopting the Enigma.

\subsection*{6.5 Example}

Lacking a working simulation for the commercial Enigma we use a military Enigma I omitting the plugboard. Further differences with the commercial Enigma D are
- The reflector is mounted in a fixed position. This will facilitate our task slightly compared with a true Enigma D.
- The rotors (including the reflectors) are differently wired. We consider the wiring as known.
- The input wiring is from keyboard-A to input-A etc., whereas the commercial Enigma had the contacts wired in the order of the keys, i. e. keyboard-Q to input-A, keyboard-W to input-B and so on. This makes no cryptanalytic difference because it amounts to a known renaming of the standard alphabet.
- The notches that move the rotors are fixed at the alphabet rings instead of the rotor bodies, allowing a displacement with respect to the rotor contacts, and thus effecting a slight variablity in the stepping of
the rotors. In our example we ignore this complication that is irrelevant for the commercial Enigma.

The primary rotor alphabets are
```

Clear: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Rot I: EKMFLGDQV ZN T O W Y H X USPA I BRC J
Rot II: A J D K SIRUXBLHWTMCQGZNPYFVOE
Rot III: B D F H J L C PRTXV ZNYEIWGAKMUSQO
Refl B: YRUHQS L DPXNGOKMIEBFZCNV JAT

```

The cycle decomposition of the reflector is
(AY) (BR) (CU) (DH) (EQ) (FS) (GL) (IP) (JX) (KN) (MO) (TZ) (VW)

Now assume we got the ciphertext:

\section*{NMSHH EZJOU OEAJA IDCWS VVMFY IVZQO QWSYO KCEVE QSTLC YMJKT PFVK}

We suspect it to be in Spanish but we don't use this conjecture. However it seems likely that it begins with the probable word GENERAL. Negative pattern search yields no contradiction to this assumed known plaintext, however also excludes only very few of other possible positions.

Now we test all three rotors in each possible position in the search for an isomorph. For Rotor I we get 26 pairs of intermediate texts:
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Pos A & \begin{tabular}{l}
PBURWXL \\
XWFPJHW
\end{tabular} & Pos B
\[
===>
\] & \begin{tabular}{l}
TNQULJH \\
FEXJQMI
\end{tabular} & \[
\text { Pos } C \text { : }
\] & WRNHVNR UTMQRGM & Pos D: & JUJMBQY QPWRZNP \\
\hline Pos E & OHTGVDQ NMCZOOC & Pos F: & \begin{tabular}{l}
IMANAIF \\
JIWOKWH
\end{tabular} & Pos G & \begin{tabular}{l}
PGSOBCP \\
TSBKHLB
\end{tabular} & Pos H: & QNHWTJV AZCHDHI \\
\hline Pos & YORLYKP SRUDNEJ & Pos J: & NWXHSSU HGZNUAR & Pos K:
===> & JLREOHV RQTUMKG & & \begin{tabular}{l}
GHWAADN \\
XWPMBRC
\end{tabular} \\
\hline Pos M & \begin{tabular}{l}
CEXKEAS \\
RQBBLJZ
\end{tabular} & Pos N: & MAPRHWM WVFLRYV & Pos 0: & TKUJUGI XWIRLIF & & LROYZNU POVLQOM \\
\hline \[
\begin{gathered}
\text { Pos Q } \\
===>
\end{gathered}
\] & AJKITFY UTAQRIE & & \begin{tabular}{l}
KYWOAUB \\
ONURJNT
\end{tabular} & & \begin{tabular}{l}
QIAIBEO \\
KJBJOOD
\end{tabular} & & \begin{tabular}{l}
KODNJKT \\
WVCOIGJ
\end{tabular} \\
\hline \[
\begin{array}{r}
\text { Pos U } \\
===>
\end{array}
\] & \begin{tabular}{l}
PIQOYEN \\
AZKIELD
\end{tabular} & Pos V & \begin{tabular}{l}
QNVGUJU \\
DCZEQFI
\end{tabular} & Pos W: & \begin{tabular}{l}
IOPLRKV \\
QPVQUBJ
\end{tabular} & Pos X: & NGWFNCD VUSUXNB \\
\hline Pos Y & HLXBXHS POOXKRG & Pos Z: & \begin{tabular}{l}
DFFNEBO \\
WVYKPUA
\end{tabular} & & & & \\
\hline
\end{tabular}

We find 4 isomorphs, all with the pattern 1234567. All four yield a contradiction with the involutory property (a "crash"): For position B the letter Q crashes, for position \(K, R\), for position \(Q, T\), for position \(U\), I.

The analoguous result for Rotor II is:


We find 5 isomorphs, again all with the pattern 1234567. All five contradict an involution.

Finally for Rotor III:


Pos U: IFAHJBY Pos V: JGXIWCL Pos W: KHAJFDV Pos X: LINKYEA
===> WVHNDJA XWKDPKB AZXPQAC ===> XWGQRMD

Pos Y: MJXAHFD Pos Z: CKCMIGQ
AZZRUNE NMIUROF
This time we find 4 isomorphs. Only the last one is compatible with an involution. It gives us 7 cycles of the involution \(\tilde{\pi}\) : (AD) (EM) (GN) (IW) (KQ) (LX) (RY), the letters BCFHJOPSTUVZ remaining.

If our assumption on the probable word GENERAL was correct, then the fast rotor is Rotor III with initial position X. Now we use the lookup table for the involution \(\tilde{\pi}\) containing all \(2 \times 26^{2}=1318\) possibilities for Rotors I and II in each order and all initial positions. This is the file vReflB_tr.xls in the directory http://www.staff.uni-mainz.de /pommeren/Cryptology/Classic/Files/. There is exactly one involution that contains the obligatory cycles: The slow rotor 3 is Rotor I in initial position H, and the medium rotor is Rotor II in initial position D. Trying these settings on the online simulation at http://enigmaco.de//we obtain the plaintext

General Franco llegara a Sevilla en la noche. Notifica al alcalde.

For successfully cryptanalyzing the Enigma without plugboard we only needed a short cryptogram ( 54 letters) and a few letters (only 7) of known plaintext. The attack by isomorphs is quite strong.

Compared with the attack on a linearly ordered ("straight-through") rotor machine the reflecting rotor reduces the workload because the involutory property excludes most isomorphs. On the other hand stripping off the last rotor is easier with a straight-through machine. But in summary the reflecting rotor turns out to be an illusory complication.

\subsection*{6.6 Message Key Analysis by Rejewski}

The German Army adopted the Enigma in 1930 as Enigma I. In the first years this variant of the Enigma also had three rotors only-as had the commercial Enigma-but had the rotors wired in another way. Furthermore the additional plugboard, sitting between in/output and the rotors, substantially increased the key space, see Section 6.2.

The crucial point for the first break-in by the Polish cryptanalysts was a weakness in key handling:
- The key consisted of a daily basic setting and an individual message key.
- The daily basic setting consisted of the rotor order, the ring positions, and the plug connections-first at most 6 plugs-as well as an initial position of the rotors. This setting was valid for all messages of the day - in the first years even for several days. It was known to all participants of the communication network.
- The message key consisted of the initial positions of the three rotors. These could be changed quickly and were to be set by the operator in a random way. This key changed with every message and thereby precluded the alignment in depth of all the messages encrypted with the same daily basic setting.
- The receiver of the message knew the basic setting but not the message key. Therefore the operator encrypted the message key, consisting of three letters, with the basic setting and prefixed this three-lettercryptogram to the message. This is no diminution of security as long as the keys are selected in a purely random way. In practice they were not.
- Because the radiocommunication was interference-prone, and a distorted key would garble the entire message, the message key was encrypted twice. Thus the proper message had a six-letter prefix. Adding redundancy to a message is not good idea in classical cryptography.

The operator hence had to encrypt six letters, a repeated trigram, using the basic setting, then to set the message key - the rotor positions - and then to encrypt the proper message.

The Polish intercepted the encrypted radio messages of the German Army but couldn't read them - until in 1932 they hired the mathematician Rejewski and his colleagues Różicky und Zygalski.

We describe their approach following BaUER's book [1] whose presentation relies on Rejewski's own description. At first we disregard the obstruction of the analysis that is caused by the (unknown) ring setting, that is, by the unknown stepping of the middle and maybe also the slow rotor.

\section*{Some Intercepted Messages}

Suppose the first six letters of each of 65 intercepted messages from a single day were (in alphabetic order)


Two observations catch the eye:
1. Frequently even different operators use the same message keys. This could hint at certain stereotypes. Looking for different messages with the same six-letter prefix a coincidence calculation shows that they in fact are encrypted with the same key.
2. The repetition of the three letters of the message key is obvious: If two messages coincide in the first letters, then also their fourth letters coincide. For example a Z at position 1 implies a Y at position 4 . The same holds for positions 2 and 5 ( U implies M ) and 3 and 6 (W implies P).

Therefore the handling of the message keys could be detected from the pure ciphertext, if it was not known already. In any case the cryptanalyst has a lot of ciphertext in depth: The first six letters of each message. If according to the operating instructions the message keys were randomly selected, this observation wouldn't be of much use. However, as it turned out, the message keys were non-random!

\section*{Rejewski's Approach}

Rejewski started his analysis by looking at the repeated message keys. Suppose
- \(a_{1} a_{2} a_{3}\) is the message key, hence the plaintext starts with the six letters \(a_{1} a_{2} a_{3} a_{1} a_{2} a_{3}\).
- The ciphertext starts with the six letters \(c_{1} c_{2} c_{3} c_{4} c_{5} c_{6}\).
- The first six Enigma substitutions, starting with the basic setting ( + the first rotor stepping before the first letter is encrypted), are \(\rho_{1}, \rho_{2}, \rho_{3}, \rho_{4}, \rho_{5}, \rho_{6}\).

Then we have
\[
\begin{array}{lll}
c_{1}=\rho_{1} a_{1}, & c_{4}=\rho_{4} a_{1}, & a_{1}=\rho_{1} c_{1}, \\
c_{4}=\rho_{4} \rho_{1} c_{1} \\
c_{2} a_{2}, & c_{5}=\rho_{5} a_{2}, & a_{2}=\rho_{2} c_{2}, \\
c_{5}=\rho_{5} \rho_{2} c_{2} \\
c_{3}=\rho_{3} a_{3}, & c_{6}=\rho_{6} a_{3}, & a_{3}=\rho_{3} c_{3}, \\
c_{6}=\rho_{6} \rho_{3} c_{3}
\end{array}
\]

Figure 6.3 illustrates this situation.


Figure 6.3: Repeated message key
The combined permutations \(\tau_{1}=\rho_{4} \rho_{1}, \tau_{2}=\rho_{5} \rho_{2}, \tau_{3}=\rho_{6} \rho_{3}\) are known if we have enough different message keys. In the example the 40 different six-letter groups completely determine \(\tau_{1}\) :
\[
\begin{array}{llllllllllllllllllllll}
A & B & D & E & G & I & J & L & N & O & Q & R & T & U & W & Y & Z \\
A & C & B & I & Z & T & M & X & U & D & F & W & S & E & P & R & O &
\end{array}
\]
and \(\tau_{2}\) :
\[
\begin{array}{lllllllllllllllllllllllll}
A & B & C & E & F & G & I & J & K & M & N & P & R & S & U & V & X & Y \\
X & L & G & D & O & Q & Y & J & P & K & F & B & H & U & S & V & N & W & A & M & E & I & T & C & R
\end{array}
\]
and \(\tau_{3}\) :
A B C DEFGHIJKLMNOPQRSTUVWXYZ
B V Q U H C F L K G T X O Y D S N E M J Z I P W A R
In Rejewski's terminology the triple ( \(\tau_{1}, \tau_{2}, \tau_{3}\) ) was called the characteristic of the day.

However we are far from knowing \(\rho_{1}, \ldots, \rho_{6}\), and far from knowing the basic setting, or even a single message key!

At first sight the plugboard makes trouble. But Rejewski as a mathematician knew that the Enigma substitutions with or without plugboard differ only by conjugation with the plugboard substitution \(\eta\). Therefore there
is an invariant immune to the effect of the plugboard: the cycle type of the permutations \(\tau_{1}, \tau_{2}, \tau_{3}\), see Appendix A. The cycle decompositions are
```

\tau
\tau}2: (AXT) (BLFQVEOUM) (CGY) (D) (HJPSWIZRN) (K) of type [9, 9, 3, 3, 1, 1]
\tau}: (ABVIKTJGFCQNY) (DUZREHLXWPSMO) of type [13,13

```

From this point the analysis has two possible continuations:
- Assume the rotor wirings are unknown. The cryptanalyst assumes that the message keys are chosen in a stereotypic way-an assumption that in the case of the Wehrmacht-Enigma turned out to be true, see below. This assumption and the material delivered be a German spy and containing the basic settings for a few days including the plug connections enabled Rósicky to derive the wiring of the fast rotor. Since the basic settings changed, each rotor sometimes occupied position 1 , so eventually the wirings of all three rotors became known.
- Assume the wirings are known. Then the basic setting can be completely determined and all the messages of the day can be decrypted.

These approaches lead to successes, but not always. Rejewski and his colleagues also found some other attack methods, in particular using known plaintext. Here we omit this.

\section*{Determining the Enigma Substitution from the Characteristics of the Day}

We return to our example and try to determine the first six Enigma substitutions in basic setting, \(\rho_{1}, \ldots, \rho_{6}\), from the known products \(\tau_{1}=\rho_{4} \rho_{1}\), \(\tau_{2}=\rho_{5} \rho_{2}, \tau_{3}=\rho_{6} \rho_{3}\) whose cycle decomposition is given above. We start with the schema
(A) (BC) (DVPFKXGZYO)
(S) (WR) (THLQNUMJIE)
(D) (AXT) (BLFQVEOUM)
(K) (YGC) (NRZIWSPJH)
(ABVIKTJGFCQNY)
(OMSPWXLHERZUD)
see Appendix A. We immediately coinclude that \(\rho_{1}\) and \(\rho_{4}\) both have the 2 -cycle (AS), and \(\rho_{2}\) and \(\rho_{5}\) both have the 2 -cycle (DK). But even for the 2 cycles of \(\tau_{1}\) we don't get a unique solution: \(\rho_{1}\) could have the cycles (BW) (CR) and \(\rho_{4}\) the cycles (BR) (CW), or conversely.

To get on we assume - following Rejewski-that aaa is the most popular message key with the German operators. (If this would turn out as erroneous we would try some other stereotype.) If we are right, then this corresponds to the encrypted message key SYX SCW that occurs five times, and implies the cycles
\begin{tabular}{ll} 
(AS) in \(\rho_{1}\), & (AS) in \(\rho_{4}\), \\
\((A Y)\) in \(\rho_{2}\), & (AC) in \(\rho_{5}\), \\
\((A X)\) in \(\rho_{3}\), & (AW) in \(\rho_{6}\).
\end{tabular}

This is nothing new for \(\rho_{1}\) and \(\rho_{4}\). But for \(\tau_{2}\) it means that the alignment of the 3 -cycles is correct, and we read off the 2 -cycles
\[
\text { (AY)(XG)(TC) in } \rho_{2}, \quad(\mathrm{AC})(\mathrm{GT})(\mathrm{XY}) \text { in } \rho_{5} .
\]

For \(\tau_{3}\) the correct alignment is
(ABVIKTJGFCQNY)
(XLHERZUDOMSPW)
and we find the unique solution
\[
\begin{aligned}
& \rho_{3}=(\mathrm{AX})(\mathrm{BL})(\mathrm{CM})(\mathrm{DG})(\mathrm{EI})(\mathrm{FO})(\mathrm{HV})(\mathrm{JU})(\mathrm{KR})(\mathrm{NP})(\mathrm{QS})(\mathrm{TZ})(\mathrm{WY}) \\
& \rho_{6}=(\mathrm{AW})(\mathrm{BX})(\mathrm{CO})(\mathrm{DF})(\mathrm{EK})(\mathrm{GU})(\mathrm{HI})(\mathrm{JZ})(\mathrm{LV})(\mathrm{MQ})(\mathrm{NS})(\mathrm{PY})(\mathrm{RT})
\end{aligned}
\]

Now let's look at other encrypted message keys. The first one in our table is AUQ AMN, partially decrypting to the plaintext
s?s s?s

We suspect the stereotypical message key sss. If we are right, then \(\rho_{2}\) has the 2 -cycle (SU), and \(\rho_{5}\) has the 2 -cycle (MS). This gives the correct alignment of the 9 -cycles of \(\tau_{2}\) :
\[
\begin{array}{lll}
\text { (D) } & \text { (AXT) } & \text { (BLFQVEOUM) } \\
\text { (K) } & \text { (YGC) } & \text { (JHNRZIWSP) }
\end{array}
\]
and completely determines \(\rho_{2}\) and \(\rho_{5}\) :
\[
\begin{aligned}
\rho_{2} & =(\mathrm{AY})(\mathrm{BJ})(\mathrm{CT})(\mathrm{DK})(\mathrm{EI})(\mathrm{FN})(\mathrm{GX})(\mathrm{HL})(\mathrm{MP})(\mathrm{OW})(\mathrm{QR})(\mathrm{SU})(\mathrm{VZ}) \\
\rho_{5} & =(\mathrm{AC})(\mathrm{BP})(\mathrm{DK})(\mathrm{EZ})(\mathrm{FH})(\mathrm{GT})(\mathrm{IO})(\mathrm{JL})(\mathrm{MS})(\mathrm{NQ})(\mathrm{RV})(\mathrm{UW})(\mathrm{XY})
\end{aligned}
\]

The encrypted message key RJL WPX occurs four times, and partially decrypts as

Again we are quite sure that this reveals a stereotypical message key: bbb. We conclude that \(\rho_{1}\) has the cycle (BR) - hence also the cycle (CW) -and \(\rho_{4}\) has the cycle (BW), hence also the cycle (CR).

For the complete solution the only open problem left is the alignment of the two 10 -cycles of \(\tau_{1}\). We look at the group LDR HDE and partially decrypt it as
?kk ?kk
We are quite sure of the message key kkk. Then \(\rho_{1}\) has the 2 -cycle (KL), the correct alignment is
(A) (BC) (DVPFKXGZYO)
(S) (RW) (IETHLQNUMJ)
and the complete solution is
\[
\begin{aligned}
& \rho_{1}=(\mathrm{AS})(\mathrm{BR})(\mathrm{CW})(\mathrm{DI})(\mathrm{EV})(\mathrm{FH})(\mathrm{GN})(\mathrm{JO})(\mathrm{KL})(\mathrm{MY})(\mathrm{PT})(\mathrm{QX})(\mathrm{UZ}) \\
& \rho_{4}=(\mathrm{AS})(\mathrm{BW})(\mathrm{CR})(\mathrm{DJ})(\mathrm{EP})(\mathrm{FT})(\mathrm{GQ})(\mathrm{HK})(\mathrm{IV})(\mathrm{LX})(\mathrm{MO})(\mathrm{NZ})(\mathrm{UY})
\end{aligned}
\]

Now we can decrypt all message keys for the actual basic setting. However we do not yet know the basic setting itself, and we cannot decrypt a single message. In particular we do not know the ring setting and the positions of the rotors corresponding to the message keys.

\section*{Rejewski's Catalogue}

In our example the permutations \(\tau_{1}=\rho_{4} \rho_{1}, \tau_{2}=\rho_{5} \rho_{2}\), and \(\tau_{3}=\rho_{6} \rho_{3}\) are completely determined and their cycle types are the partitions
\(\left[\begin{array}{llllll}10 & 10 & 2 & 2 & 1 & 1\end{array}\right],\left[\begin{array}{llllll}9 & 9 & 3 & 3 & 1 & 1\end{array}\right],\left[\begin{array}{ll}13 & 13\end{array}\right]\)
of the number 26. Now we ask how characteristic is this triple of partitions for the basic setting of the Enigma. The plug connections are irrelevant for this problem. We consider the rotor order as an element of the permutation group \(\mathcal{S}_{3}\), and the initial positions of the three rotors as elements of the cyclic group \(\mathbb{Z} / 26 \mathbb{Z}\). If we disregard the plugboard and the ring settings, the possible basic settings form the set \(\mathcal{S}_{3} \times(\mathbb{Z} / 26 \mathbb{Z})^{3}\). On the other hand we have the set \(\mathcal{P}_{13}\) consisting of all the 101 partitions of the number 13 (in bijective correspondence with the partitions of the number 26 in pairwise equal parts), and we have a map
\[
\mathcal{S}_{3} \times(\mathbb{Z} / 26 \mathbb{Z})^{3} \longrightarrow\left(\mathcal{P}_{13}\right)^{3}
\]

We would like this map to be injective. This seems not unrealistic in view of the cardinalities: 105,456 different basic settings, \(101^{3}=1,030,301\) different partitions.

To get the complete value table of this map Rejewski designed a simple Enigma simulator called Cyclometer that run through all basic settings in about one year. The result, called Rejewski's Catalogue, got lost. But there is a recent reconstruction in the paper

Alex Kuhl: Rejewski's Catalog. Cryptologia 31 (2007), 326-331.
It turned out that the above map is not injective, but "almost" so: Many triples of partitions have a unique preimage, most have only a few ones. However a few triples occur quite frequently, the top ten being
\begin{tabular}{|lll|c|}
\hline \multicolumn{4}{|c|}{ Triple of partitions }
\end{tabular} Frequency.

All in all there are 21230 different triples in the image of the map. 19604 of these, that is \(92 \%\), occur at most ten times, the numbers of these rare triples are
\begin{tabular}{|l|cccccccccc|}
\hline Pre-Im & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
Freq & 11466 & 3381 & 1658 & 958 & 660 & 456 & 343 & 265 & 234 & 183 \\
\hline
\end{tabular}

Using the catalogue the Polish cryptanalysts usually found the correct basic setting in at most 20 minutes. It is unknown what they did in the exceptional situations where there are too many false positives. Certainly some other useful details could be used. In any case we may assume that the method was successful for at least \(92 \%\) of all triples, corresponding to roughly \(50 \%\) of all cases.

We neglected the effect of the ring setting. This causes a rotor movement because the stepping mechanism is connected with the alphabet ring. Now, what could happen? As long as only the fast rotor moves we are in a situation included in the catalogue. The analysis is hampered if the middle rotor moves between two of the first six letters. The chances are 5 of 26 ring settings, that is about \(19 \%\). This lowers the total probability of success from \(50 \%\) to about \(40 \%\).

There is even more potential for drawing conclusions from the collected message keys. For example the moving of the middle rotor gives information
about the ring setting of the first rotor. An approach to determining the plugboard connections uses the fact that in the first years at most six letter pairs were interchanged. If the cryptanalysts assume that there are no plugs at all, then some true plaintext shows through the tentatively decrypted text. This enables them to reconstruct the plugboard connections.

\section*{Epilogue}

The plugboard turns out to be an illusory complication: It slows the cryptanalyst down a bit, but not as much as the increase in keylength from 29 to 76 bits- expressed in terms of today - suggested. The main cost of the cryptanalysis is exhausting the rotor order and positions, and this could be made efficient by compiling lookup tables.

By the way the decrypted 40 different message keys from the list of 65 above are:
```

AUQ AMN : sss | IKG JKF : ddd | QGA LYB : xxx | VQZ PVR : ert
BNH CHL : rfv | IND JHU : dfg | RJL WPX : bbb | WTM RAO : ccc
BCT CGJ : rtz | JWF MIC : ooo | RFC WQQ : bnm | WKI RKK : cde
CIK BZT : wer | KHB XJV : lll | SYX SCW : aaa | XRS GNM : qqq
DDB VDV : ikl | LDR HDE : kkk | SJM SPO : abc | XOI GUK : qwe
EJP IPS : vbn | MAW UXP : yyy | SUG SMF : asd | XYW GCP : qay
FBR KLE : hjk | NXD QTU : ggg | TMN EBY : ppp | YPC OSQ : mmm
GPB ZSV : nml | NLU QFZ : ghj | TAA EXB : pyx | ZZY YRA : uvw
HNO THD : fff | OBU DLZ : jjj | USE NWH : zui | ZEF YOC : uio
HXV TTI : fgh | PVJ FEG : tzu | VII PZK : eee | ZSJ YWG : uuu

```

The astonishingly naive habits of the German cipher operators become obvious by looking at the keyboard layout of Enigma:

All message keys belong to one of three groups of stereotypes
- iterated letters: sss, fff, ddd, ooo, ...
- three consecutive keys: rfv, rtz, wer, ikl, ...
- three letters in alphabetic order: abc, uvw

Before World War II the British cryptanalysts failed with the cryptanalysis of Enigma because they tried to determine the wiring between in-/output and first rotor. The commercial Enigma D connected Q with A, W with B, E with C and so on in the order of the keyboard. Assuming this for Enigma I didn’t work. Rejewski who knew the Germans since he was a student
at Göttingen simply assumed that the wiring in any case should follow a simple scheme, and succeeded with the assumption "A is connected to A, B to B etc."

The point: Enigma C also had had this simple wiring, and this information could be found in the patent file in the British Patent Office ...

For later attacks (from 1938 on) of the Polish cryptanalysts against the Enigma, including a complete example, see the paper

David Link, Resurrecting Bomba Kryptologiczna: Archeology of Algorithmic Artefacts, I. Cryptologia 33 (2009), 166-182.

\subsection*{6.7 Wehrmacht Enigma and Known Plaintext}

The Polish break into the Enigma relies on the way in which the German operators handled the message keys. With the beginning of the war the method of message keying changed and the pre-war cryptanalytic approaches broke down.

\section*{Equations for Known Plaintext}

Already the Polish cryptanalysts had exlored the idea of using known plaintext-starting from the observation that the German military in their messages used a lot of stereotypical phrases such as "Heil Hitler" or "Oberkommando der Wehrmacht" (= Army's High Command). Chunks of known plaintext (called "cribs" by the british cryptanalysts) allow narrowing down the exhaustive search to an amount that eventually may be mastered with the help of some cleverly constructed electro-mechanical machines. Alan Turing largely and systematically expanded this approach.

Here is an example (Example 1, taken from [4] as virtually all authors of cryptographic texts do). Let the ciphertext

\section*{ULOEB ZMGER FEWML KMTAW XTSWV UINZP R ...}
be given. We suppose the message contains the phrase "Oberkommando der Wehrmacht" near the beginning. A negative pattern search over the first 12 possible positions yields exactly one hit:
```

U L O E B Z M G E R F E W M L K M T A W X T S W V U I N Z P R
o b e r k o = m a n d o d e r w e h r m a c h t
o b = r k omm a n d o d e r w e h r m a c h t
= b e r k o m man d o d e r w e h r m a c h t
o = e r k omm a n d o d e r w e h r m a c h t
o b e rkomm a n d o d er = e h r mach t
===> oberkommandoderwehrmacht
ob= = k om=an dode r w e hrmach t
o b erk o = man d o d e r w e h r m a c h t
o b erkomm andode r = e h rmach
o b = r k o m = a n d o d e r w e h r m a c
o b e rk o = m = n d o d e r w e h r m a
ob er = omm a n d o der w e h r m

```

We assume the rotor wirings of all five rotors as known. The naive approach - exhaustion by brute force and assuming that the ring settings don't interfere with the crib-would go through all 60 possible rotor orders, all \(26^{3}=17576\) start positions, and all \(>10^{14}\) plug configurations, each time decrypt the ciphertext, and look if the known plaintext results. The huge number of plug configurations makes this approach hopeless, the "virtual" keylength for this approach being about 67 bits \(\left(10^{23} / 26^{2} \approx 1.6 \cdot 10^{20} \approx 2^{67}\right)\). (We first neglect the ring settings that have little impact on the cryptanalysis.)

Fortunately, using known plaintext, we may find conditions that involve only a single plug. Recall the general situation as shown in Figure 6.4.


Figure 6.4: Enigma with plugboard
Assume a sequence \(a_{1} \ldots a_{m}\) of known plaintext is given with corresponding ciphertext \(c_{1} \ldots c_{m}\), the respective combined rotor substitutions being \(\varphi_{1}, \ldots, \varphi_{m}\) and the "full" Enigma substitutions, \(\rho_{i}=\eta^{-1} \varphi_{i} \eta\). This gives the
equations
\[
\begin{aligned}
c_{1}=\rho_{1} a_{1} & =\eta^{-1} \varphi_{1} \eta a_{1} \\
& \vdots \\
c_{m}=\rho_{m} a_{m} & =\eta^{-1} \varphi_{m} \eta a_{m}
\end{aligned}
\]
or \(\eta c_{i}=\varphi_{i} \eta a_{i}\). Denoting the image of a letter under the (fixed but unknown) plugboard substitution by a tilde we get:

Lemma 7 For a sequence \(a_{1} \ldots a_{m}\) of known plaintext we have
\[
\tilde{c}_{i}=\varphi_{i} \tilde{a}_{i} \quad \text { and } \quad \tilde{a}_{i}=\varphi_{i} \tilde{c}_{i} \quad \text { for } i=1, \ldots, m .
\]

For the second equation we used the fact that the combined rotor substitutions \(\varphi_{i}\) are involutions.

\section*{Looking for Cycles}

Returning to Example 1 we consider the special situation

\section*{\(\begin{array}{llllllllllllll}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 2 & 2 & 2 & 2\end{array}\)}
i \(=123456789012345678901234\)
c_i \(=\) Z M GERFEWMLKMTAWXTSWVUIN Z
a_i = O BERKOMMANDODERWEHRMACHT
From such a plaintext-ciphertext pair we extract the Turing graph: The nodes correspond to the letters A... Z of the standard alphabet. For each pair \(\left(a_{i}, c_{i}\right)\) of plaintext letter and corresponding ciphertext letter an edge is drawn between these two letters, and this edge is labeled by the index \(i\). Due to the reciprocity between plaintext and ciphertext, the situation is modeled by an undirected graph. An edge with label \(j\) between nodes \(s\) and \(t\) means that \(t=\rho_{j} s\) and \(s=\rho_{j} t-\) or \(\tilde{t}=\varphi_{j} \tilde{s}\) and \(\tilde{s}=\varphi_{j} \tilde{t}\). Figure 6.5 shows the Turing graph for Example 1.

Turings approach uses the cycles in this graph ("closures" in Turing's way of speaking). In the notation of Lemma 7 we find:
\[
\mathrm{E}=\rho_{7} \mathrm{M}, \quad \mathrm{M}=\rho_{9} \mathrm{~A}, \quad \mathrm{~A}=\rho_{14} \mathrm{E}, \quad \text { and } \quad \tilde{\mathrm{E}}=\varphi_{7} \tilde{\mathrm{M}}, \quad \tilde{\mathrm{M}}=\varphi_{9} \tilde{\mathrm{~A}}, \quad \tilde{\mathrm{~A}}=\varphi_{14} \tilde{\mathrm{E}},
\]
and combine these three equations into one cycle equation
\[
\mathrm{E}=\rho_{7} \rho_{9} \rho_{14} \mathrm{E} . \quad \text { and } \quad \tilde{\mathrm{E}}=\varphi_{7} \varphi_{9} \varphi_{14} \tilde{\mathrm{E}} .
\]

In general we have:
Theorem 11 (Fixed Point Theorem of Rejewski/Turing) Let \(\rho_{i}\) be the Enigma substitution in position \(i\), and \(\varphi_{i}=\eta \rho_{i} \eta^{-1}\) be the substitution without plugs. Then a letter \(a\) is a fixed point of a composition \(\rho_{i_{1}} \cdots \rho_{i_{k}}\) if and only if the plugged letter \(\tilde{a}\) is a fixed point of \(\varphi_{i_{1}} \cdots \varphi_{i_{k}}\).


Figure 6.5: Turing graph for Example 1

Thus the fixed point property of a cycle is in a certain sense independent of the plug connections.

Corollary 7 (Turing's cycle condition) Each loop in the TURING graph gives a necessary condition for the correct key of the Enigma encryption in the form
\[
\tilde{a}=\varphi_{i_{1}} \ldots \varphi_{i_{k}} \tilde{a}
\]
for a letter a. In particular a a is a fixed point of the corresponding composition of unplugged Enigma substitutions.

Although mathematically trivial this theorem and its corollary are the keys to eliminating the complexity of the plugboard by a meet-in-the-middle attack.

What is the benefit of Turing's cycle condition? Suppose in Example 1 we try all 26 possible values for \(\tilde{\mathrm{E}}=\eta \mathrm{E}\) and all \(26^{3}\) possible rotor positions for all 60 possible rotor orders, searching for fixed points of \(\varphi_{7} \varphi_{9} \varphi_{14}\)-an exhaustion of \(60 \times 26^{4}=27,418,560\) cases. Then the probability that the cycle condition is fulfilled is about \(1 / 26\). This rules out \(\approx 25 / 26 \approx 96 \%\) of all cases and leaves us with \(\approx 60 \times 26^{3}\) cases-not really impressive, but it could be a good start: Suppose we find two cycles involving E, then we are left with \(\approx 60 \times 26^{2}\) cases, for three cycles with \(\approx 60 \times 26\) cases, for four cycles with \(\approx 60\) cases, i. e. with the exhaustion of the possible rotor orders. And the outcome of this search is:
- The correct initial rotor positions for our known plaintext
- The correct plugboard images for all letters that occur in one of the cycles-a significant part of the complete plug configuration

Now in our Example 1 (that is in fact Deavour's and Kruh's) we see two other cycles involving E :
\[
\tilde{\mathrm{E}}=\varphi_{4} \tilde{\mathrm{R}}, \quad \tilde{\mathrm{R}}=\varphi_{15} \tilde{\mathrm{~W}}, \quad \tilde{\mathrm{~W}}=\varphi_{8} \tilde{\mathrm{M}}, \quad \tilde{\mathrm{M}}=\varphi_{7} \tilde{\mathrm{E}},
\]
and
\[
\tilde{\mathrm{E}}=\varphi_{4} \tilde{\mathrm{R}}, \quad \tilde{\mathrm{R}}=\varphi_{5} \tilde{\mathrm{~K}}, \quad \tilde{\mathrm{~K}}=\varphi_{11} \tilde{\mathrm{D}}, \quad \tilde{\mathrm{D}}=\varphi_{13} \tilde{\mathrm{~T}}, \quad \tilde{\mathrm{~T}}=\varphi_{17} \tilde{\mathrm{E}},
\]
giving the two additional cycle conditions
\[
\tilde{\mathrm{E}}=\varphi_{4} \varphi_{15} \varphi_{8} \varphi_{7} \tilde{\mathrm{E}}, \quad \tilde{\mathrm{E}}=\varphi_{4} \varphi_{5} \varphi_{11} \varphi_{13} \varphi_{17} \tilde{\mathrm{E}} .
\]

The complete cycle constellation may be visualized by Figure 6.6 .


Figure 6.6: Turing cycles in Example 1

\section*{Evaluating the Cycle Conditions}

In evaluating the cycle conditions one sets the rotors to start positions and then steps Rotor 1 only. In lucky cases also in the real situation only Rotor 1 moves. In bad cases Rotor 2 moves, maybe even Rotor 3. Since the ring setting is unknown, these stepping positions are unknown. Because in the example all the cycles are between plaintext positions 4 and 17, the length of the effectively used plaintext segment is 14 , and the probability for a stepping of Rotor 2 in between is \(13 / 26=50 \%\), a stepping that would invalidate the approach, and a good argument for using rather short cribs.

Now assume that we have identified the correct rotor order and the correct initial positions of all the rotors, and no interfering movement of Rotors 2 and 3 occurs for the involved plaintext section \(a_{1} \ldots a_{m}\). Then the combined rotor substitutions \(\varphi_{1}, \ldots, \varphi_{m}\) are known, and the plug image \(\tilde{s}=\eta s\) is known for all letters \(s\) that occur in the cycles. In the example we know \(\tilde{\mathrm{E}}=\eta \mathrm{E}\) and consequently
\[
\begin{gathered}
\tilde{\mathrm{R}}=\varphi_{4} \tilde{\mathrm{E}}, \quad \tilde{\mathrm{~K}}=\varphi_{5} \tilde{\mathrm{R}}, \quad \tilde{\mathrm{M}}=\varphi_{7} \tilde{\mathrm{E}}, \quad \tilde{\mathrm{~W}}=\varphi_{8} \tilde{\mathrm{M}}, \quad \tilde{\mathrm{~A}}=\varphi_{9} \tilde{\mathrm{M}}, \\
\tilde{\mathrm{D}}=\varphi_{11} \tilde{\mathrm{~K}}, \quad \tilde{\mathrm{D}}=\varphi_{12} \tilde{\mathrm{M}}, \quad \tilde{\mathrm{~T}}=\varphi_{13} \tilde{\mathrm{D}}, \quad \tilde{\mathrm{X}}=\varphi_{16} \tilde{\mathrm{~W}} .
\end{gathered}
\]

Furthermore we find \(\tilde{\mathrm{F}}=\varphi_{6} \tilde{\mathrm{D}}\). Since \(\eta\) is an involution the inverse relations might involve further letters. That is we know the plugboard substitutes of at least 11 letters.

What is yet missing is
- The plugboard substitutes of the remaining letters
- The stepping position of Rotor 2

To continue assume first that the remaining letters are unchanged by the plugboard and decrypt \(c_{m+1}, \ldots\) As soon as the resulting plaintext is unreadable either a new plugboard connection or the stepping position is detected. If the crib occurred in the middle of the ciphertext, we run the same procedure backwards to the beginning of the message.

\section*{Conclusion}

The huge number of possible plug settings turns out to be an illusory complication: The exhaustion used the plug connection of a single letter only. In good cases where the procedure yields a unique solution of the cycle conditions the effort was testing 26 plug connections with \(26^{3}\) start positions for each of the 60 rotor orders, that is \(27,418,560 \approx 1.6 \cdot 2^{24}\) cases. In each case we have to do some trial encryptions for the letters in the cycles plus some house-keeping plus some finishing. So we may guess that the search space is dropped to about 30 bits.

As soon as the daily key-rotor order, ring settings, plug connections, initial positions of the rotors - is known, reading all further messages of the day comes for almost no additional costs because all message keys are encrypted with the same initial rotor positions.

\section*{A Note on the Technical Realization: Turing's Bombe}

Turing's Bombe consisted of a battery of several Enigmas (without plugboards), called "scramblers" and in one-to-one correspondence with the nodes of the TURing graph, synchronously stepping through all \(26^{3}\) rotor positions. For each edge two scramblers were connected by a cable, and set to start positions differing by the number that corresponded to the label of the edge. Therefore the physical arrangement of the components was an exact model of the graph. The cable had 26 wires, so all choices for the plug connection of a selected letter ( \(\tilde{\mathrm{E}}\) in Example 1) could be tested in parallel. The cycle conditions corresponded to closed electrical circuits that made the bombe stop. Then the operator noted the actual rotor positions and restarted the bombe with the next set of positions.

Using enough scramblers even all the sixty rotor orders could be tested in parallel, dropping the effective search costs to \(26^{3}\), equivalent with a complexity of 14 bits only. A complete run of the bombe took 11 minutes. (Today a simulation on a PC without parallel execution takes about 5 minutes.)

Unfortunately in general the solution was far from unique, so the bombe produced a huge number of "false positive" stops. An idea of Welchman largely reduced the number of false positives by a clever add-on to the bombe, see Section 6.8 below, and this was crucial for the success of the British cryptanalysts against the Enigma.

\subsection*{6.8 Example 2}

Now we go through an example step by step and produce a complete solution for the ciphertext

ZIDPV USABH HEABG RZMOP UWVJD MLPCS PFTSH ISJMR RFSKU KHUAT SFDNB GWTAN CSZZW HPHNP DDSAX GTRGY OZPKO EAGRG YSGQD KKNIT DWFZZ INSYH UTSZR KJDVJ JLJIJ MQHCB RINYI

\section*{Aligning Known Plaintext}

We believe the plaintext contains "Oberleutnant zur See" as the rank of the sender, that is we assume a crib near the end of the message, and assume that at most 20 letters follow, containing the name. The scheme

RGYSGQDKKNITDWFZZINSYHUTSZRKJDVJJLJIJMQHCBRINYI
[ 89] xstopxoberleutnantxzurxseex
[ 90] xstopxoberleutnantxzurx=eex
[ 91] x=topxoberleutna=txz=rxseex
[ 92] xstopxoberleutnantxzurxseex
[ 93] xstopxoberleut=antxzurxseex
[ 94] xstopxoberleutnantxzu=xseex
[ 95] xstopxoberleutnan=x=urxseex
[ 96] xstopxoberleutnantxzurxseex
[ 97] xstopxoberleutnantxzurxseex
[ 98] xs=opxoberleutnantxzurxseex
[ 99] xstopxoberle==nantxzurxseex
[100] xstopxoberleutnantxzurxseex
[101] xstopxoberleutnantxzurxseex
[102] xstopxoberleutnantxzurxseex
[103] xstopxoberleutnantxzurxseex
[104] xstopxoberleutnantxzurxseex
[105] xstopxoberleutnantxzurxseex
[106] xstopxobe=leutnantxzurxseex
[107] x=topxoberleutnantxzurxseex
[108] xstopxoberleutnantxzurxseex
[109] xstopxoberleutnantxzurxseex
RGYSGQDKKNITDWFZZINSYHUTSZRKJDVJJLJIJMQHCBRINYI
gives 12 hits for the negative pattern search among the 21 considered positions: \(89,92,96,97,100,101,102,103,104,105,108,109\)-at least a slight reduction for manual cryptanalysis.

\section*{Constructing a Turing Graph}

Somewhere along the way we test position 103 and consider the crib

FZZINSYHUTSZRKJDVJJLJIJMQHC
We derive the cycle diagram in Figure 6.7.


Figure 6.7: Turing cycles for Example 2
Therefore as "menu" - the chunk of known plaintext to be examined - we use the sequence of length 20 starting from position 104 (that corresponds to the edge with label 2):

\section*{ZZInSYHUTSZRKJDVJJLJ \\ STOPXOBERLEUTNANTXZU}

To exhaust all the rotor orders, starting positions, and plug connections for this chunk of known plaintext we use Jean-François Bouchaudy's TurING Bombe Simulator, to be found at http://cryptocellar.web.cern.ch /cryptocellar/simula/jfb/BP12.zip

In a virtual machine on a 2.93 GHz Intel Core-i7 processor it needed 5 minutes for all 60 rotor orders and produced exactly one solution in "Welchman mode" (the diagonal board, see later).

Using only the rotors I, II, and III and disabling the diagonal board-that we haven't introduced yet-we get 6 "solutions" in a few seconds
\begin{tabular}{ll}
\((1)\) & I II III KFX \\
\((2)\) & I II III WHV \\
\((3)\) & II I III ZYN \\
\((4)\) & III I II JXS \\
\((5)\) & III II I IES \\
\((6)\) & III II I QSV
\end{tabular}

\section*{Exploring Solution (1)}

Let us try the first proposed solution. We begin by decrypting the ciphertext with a ring setting that causes no stepping of the middle rotor for the next 20 positions, and no plugs in the plugboard. Missing plugs will be detected by the following considerations.

The assumption on the ring setting is somewhat optimistic. It it fails for all of the solutions, we have to try harder, experimenting with shorter cribs or guessing the ring setting of the fast rotor.

We use the rotor order I (slow), II (middle), III (fast), and the start positions KFX. This gives the trial decryption

> ZZINSYHUTSZRKJDVJJLJIJJMQHCBRINYI XPMEJJXPGQBMIVVUKRSISPTNFVAZEQTG

This doesn't look like plaintext, but we have not yet explored the plugs. We start with the plug connection \(\tilde{Z}\) of \(Z\), the letter with the maximum number of edges in the graph. We try all 26 possible connections, see Table 6.1

Only line X is compatible with the cycle, giving \(\tilde{Z}=X\). For a manual check of the other cycles we use the complete description of the combined rotor substitutions \(\varphi_{2}, \ldots, \varphi_{21}\) given in Table 6.2. The "plugged" cycles fit "unplugged" ones:
\[
\begin{gathered}
\tilde{Z} \xrightarrow{3} \tilde{\mathrm{~T}} \xrightarrow{10} \tilde{\mathrm{R}} \xrightarrow{13} \tilde{\mathrm{U}} \xrightarrow{9} \tilde{\mathrm{E}} \xrightarrow{12} \tilde{\mathrm{Z}} \quad \text { fits } \quad \mathrm{X} \xrightarrow{3} \mathrm{I} \xrightarrow{10} \mathrm{Y} \xrightarrow{13} \mathrm{~F} \xrightarrow{9} \mathrm{~L} \xrightarrow{12} \mathrm{X} \\
\tilde{Z} \xrightarrow{2} \tilde{\mathrm{~S}} \xrightarrow{6} \tilde{\mathrm{X}} \xrightarrow{19} \tilde{\mathrm{~J}} \xrightarrow{21} \tilde{\mathrm{U}} \xrightarrow{9} \tilde{\mathrm{E}} \xrightarrow{12} \tilde{\mathrm{Z}} \text { fits } \\
\mathrm{X} \xrightarrow{2} \mathrm{Z} \xrightarrow{6} \mathrm{~F} \xrightarrow{19} \mathrm{~N} \xrightarrow{21} \mathrm{~F} \xrightarrow{9} \mathrm{~L} \xrightarrow{12} \mathrm{X} \\
\tilde{\mathrm{~T}} \xrightarrow{10} \tilde{\mathrm{R}} \xrightarrow{13} \tilde{\mathrm{U}} \xrightarrow{21} \tilde{\mathrm{~J}} \xrightarrow{18} \tilde{\mathrm{~T}} \text { fits } \mathrm{I} \xrightarrow{10} \mathrm{Y} \xrightarrow{13} \mathrm{~F} \xrightarrow{21} \mathrm{~N} \xrightarrow{18} \mathrm{I}
\end{gathered}
\]

Therefore the cycle conditions hold indeed.
However we didn't need to check them because reading off the plug connections from the first loop, row " X " in Table 6.1, we get \(\tilde{Z}=\mathrm{X}, \tilde{\mathrm{S}}=\mathrm{Z}\), and this already is a contradiction.

Therefore solution (1) was a false alarm. This observation leads to Welchman's plug condition expressing the fact that the plug substitution is an involution:
\[
\text { If } \tilde{a}=b, \text { then also } \tilde{b}=a \text { for each pair of letters } a, b \in \Sigma .
\]


Table 6.1: Example 2-Possible plug connections for the first cycle
\begin{tabular}{|c|c|}
\hline Substition in rotor position & \begin{tabular}{l}
Substitution table \\
A B C DEFGHIJKLMNOPQRSTUVWXYZ
\end{tabular} \\
\hline \(\varphi_{2}\) : KFX & C L AFGDEOVMUBJSHRYPNWKITZQX \\
\hline \(\varphi_{3}\) : KFY & D C B AYS L J X H O G N M K ZRQFVWTUIEP \\
\hline \(\varphi_{4}\) : KFZ & N X EFCDPSMQUYIAVGJTHRKOZ B L W \\
\hline \(\varphi_{5}\) : KFA & BAXVNYKQOZGMLEIUHTWRPDSCFJ \\
\hline \(\varphi_{5}\) : KFB & U D L B M Z OYV S TCEQGWNX JKAIPR H \\
\hline \(\varphi_{5}\) : KFC & Z U O T X H L F P Y Q GVSCIKWN D B M R E J A \\
\hline \(\varphi_{5}\) : KFD & J D U B Y Q R X Sat PozMLFGIKCWVHEN \\
\hline \(\varphi_{5}\) : KFE & R C B W H L OEJIMFKSGUTANQPXDVZY \\
\hline \(\varphi_{10}\) : KFF & M Z H X W P T C Y R O U A Q KFNJVGLSEDI \\
\hline \(\varphi_{11}: \mathrm{KFG}\) & M I V Z T N K L B P G HAFRJS OQEW C U Y X d \\
\hline \(\varphi_{12}\) : KFH & F Z R WVATIHYOXNMKUSCQGPEDLJ \\
\hline \(\varphi_{13}: \mathrm{KFI}\) &  \\
\hline \(\varphi_{14}:\) KFJ & V Y OWFEHGKSIPTRCLUNJMQADZBX \\
\hline \(\varphi_{15}\) : KFK & FRWKYAMPXVDNGLQHOBUZS J C I E T \\
\hline \(\varphi_{16}\) : KFL & BAIVJSHGCEQONMLTKUFPRDZYXW \\
\hline \(\varphi_{17}\) : KFM & R J I OK Y M X C B EPGQDLNAZWVUTHFS \\
\hline \(\varphi_{18}\) : KFN & RQSPUHLFNKJGTIZDBACMEWVYZO \\
\hline \(\varphi_{19}\) : KFO & WVEKCNXZORDYPFIMSJQUTBAGLH \\
\hline \(\varphi_{20}\) : KFP & TMPXZIHGFQUSBRYCJNLAKWVDOE \\
\hline \(\varphi_{21}\) : K &  \\
\hline
\end{tabular}

Table 6.2: Example 2-Combined rotor substitutions for rotor order I, II, III without turnover of Rotor II. Calculated using the online Enigma simulation at http://enigmaco.de/.

\section*{Exploring Solution (2)}

We try the second proposed solution. As before we begin by decrypting the ciphertext, starting from position 103, rotor order I, II, III. Because V is the turnover point of Rotor III we have to turn Rotor II back by one position in order to get the correct start positions WGV. The trial decryption gives
```

ZZINSYHUTSZRKJDVJJLJIJMQHCBRINYI
STOPXOBERLEUTNANTXZURXSEEXJAEGER

```
-a perfect result. We see that indeed V is the true turnover point of Rotor III, that means that the ring setting of this rotor is A. Moreover all letters except F and W occur, proving that they are unplugged, and the only possible plug connection could be between F and W .

From position 103 we go back for 26 positions and start with the rotor setting WFV. We get
```

RGYOZPKOEAGRGYSGQDKKNITDWF

``` ISTXLEUCHTTONNEXKNULLNEUNX

This proves that also F and W are unplugged. The only key element yet unknown is the ring setting of rotor II.

We go back for another 26 letters and start with the rotor positions WEV. This gives the trial decryption
```

FDNBGWTANCSZZWHPHNPDDSAXGT

```
SHKTDFEEFXMAMPPGAGRJIXKMXN
and the end rotor positions XFV instead of WFV. Something must have happened in between, and this could only be the stepping of Rotor I. The position of Rotor II then must have been E. Because of the double stepping of Rotor II the rotor start positions for this section of text must be VDV. Let's try this:

> FDNBGWTANCSZZWHPHNPDDSAXGT
> XHDREIZEHNXSTOPXERLOSCHENX

This is correct plaintext and proves that Rotor II has turnover point E, corresponding to ring setting A.

We conclude that the rotor start positions for the complete text are VCW, and get the decryption
```

ZIDPVUSABHHEABGRZMOPUWVJDMLPCSPFTSHISJMRRFSKUKHUATS
MELDUNGXVONXFREGATTEXGERMANIAXSTOPXPLANQUADRATXQELF

```
```

FDNBGWTANCSZZWHPHNPDDSAXGTRGYOZPKOEAGRGYSGQDKKNITDWF
XHDREIZEHNXSTOPXERLOSCHENXISTXLEUCHTTONNEXKNULLNEUNX

```
or, written in a more readable form,
Meldung X von X Fregatte X Germania X Stop X Planquadrat X Qelf X Hdreizehn X Stop X Erloschen X ist X Leuchttonne X Knullneun X Stop X Oberleutnant X zur X See X Jaeger

\section*{A Note on the Technical Realization: Welchman's Diagonal Board}

To systematically explore Welchman's plug conditions we consider the connected component of the Turing graph that we used. Assume it consists of the set \(M=\left\{s_{1}, \ldots, s_{r}\right\}\) of letters. When the bombe stops it also provides the plug connection of the selected letter, say \(s_{1}\) with \(\tilde{s}_{1}\), and allows to derive the set of plug connections \(\tilde{M}=\left\{\tilde{s}_{1}, \ldots, \tilde{s}_{r}\right\}\).

For the false "solution" (1) we had \(M=\{\mathrm{E}, \mathrm{J}, \mathrm{L}, \mathrm{R}, \mathrm{S}, \mathrm{T}, \mathrm{U}, \mathrm{X}, \mathrm{Z}\}\), and the provided or derived plug connections
\[
\tilde{E}=L, \tilde{J}=N, \tilde{L}=D, \tilde{R}=Y, \tilde{S}=Z, \tilde{T}=I, \tilde{U}=F, \tilde{X}=F, \tilde{Z}=X .
\]

We observe two kinds of contradictions:
1. \(\tilde{\mathrm{U}}=\mathrm{F}, \tilde{\mathrm{X}}=\mathrm{F}\) : Two letters in \(M\) cannot be connected to the same letter in \(\tilde{M}\).
2. \(\tilde{\mathrm{E}}=\mathrm{L}, \tilde{\mathrm{L}}=\mathrm{D}\), hence \(\eta \mathrm{E}=\tilde{\mathrm{E}} \in M \cap \tilde{M}\) and \(\eta^{2} \mathrm{E} \neq \mathrm{E}\). In the same way \(\tilde{\mathrm{S}}=\mathrm{Z}, \tilde{\mathrm{Z}}=\mathrm{X}, \eta^{2} \mathrm{~S} \neq \mathrm{S}\), and \(\tilde{\mathrm{Z}}=\mathrm{X}, \tilde{\mathrm{X}}=\mathrm{F}, \eta^{2} \mathrm{Z} \neq \mathrm{Z}\).
Checking for these contradictions in software is easy. Welchman's ingenious idea was to imagine and construct a simple device, the diagonal board, that was attached to the bombe and prevented stops in situations that contained contradictions to the plug conditions.

The improved bombe, called Turing-Welchman Bombe, provided only very few false positives. Moreover it not only used the letters in the cycles but also "non-cycle" letters connected to a cycle, in other words, a complete connected component of the Turing graph. In fact it even worked when the graph didn't have any cycles.

\subsection*{6.9 Example 3}

Since Example 2 turned out to be quite simple, we analyze one more example. The ciphertext is
```

CZSTQ GJYNF ZYOLR TLXBR YXJCE MONAS XIPHU CXSAD BGEEQ ROBPI
QMUDP LWYDD GRCMC MJLGW TWBDK BHCPM UMEIB TMCUR DOVPU XNGBZ
QRBKD RPCKL XQKYM CSLGP NHIGD LOHBM PYPNV MTZVU EBDCZ AZLSX
OSZHL GSSZN MBBWS FDTUW IAXEH HLQGR LXMVA MXLWF QGOOA RZXUH
VUAWM KQDXH ZOIJI AMXCI TQNUM ZTZIW CKSBH HRZBH HRNZE WZCGV
BQ

```
and we are quite sure that the plaintext begins with "Befehl X des X Fuehrers X Stop X". We align this with the ciphertext:
```

CZSTQ GJYNF ZYOLR TLXBR YXJCE
BEFEH LXDES XFUEH RERSX STOPX

```

Negative pattern search yields no contradiction. From positions 1 to 20 we derive the Turing graph whose largest connected component is shown in Figure 6.8. It has three cycles that overlap, two of them of length 2. Running the Bombe Simulator in "Turing mode" for these three cycles yields about \(1500 \approx 60 \cdot 26\) solutions, as expected. The (lexicographically) first of them is
\begin{tabular}{ll} 
Rotor order & I II III \\
Start position & ZPB
\end{tabular}

Table 6.3 describes the transformations \(\varphi_{2}, \ldots, \varphi_{20}\).


Figure 6.8: Turing graph for Example 3, largest connected component
Now we consider the E-L-E cycle and the E-Z-X-R-T-E cycle, see Table 6.4. The L-E cycle has 6 compatible plug connections for \(E\) and \(L\). The \(\mathrm{E}-\mathrm{Z}-\mathrm{X}-\mathrm{R}-\mathrm{T}-\mathrm{E}\) cycle boils this number down to 1 . The third cycle, \(\mathrm{X}-\mathrm{R}-\mathrm{X}\), fits into the picture, because \(\varphi_{20} \tilde{\mathrm{X}}=\varphi_{20} \mathrm{I}=\mathrm{B}=\tilde{\mathrm{R}}\).

Again the Welchman conditions rule out this solution because of the contradiction in the first row: \(\tilde{\mathrm{L}}=\mathrm{B}\) in column \(2, \tilde{\mathrm{R}}=\mathrm{B}\) in column 6 . And indeed, running the Bombe Simulator in "Welchman mode" yields a unique solution:
\[
\begin{array}{ll}
\text { Rotor order } & \text { III II I } \\
\text { Start position } & \text { BMX }
\end{array}
\]
with the plugs \(\mathrm{A}-\mathrm{Z}, \mathrm{C}-\mathrm{X}, \mathrm{E}-\mathrm{V}\). A trial decryption with these plugs and ring settings AAA shows parts, but not all of the known plaintext:

EUEHLXHECXGFEHRERLXZTOPX
(B) EFEHLXDESXFUEHRERSXSTOPX
\begin{tabular}{|c|c|}
\hline Substition in rotor position & \begin{tabular}{l}
Substitution table \\
A B C DEFGHIJKLMNOPQRSTUVWXYZ
\end{tabular} \\
\hline \(\varphi_{2}\) : ZPB & NGESCIBRFWXUOAMYZHDVLTJKPQ \\
\hline \(\varphi_{3}\) : ZPC & M J S HQ OK DWB GVAUFZEYCXNLITRP \\
\hline \(\varphi_{4}\) : ZPD & FLHNIATCERXBYDZQPJVGWSUKMO \\
\hline \(\varphi_{5}\) : ZPE & V D G B J T CKUEHYWZSRXPOFIAMQLN \\
\hline \(\varphi_{6}\) : ZPF & P T I U J Z Q M C EY SHWXAGVLBDRNOKF \\
\hline \(\varphi_{7}:\) ZPG & R D I B M Q UVCYOTEXKZFAWL G H S N J P \\
\hline \(\varphi_{8}\) : ZPH & QLFTKCPRZSEBXWUGAH J D O Y N M V \\
\hline \(\varphi_{9}\) : ZPI & D X J ALQ IS G C UEWRZVFNHYKPMBTO \\
\hline \(\varphi_{10}:\) ZPJ &  \\
\hline \(\varphi_{11}\) & P E OHBZQDNRWYUICAGJXVMTKSLF \\
\hline \(\varphi_{12}\) : ZPL & RMSYLUTQPXZEBVWIHACGFNOJD \\
\hline \(\varphi_{13}\) : ZPM & J P S GYNDZQATUVFXBIWCKLMROEH \\
\hline \(\varphi_{14}:\) ZPN & B A Z WYRIOGTUXQVHSMFPJKNDLEC \\
\hline \(\varphi_{15}\) : ZPO & HMSYORLATUPGBXEKWFCIJ C ( C N D \\
\hline \(\varphi_{16}\) : ZPP & K F D CRBSTUNAPVJZLXEGHIMYQW \\
\hline \(\varphi_{17}: \mathrm{ZPQ}\) & B A V L Y S U OKMID JPHNZXFWGCTREQ \\
\hline \(\varphi_{18}\) : ZPR & N I J Q T U M W B C V S G A Y X D Z LeFK H P OR \\
\hline \(\varphi_{19}\) : ZPS & Q P K R U J Z NLFCIWHTBADYOEXMVSG \\
\hline \(\varphi_{20}\) : ZPT & V IGLZPCMBNSDHJYFXUKWRATQO \\
\hline
\end{tabular}

Table 6.3: Example 3-Combined rotor substitutions for rotor order I, II, III without turnover of Rotor II. Calculated using the online Enigma simulation at http://enigmaco.de/.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(\tilde{E}\) & \(\xrightarrow{14}\) & L & \(\xrightarrow{17}\) & \(\tilde{E}\) & \(\xrightarrow{2}\) & Z & \(\xrightarrow{11}\) & \(\tilde{\mathrm{X}}\) & \(\xrightarrow{18}\) & \(\tilde{\mathrm{R}}\) & \(\xrightarrow{16}\) & \(\tilde{T}\) & \(\xrightarrow{4}\) & \(\tilde{E}\) \\
\hline A & & B & & A & & N & & I & & B & & F & & A \\
\hline B & & A & & B & & G & & Q & & D & & C & & H \\
\hline C & & Z & & Q & \(\dagger\) & & & & & & & & & \\
\hline D & & W & & T & \(\dagger\) & & & & & & & & & \\
\hline E & & Y & & E & & C & & 0 & & Y & & W & & U \\
\hline F & & R & & X & \(\dagger\) & & & & & & & & & \\
\hline G & & I & & K & \(\dagger\) & & & & & & & & & \\
\hline H & & 0 & & H & & R & & J & & C & & D & & N \\
\hline I & & G & & U & \(\dagger\) & & & & & & & & & \\
\hline J & & T & & W & \(\dagger\) & & & & & & & & & \\
\hline K & & U & & G & \(\dagger\) & & & & & & & & & \\
\hline L & & X & & R & \(\dagger\) & & & & & & & & & \\
\hline M & & Q & & Z & \(\dagger\) & & & & & & & & & \\
\hline N & & V & & C & \(\dagger\) & & & & & & & & & \\
\hline 0 & & H & & 0 & & M & & U & & F & & B & & L \\
\hline P & & S & & F & \(\dagger\) & & & & & & & & & \\
\hline Q & & M & & J & \(\dagger\) & & & & & & & & & \\
\hline R & & F & & S & \(\dagger\) & & & & & & & & & \\
\hline S & & P & & N & \(\dagger\) & & & & & & & & & \\
\hline T & & J & & M & \(\dagger\) & & & & & & & & & \\
\hline U & & K & & I & \(\dagger\) & & & & & & & & & \\
\hline V & & N & & P & \(\dagger\) & & & & & & & & & \\
\hline W & & D & & L & \(\dagger\) & & & & & & & & & \\
\hline X & & L & & D & \(\dagger\) & & & & & & & & & \\
\hline Y & & E & & Y & & P & & A & & N & & J & & R \\
\hline Z & & C & & V & \(\dagger\) & & & & & & & & & \\
\hline
\end{tabular}

Table 6.4: Example 3-Possible plug connections for the first two loops

To get on we use a second connected component of the Turing graph, see Figure 6.9.


Figure 6.9: Turing graph for Example 3, second connected component
Trying the cycle S-F-S with \(\varphi_{3}\) and \(\varphi_{10}\) using all the plugs for S that are yet free gives two possible solutions: \(\mathrm{S}-\mathrm{U}-\mathrm{S}\) and \(\mathrm{U}-\mathrm{S}-\mathrm{U}\). The second one violates the Welchman condition for S . The first one yields the plugs \(\mathrm{S}-\mathrm{S}\) and F-U. Furthermore we get \(\tilde{\mathrm{Y}}=\varphi_{12} \tilde{\mathrm{~F}}=\varphi_{12} \mathrm{U}=\mathrm{B}\), and \(\tilde{\mathrm{D}}=\varphi_{8} \tilde{\mathrm{Y}}=\varphi_{8} \mathrm{~B}=\mathrm{W}\).

Up to now we identified the plugs \(\mathrm{A}-\mathrm{Z}, \mathrm{B}-\mathrm{Y}, \mathrm{C}-\mathrm{X}, \mathrm{D}-\mathrm{W}, \mathrm{E}-\mathrm{V}, \mathrm{F}-\mathrm{U}\). Trial decryption yields the perfect plaintext

\section*{EFEHLXDESXFUEHRERSXSTOPX}

So we try to decrypt the complete ciphertext with the rotor order III II I, the ring settings AAA, the plugs A-Z, B-Y, C-X, D-W, E-V, F-U, and the start positions BMW, and get
```

BEFEH LXDES XFUEH RERSX STOPX IMXFA LLEXZ XZTXU NWAHR SQEIN
LIQEN XFRAN ZOESI SQENX ANGRI FFSXS INDXD IEXWE STBEF ESTIG
ungen XJEDE RXZAH LENMA ESSIG ENXUE BERLE GENHE ITXZU MXTRO
TZXZU XHALT ENXST OPXFU EHRUN GXUND XTRUP PEXMU ESSEN XVONX
DIESE RXEHR ENPFL IQTXD URQDR UNGEN XSEIN XSTOP XHEIL XHITL
ER

```

Befehl des Fuehrers STOP Im Falle z. Zt. unwahrscheinlichen franzoesischen Angriffs sind die Westbefestigungen jeder zahlenmaessigen Ueberlegenheit zum Trotz zu halten STOP Fuehrung und Truppe muessen von dieser Ehrenpflicht durchdrungen sein STOP Heil Hitler

We observe that the slow rotor didn't step during this decryption. In general the a priori probability for its stepping was 257 letters of text divided by 676 possible positions of the other two rotors \(\approx 0.38\).

\subsection*{6.10 Discussion}
- Turing's attack against the cycles of the graph also works for noninvolutory rotor machines. Then the graph model is a directed graph and the attacker has to find directed cycles. These are quite rare, therefore the attack loses most of its power.
- Exercise. Find the directed cycles in Figures 6.5, 6.7, 6.8, 6.9,
- The Turing-Welchman Bombe used the involutary characters of the complete Enigma substitution as well as of the plugboard. The inventors of both of these "features" apparently didn't see the weaknesses.
- Nevertheless the addition of the plugboard made the machine much stronger. The isomorph attack worked by paper and pencil. Attacking the Wehrmacht Enigma only worked with the help of heavy machinery.

\section*{Chapter 7}

\section*{Aperiodic Polyalphabetic Ciphers}

\section*{Overview Over Polyalphabetic Ciphers}
\begin{tabular}{|c|c|c|c|}
\hline & \begin{tabular}{c} 
Monoalph. \\
Substitution
\end{tabular} & \begin{tabular}{c} 
Periodic \\
Polyalph. \\
Substitution
\end{tabular} & \begin{tabular}{c} 
Aperiodic \\
Polyalph. \\
Substitution
\end{tabular} \\
\hline Standard & Shift Cipher & BELLASO cipher \\
Alphabet & (CAESAR) & \begin{tabular}{c} 
Running-Text \\
("Vigenère")
\end{tabular} \\
\hline Cipher
\end{tabular}\(|\)\begin{tabular}{c} 
Non-Standard \\
Alphabet
\end{tabular} \begin{tabular}{c} 
General Monoalph. \\
Substitution
\end{tabular} \begin{tabular}{c} 
PorTA's General \\
Polyalph. Cipher
\end{tabular}\(\quad\)\begin{tabular}{c} 
Stream \\
Cipher \\
\hline
\end{tabular}

The table is not completely exact. The running-text cipher is only a (but the most important) special case of an aperiodic polyalphabetic substitution using the standard alphabet. An analogous statement holds for PORTA's disk cipher and a general periodic polyalphabetic substitution. In contrast by stream cipher we denote an even more general construct.

\subsection*{7.1 Running-Text Ciphers}

\section*{Method}

Assume we have a plaintext of length \(r\). We could encrypt it with the Bellaso cipher (and the Trithemius table). But instead of choosing a keyword and periodically repeating this keyword we use a keytext of the same length \(r\) as the plaintext. Then we add plaintext and keytext letter for letter (using the table).

The abstract mathematical description uses a group structure on the alphabet \(\Sigma\) with group operation \(*\). For a plaintext \(a \in M_{r}=M \cap \Sigma^{r}\) we
choose a key \(k \in \Sigma^{r}\) and calculate
\[
c_{i}=a_{i} * k_{i} \quad \text { for } 0 \leq i \leq r-1 .
\]

We may interpret this as shift cipher on \(\Sigma^{r}\). The formula for decryption is
\[
a_{i}=c_{i} * k_{i}^{-1} \quad \text { for } 0 \leq i \leq r-1 .
\]

If the key itself is a meaningful text \(k \in M_{r}\) in the plaintext language, say a section from a book, then we call this a running-text cipher.

\section*{Example}

Equip \(\Sigma=\{\mathrm{A}, \ldots, \mathrm{Z}\}\) with the group structure as additive group of integers \(\bmod 26\).
```

Plaintext: i a r r i v e t o m o r r o w a t t e n o c l o ck
Keytext: I F Y O U C A N K E E P Y O U R H E A D W H E N A L
Ciphertext: Q F P F C X E G Y Q S G P C Q R A X E Q K J P B C V

```

A Perl program is runkey.pl in the web directory http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Perl/.

\section*{Practical Background}

To avoid a period in a polyalphabetic substitution we choose a key that is (at least) as long as the plaintext. On the other hand we need a key that is easily remembered or transferred to a communication partner.

A common method of defining such a key is taking a book and beginning at a certain position. The effective key is the number triple (page, line, letter). This kind of encryption is sometimes called a book cipher. Historically the first known reference for this method seems to be

Arthur Hermann: Nouveau système de correspondence secrète. Méthode pour chiffrer et déchiffrer les dépêches secrètes. Paris 1892.

But note that there are also other ways to use a book for encryption, see http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/ 1_Monoalph/Variants.html.

A modern version could use the contents of a CD beginning with a certain position.

Exercise: How large is the keyspace of this cipher, when the attacker knows which CD was used?

\subsection*{7.2 Cryptanalytic Approaches to Running-Text Ciphers}

Cryptanalysis of running-text ciphers is laborious. There are several approaches that should be combined in practice. Automated procedures are proposed in
E. Dawson and L. Nielsen: Automated cryptanalysis of XOR plaintext strings. Cryptologia XX (1996), 165-181.
A. Griffing: Solving the running key cipher with the Viterbi algorithm. Cryptologia XXX (2006), 361-367.

The first of these considers running-text ciphers where plaintext and key are combined via binary addition (XOR) instead of addition mod 26. This distinction not essential for the method (but of course for the use of the program).

\section*{Approach 0: Exhaustion}

Exhaustion of all possible keytexts is practically infeasible when there is no a priori idea what the keytext could be. Exhaustion is feasible when the attacker knows the source of the keytext, say a certain book. If the source text has length \(q\) and the ciphertext has length \(r\), then there are only \(q-r\) choices for the start of the key text. This is troublesome for the pencil and paper analyst, but easy with machine support.

\section*{Approach 1: Probable Word and Zigzag Exhaustion}

When in the example above the attacker guesses the probable word "arrive" in the plaintext and shifts it along the ciphertext, already for the second position she gets the keytext FYOUCA. With a little imagination she guesses the phrase IFYOUCAN, yielding the plaintext fragment IARRIVET, and expands this fragment to IARRIVETOMORROW. This in turn expands the keytext to IFYOUCANKEEPYOU. Proceeding in this way alternating between plaintext and keytext is called zigzag exhaustion (or cross-ruff method). For some time during this process it may be unclear whether a partial text belongs to plaintext or key.

A dictionary is a useful tool for this task. Or a pattern search in a collection of literary texts may lead to success.

\section*{Approach 2: Frequent Word Fragments}

If the attacker cannot guess a probable word she might try common word fragments, bearing in mind that plaintext as well as keytext are meaningful texts. Shifting words or word fragments such as

THE AND FOR WAS HIS NOT BUT ARE ING ION ENT THAT THIS FROM WITH HAVE TION
along the ciphertext will result in many meaningful trigrams or tetragrams that provide seed crystals for a zigzag exhaustion. Recognizing typical combinations such as
```

THE + THE = MOI
ING + ING = QAM
THAT + THAT = MOAM

```
may be useful.

\section*{Approach 3: Frequency Analysis}

Let \(p_{0}, \ldots, p_{n-1}\) be the letter frequencies of the (stochastic) language \(M\) over the alphabet \(\Sigma=\left\{s_{0}, \ldots, s_{n-1}\right\}\). Then running-key ciphertexts will exhibit the typical letter frequencies
\[
q_{h}=\sum_{i+j=h} p_{i} \cdot p_{j} \quad \text { for } 0 \leq h \leq n-1
\]

Even though the distribution is much more flat compared with plain language, it is not completely uniform, and therefore leaks some information on the plaintext. For example it gives a hint at the method of encryption.

Example: Letter frequencies of running-text cryptograms in English (values in percent). Coincidence index \(=0.0400\).
\begin{tabular}{ccccccccccccc}
A & B & C & D & E & F & G & H & I & J & K & L & M \\
4.3 & 3.5 & 3.2 & 2.5 & 4.7 & 3.8 & 4.4 & 4.4 & 4.8 & 2.9 & 3.5 & 4.5 & 4.3 \\
N & O & P & Q & R & S & T & U & V & W & X & Y & Z \\
3.1 & 3.2 & 3.6 & 3.0 & 4.4 & 4.5 & 4.0 & 3.2 & 4.9 & 4.7 & 3.8 & 3.3 & 3.5
\end{tabular}

Example: Letter frequencies of running-text cryptograms in German (values in percent). Coincidence index \(=0.0411\).
\begin{tabular}{ccccccccccccc}
A & B & C & D & E & F & G & H & I & J & K & L & M \\
4.2 & 2.6 & 2.3 & 2.4 & 5.0 & 3.7 & 3.7 & 4.3 & 5.8 & 2.9 & 3.7 & 4.4 & 4.9 \\
N & O & P & Q & R & S & T & U & V & W & X & Y & Z \\
3.2 & 3.0 & 3.1 & 3.3 & 5.7 & 3.4 & 3.2 & 3.4 & 5.9 & 4.5 & 3.9 & 3.9 & 3.6
\end{tabular}

Even more helpful is the distribution of bigrams and trigrams. Each bigram in the ciphertext has \(26^{2}=676\) different possible sources whose probabilities however show large differences. For trigrams most sources even have probabilities 0 .

A systematic description of this approach is in
Craig Bauer and Christian N. S. Tate: A statistical attack on the
running key cipher. Cryptologia XXVI (2002), 274-282.

\section*{Approach 4: Frequent Letter Combinations}

Frequency analysis (approach 3) is cumbersome, at least for manual evaluation. Friedman refined this approach in a systematic way that doesn't need known plaintext. See the next section.

\subsection*{7.3 Cryptanalysis According to Friedman}

Friedman proposed a systematic approach to solving running-key ciphers in the article
W. F. Friedman: Methods for the Solution of Running-Key Ciphers. Riverbank Publication No. 16 (1918). In: The Riverbank
Publications Vol 1, Aegean Park Press 1979.
Consider a running-text cryptogram. Friedman's method starts from the observation that a significant fraction of the ciphertext letters arise from a combination of two frequent plaintext letters.

The frequency distribution (in percent) of the nine most frequent German letters is:
\begin{tabular}{ccccccccc}
E & N & I & R & S & A & T & D & U \\
18.0 & 10.6 & 8.1 & 7.2 & 6.9 & 6.0 & 5.7 & 5.4 & 4.6
\end{tabular}

Therefore these letters account for \(72.5 \%\) of a German text.
Assuming that the key is sufficiently independent of the plaintext we expect that about \(53 \%\) ciphertext letters arose from a combination of two of these letters in plaintext or key. This fact is not overly impressive. In the example

this applies only to 6 of 20 letters. The method won't work well for this example.

Let us take another example (from the football world championships 2002):


Here we see 13 of 26 letters as interesting. We use this example to explain the method.

Let's begin with the first four letters, and consider all combinations that lead to them

Plaintext: A B CDEFGHIJKLMNOPQRSTUVWXYZ
Key: \(\quad H G F E D C B A Z Y X W V U T S R Q P O N M L K J I\)
Ciphertext: \(\mathrm{H} H \mathrm{H} \mathrm{H}\)
Plaintext: A B C DEFGHIJK LMNOPQRSTUVWXYZ
Key: MLKJIHGFEDCBAZYXWVUTSRQPON Ciphertext: M M M M M M M M M M M M M M M M M M M M M M M M M M

Plaintext: A B C DEFGHIJKLMNOPQRSTUVWXYZ
Key: \(\quad H G F E D C B A Z Y X W V U T S R Q P O N M L K J I\)
Ciphertext: H H H H H H H H H H H H H H H H H H H H H H H H H H
Plaintext: A B C DEFGHI J K L M N O P QR S T U V W X Y Z
Key: \(\quad X W V U T S R Q P O N M L K J I H G F E D C B A Z Y\) \(1|1|\)
Ciphertext: X X X X X X X X X X X X X X X X X X X X X X X X X X
The most probable pairs are flagged. We condense this observation:
```

DENU EISTU DENU DETU
EDUN IEUTS EDUN UTED
H M H X

```

There is a total of \(4 \cdot 5 \cdot 4 \cdot 4=320\) possible combinations of these pairs. Some of them may be eliminated immediately, for example we may exclude that plaintext or key begin with the letters DS.

If we start with the pair D-E we might continue with E-I or U-S. The first case has only one meaningful continuation:

DEUT
EINE
The second case could proceed with D-E, but no fourth pair fits. A possible pair number 3 is \(\mathrm{N}-\mathrm{U}\) also, and then E-T or T-E fit as pair number 4. Therefore we note two more options, both of them not really convincing:
\begin{tabular}{lll} 
DEUT & dune & DUNT \\
EINE & ESUT & ESUE
\end{tabular}

Starting with E-D we find an exactly symmetric situation and get the same three options but with plaintext and key interchanged.

Starting with N-U we might continue with I-E or U-S. The first case has \(\mathrm{E}-\mathrm{D}\) as only plausible continuation, and then T-E:
\begin{tabular}{llll} 
DEUT & DUNE & DUNT & NIET \\
EINE & ESUT & ESUE & UEDE
\end{tabular}

The second case could proceed with D-E (and then E-T) or N-U (and then there is no good continuation). So we found one more option:
\begin{tabular}{lllll} 
DEUT & DUNE & DUNT & NIET & NUDE \\
EINE & ESUT & ESUE & UEDE & USET
\end{tabular}

Taking all the symmetric ones into account we face a total of 10 somewhat plausible options-under the assumption that the first four letters of plaintext and key belong to the nine most frequent German letters.

Of our five (+ five symmetric) options the first looks best. But also the fourth is reasonably good, bearing in mind that the keytext might begin in the middle of a word (for example "müde" = (M) UEDE). In any case let's begin with the first option that looks somewhat better. It suggests the continuation SCH. This seems promising:
```

DEUTSCH
EINENAT

```

Of course if this fails we would also try for example DEUTLICH or DEUTEN.
As next letter in the first row we would try E or L and note that L gives a better continuation in the second row ( \(U\) better than \(B\) ). Therefore the begin DEUTSCHLAND is decrypted-but we don't yet know whether it is plaintext or key. From this point we struggle ahead in zigzag as noted before.

\subsection*{7.4 Other Applications of Running-Text Analysis}

\section*{Key Re-Use}

Consider an alphabet \(\Sigma\) with a group structure, and consider an (aperiodic or periodic) polyalphabetic cipher that uses the CaESAR operation: For a plaintext \(a=\left(a_{0}, a_{1}, a_{2}, \ldots\right)\) and a keystream \(k=\left(k_{0}, k_{1}, k_{2}, \ldots\right)\) the ciphertext \(c=\left(c_{0}, c_{1}, c_{2}, \ldots\right)\) is given by
\[
c_{i}=a_{i} * k_{i} \quad \text { for } i=0,1,2, \ldots
\]

Because the key is not necessarily meaningful text the cryptanalytic methods for running-text ciphers don't apply.

But suppose another plaintext \(b=\left(b_{0}, b_{1}, b_{2}, \ldots\right)\) is encrypted with the same key \(k\), resulting in the ciphertext \(d=\left(d_{0}, d_{1}, d_{2}, \ldots\right)\),
\[
d_{i}=b_{i} * k_{i} \quad \text { for } i=0,1,2, \ldots
\]

The attacker recognizes this situation by coincidence analysis.
Then the difference (or quotient, depending on the notation of the group law) is given by
\[
d_{i} * c_{i}^{-1}=b_{i} * k_{i} * k_{i}^{-1} * a_{i}^{-1}=b_{i} * a_{i}^{-1} \quad \text { for } i=0,1,2, \ldots
\]

In this way the attacker who knows the ciphertexts \(c\) and \(d\) finds the difference \(b_{i} * a_{i}^{-1}\) that is the composition of two meaningful texts she doesn't know but wants to. She therefore applies the methods for running-text encryption and eventually finds \(a\) and \(b\) and then even \(k\).

\section*{Historical Notes}

This kind of analysis was a main occupation of the cryptanalysts in World War II and in the following Cold War. In particular teleprinter communication used additive stream ciphers (mostly XOR) with keystreams from key generators and very long periods. In case of heavy message traffic often passages of different messages were encrypted with the key generator in the same state. Searching such passages was called "in-depth-analysis" and relied on coincidence calculations. Then the second step was to subtract the identified passages and to apply running-text analysis.

Some known examples for this are:
- Breaking the Lorenz cipher teleprinter SZ42 ("Schlüsselzusatz") by the British cryptanalysts at Bletchley Park in World War II (project "Tunny").
- Breaking Hagelin's B21 in 1931 and the Siemens-Geheimschreiber T52 in 1940 by the Swedish mathematician Arne Beurling. The T52 was also partially broken at Bletchley Park (project "Sturgeon").
- The latest politically relevant application of this cryptanalytic technique occurred in the 1950es. US cryptanalysts broke Sovjet ciphertexts and by the way debunked the spy couple Ethel und Julius Rosenberg (project "Venona"). The Sovjet spys used a one-time pad-in principle. But because key material was rare keys were partly reused.

\section*{Large Periods}

Another application is the Trithemius-Bellaso cipher with a large period \(l\), large enough that the standard procedure of arranging the ciphertext in columns and shifting the alphabets fails.

Then the attacker may consider the ciphertext shifted by \(l\) positions and subtract it from the original ciphertext:
\[
c_{i+l}-c_{i}=a_{i+l}-a_{i} .
\]

Or, if the key consists of meaningful text, directly treat the cipher as a running-text cipher.

\section*{Exercise.}
```

BOEKV HWXRW VMSIB UXBRK HYQLR OYFWR KODHR JQUMM SJIQA THWSK
CRUBJ IELLM QSGEQ GSJFT USEWT VTBPI JMPNH IGUSQ HDXBR ANVIS
VEHJL VJGDS LVFAM YIPJY JM

```

\section*{Hints.}
- Find evidence for a period of 38 or 76 .
- Try the probable word AMERICA as part of the key.

\subsection*{7.5 Random Keys}

All cryptanalytic methods collapse when the key is a random letter sequence, chosen in an independent way for each plaintext, and never repeated. In particular all the letters in the ciphertexts occur with the same probability. Or in other words, the distribution of the ciphertext letters is completely flat.

This encryption method is called One-Time Pad (OTP). Usually Gilbert Vernam (1890-1960) is considered as the inventor in the World War II year 1917. But the idea of a random key is due to Mauborgne who improved Vernam's periodic XOR cipher in this way. The German cryptologists Kunze, Schauffler, and Langlotz in 1921-presumably independently from Mauborgne-proposed the "individuellen Schlüssel" ("individual key") for running-text encryption of texts over the alphabet \(\{\mathrm{A}, \ldots, \mathrm{Z}\}\).

In other words: The idea "was in the air". In 2011 Steve Bellovin discovered a much earlier proposal of the method by one Frank MILLER in 1882 who however was completely unknown as a crypologist and didn't have any influence on the history of cryptography.

\section*{Uniformly Distributed Random Variables in Groups}

This subsection contains evidence for the security of using random keys. The general idea is:

> "Something + Random \(=\) Random" or "Chaos Beats Order" (the Cildren's Room Theorem)

We use the language of Measure Theory.
Theorem 12 Let \(G\) be a group with a finite, translation invariant measure \(\mu\) and \(\Omega\), a probability space. Let \(X, Y: \Omega \longrightarrow G\) be random variables, \(X\) uniformly distributed, and \(X, Y\) independent. Let \(Z=X * Y\) (where \(*\) is the group law of composition). Then:
(i) \(Z\) is uniformly distributed.
(ii) \(Y\) and \(Z\) are independent.

Comment The independency of \(X\) and \(Y\) means that
\[
P\left(X^{-1} A \cap Y^{-1} B\right)=P\left(X^{-1} A\right) \cdot P\left(Y^{-1} B\right) \quad \text { for all measurable } A, B \subseteq G .
\]

The uniform distribution of \(X\) means that
\[
P\left(X^{-1} A\right)=\frac{\mu(A)}{\mu(G)} \quad \text { for all measurable } A \subseteq G .
\]

In particular the measure \(P_{X}\) on \(G\) defined by \(P_{X}(A)=P\left(X^{-1} A\right)\) is translation invariant, if \(\mu\) is so.

Remark \(Z\) is a random variable because \(Z=m^{-1} \circ(X, Y)\) with \(m=*\), the group law of composition. This is measurable because its \(g\)-sections,
\[
\left(m^{-1} A\right)_{g}=\{h \in G \mid g h \in A\}
\]
are all measurable, and the function
\[
g \mapsto \mu\left(m^{-1} A\right)_{g}=\mu\left(g^{-1} A\right)=\mu(A)
\]
is also measurable. A weak form of Fubinı's theorem gives that \(m^{-1} A \subseteq G \times G\) is measurable, and
\[
(\mu \otimes \mu)\left(m^{-1} A\right)=\int_{G}\left(m^{-1} A\right)_{g} d g=\mu(A) \int_{G} d g=\mu(A) \mu(G) .
\]

Counterexamples We analyze whether the conditions of the theorem can be weakened.
1. What if we don't assume \(X\) is uniformly distributed? As an example take \(X=\mathbf{1}\) (unity element of group) constant and \(Y\) arbitrary; then \(X\) and \(Y\) are independent, but \(Z=Y\) in general is not uniformly distributed nor independent from \(Y\).
2. What if we don't assume \(X\) and \(Y\) are independent? As an example take \(Y=X^{-1}\) (the group inverse); the product \(Z=\mathbf{1}\) in general is not uniformly distributed. Choosing \(Y=X\) we get \(Z=X^{2}\) that in general is not uniformly distributed nor independent from \(Y\). (More concrete example: \(\Omega=G=\mathbb{Z} / 4 \mathbb{Z}, X=\) identity map, \(Z=\) squaring map.)

\section*{General proof of the Theorem}
(For an elementary proof of a practically relevant special case see below.)
Consider the product map
\[
(X, Y): \Omega \longrightarrow G \times G
\]
and the extended composition
\[
\sigma: G \times G \longrightarrow G \times G, \quad(g, h) \mapsto(g * h, h) .
\]

For \(A, B \subseteq G\) we have (by definition of the product probability)
\[
\left(P_{X} \otimes P_{Y}\right)(A \times B)=P_{X}(A) \cdot P_{Y}(B)=P\left(X^{-1} A\right) \cdot P\left(Y^{-1} B\right) ;
\]
because \(X\) and \(Y\) are independent we may continue this equation:
\[
\begin{aligned}
& =P\left(X^{-1} A \cap Y^{-1} B\right)=P\{\omega \mid X \omega \in A, Y \omega \in B\} \\
& =P\left((X, Y)^{-1}(A \times B)\right)=P_{(X, Y)}(A \times B)
\end{aligned}
\]

Therefore \(P_{(X, Y)}=P_{X} \otimes P_{Y}\), and for \(S \subseteq G \times G\) we apply Fubini's theorem:
\[
P_{(X, Y)}(S)=\int_{h \in G} P_{X}\left(S_{h}\right) \cdot P_{Y}(d h)
\]

Especially for \(S=\sigma^{-1}(A \times B)\) we get
\[
\begin{aligned}
S_{h} & =\{g \in G \mid(g * h, h) \in A \times B\}= \begin{cases}A * h^{-1}, & \text { if } h \in B, \\
\emptyset & \text { else },\end{cases} \\
P_{X}\left(S_{h}\right) & = \begin{cases}P_{X}\left(A * h^{-1}\right)=\frac{\mu(A)}{\mu(G)}, & \text { if } h \in B, \\
0 & \text { else. }\end{cases}
\end{aligned}
\]

Therefore
\[
\begin{aligned}
P\left(Z^{-1} A \cap Y^{-1} B\right) & =P\{\omega \in \Omega \mid X(\omega) * Y(\omega) \in A, Y(\omega) \in B\} \\
& =P\left((X, Y)^{-1} S\right)=P_{(X, Y)}(S) \\
& =\int_{h \in B} \frac{\mu(A)}{\mu(G)} \cdot P_{Y}(d h)=\frac{\mu(A)}{\mu(G)} \cdot P\left(Y^{-1} B\right) .
\end{aligned}
\]

Setting \(B=G\) we conclude \(P\left(Z^{-1} A\right)=\frac{\mu(A)}{\mu(G)}\), which gives (i), and from this we immediately conclude
\[
P\left(Z^{-1} A \cap Y^{-1} B\right)=P\left(Z^{-1} A\right) \cdot P\left(Y^{-1} B\right)
\]
which proves also (ii).

\section*{Proof for countable groups}

In the above proof we used general measure theory, but the idea was fairly simple. Therefore we repeat the proof for the countable case, where integrals become sums and the argumentation is elementary. For the cryptographic application the measure spaces are even finite, so this elementary proof is completely adequate.

Lemma 8 Let \(G, \Omega, X, Y\), and \(Z\) be as in the theorem. Then
\[
Z^{-1}(A) \cap Y^{-1}(B)=\bigcup_{h \in B}\left[X^{-1}\left(A * h^{-1}\right) \cap Y^{-1} h\right]
\]
for all measurable \(A, B \subseteq G\).
The proof follows from the equations
\[
\begin{aligned}
Z^{-1} A & =(X, Y)^{-1}\{(g, h) \in G \times G \mid g * h \in A\} \\
& =(X, Y)^{-1}\left[\bigcup_{h \in G} A * h^{-1} \times\{h\}\right] \\
& =\bigcup_{h \in G}(X, Y)^{-1}\left(A * h^{-1} \times\{h\}\right) \\
& =\bigcup_{h \in G}\left[X^{-1}\left(A * h^{-1}\right) \cap Y^{-1} h\right], \\
Z^{-1} A \cap Y^{-1} B & =\bigcup_{h \in G}\left[X^{-1}\left(A * h^{-1}\right) \cap Y^{-1} h \cap Y^{-1} B\right] \\
& =\bigcup_{h \in B}\left[X^{-1}\left(A * h^{-1}\right) \cap Y^{-1} h\right] .
\end{aligned}
\]

Now let \(G\) be countable. Then
\[
\begin{aligned}
P\left(Z^{-1} A \cap Y^{-1} B\right) & =\sum_{h \in B} P\left[X^{-1}\left(A * h^{-1}\right) \cap Y^{-1} h\right] \\
& =\sum_{h \in B} P\left[X^{-1}\left(A * h^{-1}\right)\right] \cdot P\left[Y^{-1} h\right] \quad \text { (because } X, Y \text { are independent) } \\
& =\sum_{h \in B} \frac{\mu\left(A * h^{-1}\right)}{\mu(G)} \cdot P\left[Y^{-1} h\right] \quad \text { (because } X \text { is uniformly distributed) } \\
& =\frac{\mu(A)}{\mu(G)} \cdot \sum_{h \in B} P\left[Y^{-1} h\right] \\
& =\frac{\mu(A)}{\mu(G)} \cdot P\left[\bigcup_{h \in B} Y^{-1} h\right] \\
& =\frac{\mu(A)}{\mu(G)} \cdot P\left(Y^{-1} B\right) .
\end{aligned}
\]

Setting \(B=G\) we get \(P\left(Z^{-1} A\right)=\frac{\mu(A)}{\mu(G)}\), which gives (i), and immediately conclude
\[
P\left(Z^{-1} A \cap Y^{-1} B\right)=P\left(Z^{-1} A\right) \cdot P\left(Y^{-1} B\right)
\]
which proves (ii).

\section*{Discussion}

The theorem says that a One-Time Pad encryption results in a ciphertext that "has nothing to do" with the plaintext, in particular doesn't offer any lever for the cryptanalyst.

Why then isn't the One-Time Pad the universally accepted standard method of encryption?
- Agreeing upon a key is a major problem - if we can securely transmit a key of this length, why not immediately transmit the message over the same secure message channel? Or if the key is agreed upon some time in advance - how to remember it?
- The method is suited at best for a two-party communication. For a multiparty communication the complexity of key distribution becomes prohibitive.
- When the attacker has known plaintext she is not able to draw any conclusions about other parts of the text. But she can exchange the known plaintext with another text she likes more: The integrity of the message is at risk.

\subsection*{7.6 Autokey Ciphers}

The first one to propose autokey ciphers was Bellaso in 1564. Also this cipher is often attributed to VigEnÈRE.

\section*{Encryption and Decryption}

The alphabet \(\Sigma\) is equipped with a group operation \(*\). As key chose a string \(k \in \Sigma^{l}\) of length \(l\). For encrypting a plaintext \(a \in \Sigma^{r}\) one concatenates \(k\) and \(a\) and truncates this string to \(r\) letters. This truncated string then serves as keytext for a running-key encryption:
\begin{tabular}{lccccccc} 
Plaintext: & \(a_{0}\) & \(a_{1}\) & \(\ldots\) & \(a_{l-1}\) & \(a_{l}\) & \(\ldots\) & \(a_{r-1}\) \\
Keytext: & \(k_{0}\) & \(k_{1}\) & \(\ldots\) & \(k_{l-1}\) & \(a_{0}\) & \(\ldots\) & \(a_{r-l-1}\) \\
Ciphertext: & \(c_{0}\) & \(c_{1}\) & \(\ldots\) & \(c_{l-1}\) & \(c_{l}\) & \(\ldots\) & \(c_{r-1}\)
\end{tabular}

The formula for encryption is
\[
c_{i}= \begin{cases}a_{i} * k_{i} & \text { for } i=0, \ldots l-1 \\ a_{i} * a_{i-l} & \text { for } i=l, \ldots r-1\end{cases}
\]

Example, \(\Sigma=\{\mathrm{A}, \ldots, \mathrm{Z}\}, l=2, k=\mathrm{XY}:\)
\[
\begin{array}{lllllllll}
P & L & A & I & N & T & E & X & T \\
X & Y & P & L & A & I & N & T & E \\
- & \\
M & J & P & T & N & B & R & Q & X
\end{array}
\]

Remark: Instead of the standard alphabet (or the Trithemius table) one could also use a permuted primary alphabet.

Here is the formula for decryption
\[
a_{i}= \begin{cases}c_{i} * k_{i}^{-1} & \text { for } i=0, \ldots l-1 \\ c_{i} * a_{i-l}^{-1} & \text { for } i=l, \ldots r-1\end{cases}
\]

A Perl program is autokey.pl in the web directory http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Perl/.

\section*{Approaches to Cryptanalysis}

The four most promising approaches are:
- Exhaustion for small \(l\).
- Interpretation as running-key cipher from position \(l\), in case of a key word or phrase from the plaintext language even from the beginning of the ciphertext:
- Probable word and zigzag exhaustion
- Frequent word fragments
- Frequency analysis
- Frequent letter combinations

The repetition of the plaintext in the key makes the task considerably easier.
- Similarity with the Trithemius-Bellaso cipher, see Section 7.8 below
- Algebraic cryptanalysis (for known plaintext): Solving equations. We describe this for a commutative group, the group operation written as addition, that is, we consider \(\Sigma, \Sigma^{r}\), and \(\Sigma^{r+l}\) as \(\mathbb{Z}\)-modules.

We interpret the encryption formula as a system of linear equations with an \(r \times(r+l)\) coefficient matrix:
\[
\left(\begin{array}{c}
c_{0} \\
c_{1} \\
\vdots \\
c_{l-1} \\
c_{l} \\
\vdots \\
c_{r-1}
\end{array}\right)=\left(\begin{array}{ccccccc}
1 & 0 & \ldots & 1 & & & \\
& 1 & 0 & \ldots & 1 & & \\
& & \ddots & \ddots & & \ddots & \\
& & & 1 & 0 & \ldots & 1
\end{array}\right)\left(\begin{array}{c}
k_{0} \\
k_{1} \\
\vdots \\
k_{l-1} \\
a_{0} \\
\vdots \\
a_{r-1}
\end{array}\right)
\]

This is a system of \(r\) linear equations with the \(r+l\) unknowns (the components of) \(k \in \Sigma^{l}\) and \(a \in \Sigma^{r}\). "In general" such a system is solvable as soon as \(l\) of the unknowns are guessed, that means known plaintext of length \(l\) (not necessarily connected). Since the involved \(\mathbb{Z}\)-modules are (in most interesting cases) not vector spaces, solving linear equations is a bit intricate but feasible. This is comprehensively treated in the next chapter.

\section*{Ciphertext Autokey}

Using ciphertext instead of plaintext as extension of the \(l\)-letter key is a useless variant, but also proposed by Vigenère. We only describe it by an example:

Example, \(\Sigma=\{\mathrm{A}, \ldots, \mathrm{Z}\}, l=2, k=\mathrm{XY}:\)

> P L A I N T E X T X Y M J M R Z K D \(-\mathbf{M}\) M J M R Z K D H W

Exercise. Give a formal description of this cipher. Why is cryptanalysis almost trivial? Work out an algorithm for cryptanalysis.

Exercise. Apply your algorithm to the cryptogram IHTYE VNQEW KOGIV MZVPM WRIXD OSDIX FKJRM HZBVR TLKMS FEUKE VSIVK GZNUX KMWEP OQEDV RARBX NUJJX BTMQB ZT

Remark: Using a nonstandard alphabet makes this cipher a bit stronger.

\subsection*{7.7 Example: Cryptanalysis of an Autokey Cipher}

\section*{The Cryptogram}

Suppose we got the ciphertext
```

LUSIT FSATM TZJIZ SYDZM PMFIZ REWLR ZEKLS RQXCA TFENE YBVOI
WAHIE LLXFK vXOKZ OVQIP TAUNX ARZCX IZYHQ LNSYM FWUEQ TELFH
QTELQ IAXXV ZPYTL LGAVP ARTKL IPTXX CIHYE UQR

```

The context suggests that the plaintext language is French.
Here are some statistics. The letter count
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline A & B & C & D & E & F & G & H & I & J & K & L & M \\
\hline 8 & 1 & 3 & 1 & 9 & 6 & 1 & 4 & 10 & 1 & 4 & 11 & 4 \\
\hline \hline N & O & P & Q & R & S & T & U & V & W & X & Y & Z \\
\hline 3 & 3 & 5 & 7 & 6 & 5 & 10 & 4 & 5 & 3 & 9 & 6 & 9 \\
\hline
\end{tabular}
as well as the coincidence index 0.0437 suggest a polyalphabetic cipher, the autocincidence spectrum shows no meaningful period. The frequency distribution of the single letters hints at a running-key or autokey cipher that uses the standard alphabet ( \(=\) Trithemius table).

\section*{A Probable Word}

Since the message probably originated from the french embassy at Berlin in 1870 we may assume that the plaintext contains the word "allemand". Moving this word along the ciphertext and subtracting the probable wordwith the help of the Perl script probwd.pl-we get 4 good matches (plus some weak ones):
\begin{tabular}{llr} 
000: LJHEHFFX & 015: SNSVAPZC & 030: ZTZHGRDU \\
001: UHXPTSNQ & 016: YSOIDMSF & \(031:\) EZAOFQKZ \\
002: SXIBGAGJ & 017: DOBLAFVW & \(032:\) KAHNEXPX \\
003: IIUOOTZQ & 018: ZBEITIMO <-- 033: LHGMLCNQ \\
004: TUHWHMGW & \(019:\) MEBBWZEB & \(034:\) SGFTQAGC
\end{tabular}


\section*{Four good matches}

The first good match occurs at position 10:
1
01234567890123456789
LUSIT FSATM TZJIZ SYDZM PMFIZ
ALLEM AND
TOYEN SLA
A plausible completion to the left could be CITOYENS, giving

1
01234567890123456789
LUSIT FSATM TZJIZ SYDZM PMFIZ
RE ALLEM AND
CI TOYEN SLA
The second good match occurs at position 26:
```

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 ~ 0 1 2 3 4 5 6 7 8 9 ~ 0 1 2 3 4 5 6 7 8 9 ~
LUSIT FSATM TZJIZ SYDZM PMFIZ REWLR ZEKLS RQXCA
ALLE MAND
ELAN NEXI

```

A plausible completion to the right could be LANNEXIONDE ("l'annexion de"), so we get
\(1 \quad 2 \quad 3\)
0123456789012345678901234567890123456789
LUSIT FSATM TZJIZ SYDZM PMFIZ REWLR ZEKLS RQXCA
ALLE MANDE ENT
ELAN NEXIO NDE
The third good match occurs at position 80 :
\begin{tabular}{llllll}
7 & 8 & & \\
01234 & 56789 & 01234 & 56789 & 01234 & 56789 \\
TAUNX & ARZCX & IZYHQ & LNSYM & FWUEQ & TELFH \\
& & ALLEM AND & & \\
& \multicolumn{4}{c}{ IONDE LAP } & \\
& &
\end{tabular}

The previous letter could be T ("...tion de la p..."), providing not much help:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline 5 & & 6 & & 7 & & 8 & & 9 & \\
\hline 01234 & 56789 & 01234 & 56789 & 01234 & 56789 & 01234 & 56789 & 01234 & 56789 \\
\hline WAHIE & LLXFK & VXOKZ & OVQIP & TAUNX & ARZCX & IZYHQ & LNSYM & FWUEQ & TELFH \\
\hline & & & & & E & ALLEM & AND & & \\
\hline & & & & & T & IONDE & LAP & & \\
\hline
\end{tabular}

And the fourth good match at position 96 also is not helpful:
```

8 9 10 11
0 1 2 3 4 5 6 7 8 9 ~ 0 1 2 3 4 5 6 7 8 9 ~ 0 1 2 3 4 5 6 7 8 9 ~ 0 1 2 3 4 5 6 7 8 9)
IZYHQ LNSYM FWUEQ TELFH QTELQ IAXXV ZPYTL LGAVP
ALLE MAND
EAUD ETRI

```

\section*{Zig-Zag Exhaustion}

The four good matches occur as two pairs whose positions differ by 16. This is a bit of evidence for an autokey cipher with a 16 letter key.

This is easily tested: If we really have an autokey cipher, then the fragments should match at another position too, preferably 16 positions apart. Let's try the longest one, ELANNEXIONDE, at position 26 . We expect exactly one match beside the one we already know, at position \(26-16=10\), or \(26+16=42\). And we get
```

000: HJSVGBVSFZQV
001: QHIGSODLYGWF
002: OXTSFWWEFMGE
003: EIFFNPPLLWFV
004: PUSNGIWRVVWO
005: BHAGZPCBUMPU
006: OPTZGVMALFVZ 032: GASEDTFSFSBJ
007: WIMGMFLRELAV 033: HHRDKYDLRRKA
008: PBTMWECKKQWI 034: OGQKPWWXQABU
009: IIZWVVVQPMJL 035: NFXPNPIWZRVX
010: POJVMOBVLZMI 036: MMCNGBHFQLYR
011: VYIMFUGRYCJB 037: TRAGSAQWKOSK
012: FXZFLZCEBZCE 038: YPTSRJHQNILE
013: EOSLQVPHYSFV 039: WIFRAABTHBFS
014: VHYQMISERVWN 040: PUEARUENAVTW
015: ONDMZLPXUMOA 041: BTNRLXYGUJXD
016: USZZCIIALEBS 042: ACELORRAINEE <===
017: ZOMCZBLRDRTH 043: JTYOIKLOMUFA
018: VBPZSECJQJIN 044: ANBIBEZSTVBH
019: IEMSVVUWIYOV 045: UQVBVSDZURIH
020: LBFVMNHOXEWA 046: XKOVJWKAQYIT

```
\begin{tabular}{ll} 
021: IUIMEAZDDMBG & 047: RDIJNDLWXYUB \\
022: BXZERSOJLRHH & 048: KXWNUEHDXKCG \\
023: EORRJHURQXIO & 049: ELAUVAODJSHR \\
024: VGEJYNCWWYPN & \(050:\) SPHVRHOPRXST \\
025: NTWYEVHCXFOM & \(\ldots\) \\
\hline
\end{tabular}
a perfect accord with our expectations. This gives
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline 3 & & 4 & & 5 & & 6 & & 7 & \\
\hline 01234 & 56789 & 01234 & 56789 & 01234 & 56789 & 01234 & 56789 & 01234 & 56789 \\
\hline ZEKLS & RQXCA & TFENE & YBVOI & WAHIE & LLXFK & vxOKZ & OVQIP & TAUNX & ARZCX \\
\hline & & ELA & NNEXI & ONDE & & & & & \\
\hline & & ACE & LORRA & INEE & & & & & \\
\hline
\end{tabular}
and suggests "Alsace-Lorraine". We complete the middle row that seems to be the keytext:
\begin{tabular}{lllllllll}
3 & 4 & 5 & 6 & 7 \\
01234 & 56789 & 01234 & 56789 & 01234 & 56789 & 01234 & 56789 & 01234 \\
ZEKLS & RQXCA & TFENE & YBVOI & WAHIE & LLXFK & VXOKZ & OVQIP & TAUNX \\
& ARZCX
\end{tabular}

If we repeat the fragment from row 3 in row 2 at position \(55=39+16\) we see the very plausible text "l'annexion de l'Alsace-Lorraine", and fill up the rows:
\begin{tabular}{lllllllll}
3 & 4 & 5 & 6 & 7 \\
01234 & 56789 & 01234 & 56789 & 01234 & 56789 & 01234 & 56789 & 01234 \\
ZEKLS & RQXCA & TFENE & YBVOI & WAHIE & LLXFK & VXOKZ & OVQIP & TAUNX \\
& ARZCX
\end{tabular}

To find the key we go backwards in zig-zag:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & & 1 & & 2 & & 3 & & 4 & \\
\hline 01234 & 56789 & 01234 & 56789 & 01234 & 56789 & 01234 & 56789 & 01234 & 56789 \\
\hline LUSIT & FSATM & TZJIZ & SYDZM & PMFIZ & REWLR & ZEKLS & RQXCA & TFENE & YBVOI \\
\hline & & & & IR & EALLE & MANDE & ENTRA & INELA & NNEXI \\
\hline & & & & AI & NELAN & NEXIO & NDELA & LSACE & LORRA \\
\hline & & 1 & & 2 & & 3 & & 4 & \\
\hline 01234 & 56789 & 01234 & 56789 & 01234 & 56789 & 01234 & 56789 & 01234 & 56789 \\
\hline LUSIT & FSATM & TZJIZ & SYDZM & PMFIZ & REWLR & ZEKLS & RQXCA & TFENE & YBVOI \\
\hline & SCI & TOYEN & SLAVI & CTOIR & EALLE & MANDE & ENTRA & INELA & NNEXI \\
\hline & IRE & ALLEM & ANDEE & NTRAI & NELAN & NEXIO & NDELA & LSACE & LORRA \\
\hline
\end{tabular}
\begin{tabular}{lllllllll} 
& & 1 & 2 & 3 & 4 \\
01234 & 56789 & 01234 & 56789 & 01234 & 56789 & 01234 & 56789 & 01234 \\
56789 \\
LUSIT & FSATM & TZJIZ SYDZM & PMFIZ & REWLR & ZEKLS & RQXCA & TFENE YBVOI \\
AUXAR MESCI & TOYEN & SLAVI & CTOIR & EALLE MANDE & ENTRA & INELA & NNEXI \\
LAVIC & TOIRE ALLEM & ANDEE NTRAI & NELAN & NEXIO & NDELA & LSACE & LORRA
\end{tabular}

Now it's certain that we have an autokey cipher and the key is "Aux armes, citoyens" - a line from the "Marseillaise". Using the key we easily decipher the complete plaintext:

La victoire allemande entraîne l'annexion de l'Alsace-Lorraine et l'affirmation de la puissance allemande en Europe au détriment de l'Autriche-Hongrie et de la France.
[Consequences of the German victory are the annexation of Alsace-Lorraine and the affirmation of the German power at the expense of Austria-Hungary and France.]

\subsection*{7.8 Similarity of Ciphers}

Let \(\Sigma\) be an alphabet, \(M \subseteq \Sigma^{*}\) a language, and \(K\) a finite set (to be used as keyspace).

Definition [Shannon 1949]. Let \(F=\left(f_{k}\right)_{k \in K}\) and \(F^{\prime}=\left(f_{k}^{\prime}\right)_{k \in K}\) be ciphers on \(M\) with encryption functions
\[
f_{k}, f_{k}^{\prime}: M \longrightarrow \Sigma^{*} \quad \text { for all } k \in K
\]

Let \(\tilde{F}\) and \(\tilde{F}^{\prime}\) be the corresponding sets of encryption functions. Then \(F\) is called reducible to \(F^{\prime}\) if there is a bijection \(A: \Sigma^{*} \longrightarrow \Sigma^{*}\) such that
\[
A \circ f \in \tilde{F}^{\prime} \quad \text { for all } f \in \tilde{F}
\]

That is, for each \(k \in K\) there is a \(k^{\prime} \in K\) with \(A \circ f_{k}=f_{k^{\prime}}^{\prime}\), see the diagram below.
\(F\) and \(F^{\prime}\) are called similar if \(F\) is reducible to \(F^{\prime}\), and \(F^{\prime}\) is reducible to \(F\).


Application. Similar ciphers \(F\) and \(F^{\prime}\) are cryptanalytically equivalentprovided that the transformation \(f \mapsto f^{\prime}\) is efficiently computable. That means an attacker can break \(F\) if and only if she can break \(F^{\prime}\).

\section*{Examples}
1. Reverse Caesar. This is a monoalphabetic substitution with a cyclically shifted exemplar of the reverse alphabet Z Y ... B A, for example
```

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
WV UTS R Q P O N M L K J I H G F E D C B A Z Y X

```

We have \(K=\Sigma=\mathbb{Z} / n \mathbb{Z}\). Let \(\rho(s):=n-s\) the reversion of the alphabet. Then encryption is defined by
\[
f_{k}(s):=k-s \quad \text { for all } k \in K .
\]

This encryption function is involutory: \(f_{k} \circ f_{k}(s)=k-(k-s)=s\). The ordinary Caesar encryption is
\[
f_{k}^{\prime}(s):=k+s \quad \text { for all } k \in K .
\]

Then
\[
\rho \circ f_{k}(s)=\rho(k-s)=n+s-k=(n-k)+s=f_{n-k}^{\prime}(s),
\]
whence \(\rho \circ f_{k}=f_{\rho(k)}^{\prime}\). Because also the corresponding converse equation holds Caesar and Reverse Caesar are similar.
2. The Beaufort cipher [Sestri 1710]. This is a periodic polyalphabetic substitution with a key \(k=\left(k_{0}, \ldots, k_{l-1}\right) \in \Sigma^{l}\) (periodically continued):
\[
f_{k}\left(a_{0}, \ldots, a_{r-1}\right):=\left(k_{0}-a_{0}, k_{1}-a_{1}, \ldots, k_{r-1}-a_{r-1}\right) .
\]

Like Reverse Caesar it is involutory. The alphabet table over the alphabet \(\Sigma=\{\mathrm{A}, \ldots, \mathrm{Z}\}\) is in Figure 7.1. Compare this with Trithemius-Bellaso encryption:
\[
f_{k}^{\prime}\left(a_{0}, \ldots, a_{r-1}\right):=\left(k_{0}+a_{0}, k_{1}+a_{1}, \ldots, k_{r-1}+a_{r-1}\right) .
\]

Then as with Reverse CaEsar we have \(\rho \circ f_{k}=f_{\rho(k)}^{\prime}\), and in the same way we conclude: The Beaufort sipher is similar with the Trithemius-Bellaso cipher.
3. The Autokey cipher. As alphabet we take \(\Sigma=\mathbb{Z} / n \mathbb{Z}\). We write the encryption scheme as:
\[
\begin{array}{ccc|c}
c_{0} & = & a_{0}+k_{0} \\
c_{1} & = & a_{1}+k_{1} \\
\vdots & & \\
c_{l} & = & a_{l}+a_{0} \\
\vdots & & \\
c_{2 l}-c_{0} & = & a_{l}-k_{0} \\
\vdots & & a_{2 l}+a_{l} & \\
c_{2 l}-c_{l}=a_{2 l}-a_{0} & \\
c_{2 l}-c_{l}+c_{0}=a_{2 l}+k_{0}
\end{array}
\]

Let
\[
A\left(c_{0}, \ldots, c_{i}, \ldots, c_{r-1}\right)=\left(\ldots, c_{i}-c_{i-l}+c_{i-2 l}-\ldots, \ldots\right)
\]

In explicit form the \(i\)-th component of the image vector looks like:
\[
\sum_{j=0}^{\lfloor i\rfloor}(-1)^{j} \cdot c_{i-j l}
\]
and as a matrix \(A\) looks like
\[
\left(\begin{array}{cccccc}
1 & & -1 & & 1 & \\
& \ddots & & \ddots & & \ddots \\
& & 1 & & -1 & \\
& & & \ddots & & \ddots \\
& & & & 1 & \\
& & & & & \ddots
\end{array}\right)
\]

Then
\[
A \circ f_{k}(a)=f_{(k,-k)}^{\prime}(a),
\]
where \(f_{(k,-k)}^{\prime}\) is the Trithemius-Bellaso cipher with key \(\left(k_{0}, \ldots, k_{l-1},-k_{0}, \ldots,-k_{l-1}\right) \in \Sigma^{2 l}\). Hence the Autokey cipher is reducible to the Trithemius-Bellaso cipher with period twice the key length. [Friedman und Shannon] The converse is not true, the ciphers are not similar: This follows from the special form of the BelLASO key of an autokey cipher.

Note that \(A\) depends only on \(l\). The reduction of the autokey cipher to the Trithemius-Bellaso cipher is noteworthy but practically useless: The encryption algorithm and the cryptanalysis are both more complicated when using this reduction. And the reduction is possible only after the keylength \(l\) is known.
```

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Z Y X W V U T S R Q P O N M L K J I H G F E D C B A
Y X W V U T S R Q P O N M L K J I H G F E D C B A Z
X W V UT S R Q P ON M L K J I H G F E D C B A Z Y
WV UTSRRQPONMLK J I H G F E D C B A Z Y X
V UTS R Q P ONM L K J I H G F E D C B A Z Y X W
UTS R Q P ONMLK J I H G F E D C B A Z Y X W V
T S R Q P ONM L K J I H G F E D C B A Z Y X W V U
S RQPONM L K J I H G F E D C B A Z Y X WV U T
RQP ONMLK J I H G F E D C B A Z Y X WV U T S
Q P ON M L K J I H G F E D C B A Z Y X WV U T S R
P O N M L K J I H G F E D C B A Z Y X W V U T S R Q
O N M L K J I H G F E D C B A Z Y X W V U T S R Q P
N ML K J I H G F E D C B A Z Y X W V U T S R Q P O
MLK J I H G F E D C B A Z Y X W V U T S R Q P O N
L K J I H G F E D C B A Z Y X W V U T S R Q P O N M
K J I H G F E D C B A Z Y X W V U T S R Q P ON ML
J I HGFEDC B A Z Y X W V U T S R Q P ONM L K
I HGFEDCBAZ Y X WV UTS R Q P ONMLK J
HGFEDCBAZ Y X W V U T S R Q P O N M L K J I
GFEDCBAZ Y X W V U T S R Q P O N M L K J I H
FEDCBA Z Y X W V U T S R Q P ON M L K J I H G
E D C B A Z Y X W V U T S R Q P O N M L K J I H G F
D C B A Z Y X WV U T S R Q P O N M L K J I H G F E
C B A Z Y X W V U T S R Q P ON M L K J I H G F E D
B A Z Y X W V UT S R Q P ON M L K J I H G F E D C
A Z Y X W V U T S R Q P O N M L K J I H G F E D C B

```

Figure 7.1: The alphabet table of the Sestri-Beaufort cipher

\section*{Chapter 8}

\section*{Transpositions}

All the cryptographic procedures that we considered up to now worked by replacing each plaintext letter by another one, letter per letter. In this chapter we follow a complementary approach: Don't change the letters but instead change their order. This approach also goes back to anitiquity.

\subsection*{8.1 Transpositions and Their Properties}

See the web page http: //www.staff.uni-mainz.de/pommeren/Cryptology /Classic/8_Transpos/Definition.html

\subsection*{8.2 Examples}

See the web page http://www.staff.uni-mainz.de/pommeren/Cryptology /Classic/8_Transpos/Examples.html

\section*{Constructing a Turning Grille}

Let \(l \in \mathbb{N}\) be a natural number \(\geq 2\). Draw a \(2 l \times 2 l\) square and divide it into four \(l \times l\) squares.
\begin{tabular}{|c|c|c||c|c|c|}
\hline 1 & \(\ldots\) & \(l\) & & \(\ldots\) & 1 \\
\hline\(\vdots\) & & \(\vdots\) & \(\vdots\) & & \(\vdots\) \\
\hline & \(\ldots\) & \(l^{2}\) & \(l^{2}\) & \(\ldots\) & \(l\) \\
\hline \hline\(l\) & \(\ldots\) & \(l^{2}\) & \(l^{2}\) & \(\ldots\) & \\
\hline\(\vdots\) & & \(\vdots\) & \(\vdots\) & & \(\vdots\) \\
\hline 1 & \(\ldots\) & & \(l\) & \(\ldots\) & 1 \\
\hline
\end{tabular}

In the first square (upper left) enumerate the positions consecutively from 1 to \(l^{2}\), and transfer these numbers to the other three squares, rotating the scheme by \(90^{\circ}\) to the right in each step, as shown in the table above.

A key consists of a choice of one of the four \(l \times l\) squares for each of the numbers \(1, \ldots, l^{2}\). Then make a hole at the corresponding position in the corresponding square, for a total of \(l^{2}\) holes.

Thus the size of the keyspace is \(4^{l^{2}}\). For small \(l\) this amounts to:
\begin{tabular}{|c|c|c|c|c|}
\hline Parameter \(l:\) & 3 & 4 & 5 & 6 \\
\hline \# Keys: & \(2^{18}\) & \(2^{32}\) & \(2^{50}\) & \(2^{72}\) \\
\hline
\end{tabular}

For \(l=6\) or more the keyspace is sufficiently large. However this doesn't make the cipher secure.

\subsection*{8.3 Cryptanalysis of a Columnar Transposition (Example)}

See the web page http://www.staff.uni-mainz.de/pommeren/Cryptology /Classic/8_Transpos/ColTrAnal.html

\subsection*{8.4 Cryptanalytic Approaches}

See the web page http://www.staff.uni-mainz.de/pommeren/Cryptology /Classic/8_Transpos/Approach.html

\section*{Conditional Bigram Log-Weights}

Let \(L\) be a language over the alphabet \(\Sigma=\left(s_{0}, \ldots, s_{n-1}\right)\) with letter probabilities \(p_{i}\) and bigram probabilities \(p_{i j}\) for the bigrams \(s_{i} s_{j}\). Then the conditional bigram probabilities are given by
\[
p_{j \mid i}=p_{i j} / p_{i} \quad \text { for } i, j=0, \ldots, n-1 .
\]

The number \(p_{j \mid i}\) is the probability that given the letter \(s_{i}\) as beginning of a bigram (an event that occurs with probability \(p_{i}\) ) the second letter of the bigram is \(s_{j}\). For convenience we set \(p_{j \mid i}=0\) if \(p_{i}=0\).

Then for a set of independent bigrams the probabilities multiply, and it's usual to consider the logarithms of the probabilties to get sums instead of products. Adding a constant to the sum amounts to multiplying the probabilities by a constant factor. With an eye to the conditional bigram frequencies of natural languages, see the web page http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic /8_Transpos/Bigrams.html, we choose a factor of 1000 and define the conditional Bigram Log-Weight (cBLW) of the bigram \(s_{i} s_{j}\) by the formula
\[
w_{i j}=\left\{\begin{array}{ll}
{ }^{10} \log \left(1000 \cdot p_{j \mid i}\right) & \text { if } 1000 \cdot p_{j \mid i}>1, \\
0 & \text { otherwise }
\end{array} \quad \text { for } i, j=0, \ldots, n-1 .\right.
\]

Given a family \(\mathcal{B}\) of bigrams we define its cBLW score as
\[
S_{3}(\mathcal{B})=\sum_{i=0}^{n-1} \sum_{j=0}^{n-1} k_{i j}(\mathcal{B}) \cdot w_{i j}
\]
where \(k_{i j}(\mathcal{B})\) is the number of occurrences of the bigram \(s_{i} s_{j}\) in \(\mathcal{B}\).

\subsection*{8.5 Bigram Frequencies}

See the web pagehttp://www.staff.uni-mainz.de/pommeren/Cryptology /Classic/8_Transpos/Bigrams.html

\subsection*{8.6 The Values of Bigram Scores}

See the web pagehttp://www.staff.uni-mainz.de/pommeren/Cryptology /Classic/8_Transpos/cBLWsc.html

\section*{Theoretical Values for Random Bigrams}

Let \(\Sigma=\left(s_{0}, \ldots, s_{n-1}\right)\) be an alphabet and consider a probability distribution that assigns the probabilities \(p_{i}\) to the letters \(s_{i}\). Choosing two letters independently from this distribution assigns the probability \(p_{i} p_{j}\) to the bigram \(s_{i} s_{j}\). Giving the bigrams whatever weights \(w_{i j}\) and scoring a set of bigrams by summing their weights the expected value of the weight of a bigram is
\[
\sum_{i=0}^{n-1} \sum_{j=0}^{n-1} w_{i j} p_{i} p_{j} .
\]

Using this formula with the letter and bigram frequencies of natural languages and the corresponding conditional bigram \(\log\)-weights we get the table
\begin{tabular}{|l|l|l|l|}
\hline English: 1.47 & German: 1.54 & French: 1.48 \\
\hline
\end{tabular}

\section*{Theoretical Values for True Bigrams}

For a "true" bigram we first choose the first letter \(s_{i}\) with probability \(p_{i}\), then we choose the second letter \(s_{j}\) with conditional probability \(p_{j \mid i}\). This assigns the probability \(p_{i} p_{j \mid i}=p_{i j}\) to the bigram \(s_{i} s_{j}\), and the expected conditional bigram log-weight is
\[
\sum_{i=0}^{n-1} \sum_{j=0}^{n-1} w_{i j} p_{i j} .
\]

Using this formula with the letter and bigram frequencies of natural languages and the corresponding conditional bigram log-weights we get the table
\begin{tabular}{|l|l|l|l|}
\hline English: 1.94 & German: 1.96 & French: 1.99 \\
\hline
\end{tabular}

\section*{Empirical Values for Natural Languages}

See the web pagehttp://www.staff.uni-mainz.de/pommeren/Cryptology /Classic/8_Transpos/cBLWsc.html

\subsection*{8.7 A more systematic approach}

See the web page http://www.staff.uni-mainz.de/pommeren/Cryptology /Classic/8_Transpos/Analysis2.html

\subsection*{8.8 The Similarity of Columnar and Block Transpositions}

See the web page http://www.staff.uni-mainz.de/pommeren/Cryptology /Classic/8_Transpos/Similar.html

\section*{Permutation Matrices}

Let \(\sigma \in \mathcal{S}_{p}\) be a permutation of the numbers \(1, \ldots, p\).
Let \(R\) be a ring (commutative with 1 ). Then \(\sigma\) acts on \(R^{p}\), the free \(R\)-module with basis
\[
e_{1}=\left(\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right), \quad \ldots, \quad e_{p}=\left(\begin{array}{c}
0 \\
\vdots \\
0 \\
1
\end{array}\right)
\]
as the linear automorphism
\[
\rho(\sigma) \text { defined by } \rho(\sigma) e_{i}=e_{\sigma i} \text {. }
\]

This gives an injective group homomorphism
\[
\rho: \mathcal{S}_{p} \longrightarrow G L\left(R^{p}\right) .
\]

How to express \(\rho(\sigma)\) as a matrix? The vector
\[
x=\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{p}
\end{array}\right)=x_{1} e_{1}+\cdots+x_{p} e_{p}
\]
maps to
\[
\rho(\sigma) x=x_{1} e_{\sigma 1}+\cdots+x_{p} e_{\sigma p}=\left(\begin{array}{c}
x_{\sigma^{-1}} \\
\vdots \\
x_{\sigma^{-1} p}
\end{array}\right) .
\]

Thus the matrix \(P_{\sigma}\) corresponding to \(\rho(\sigma)\) is given by
\[
P_{\sigma}\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{p}
\end{array}\right)=\left(\begin{array}{c}
x_{\sigma^{-1}} \\
\vdots \\
x_{\sigma^{-1} p}
\end{array}\right) \quad \text { for all } x \in R^{p} .
\]

Therefore
\[
P_{\sigma}=\left(a_{i j}\right)_{1 \leq i, j \leq p} \quad \text { where } \quad a_{i j}= \begin{cases}1, & \text { if } i=\sigma j \\ 0 & \text { otherwise }\end{cases}
\]

Hence the matrix \(P_{\sigma}\) has exactly one 1 in each row and in each column, all other entries being 0 . We call \(P_{\sigma}\) the permutation matrix belonging to \(\sigma\).

\section*{Matrix Description of a Block Transposition}

The permutation \(\sigma\) defines a block transposition \(f_{\sigma}\) over the alphabet \(\Sigma=\) \(\mathbb{Z} / n \mathbb{Z}\) : For \(\left(a_{1}, \ldots, a_{p}\right) \in \Sigma^{p}\) let
\[
f_{\sigma}\left(a_{1}, \ldots, a_{p}\right)=\left[P_{\sigma}\left(\begin{array}{c}
a_{1} \\
\vdots \\
a_{p}
\end{array}\right)\right]^{T}=\left(a_{\sigma^{-1}}, \ldots, a_{\sigma^{-1} p}\right) .
\]

This moves the \(i\)-th letter \(a_{i}\) of the block to position \(\sigma i\).
More generally let \(r=p q\) and \(a=\left(a_{1}, \ldots, a_{r}\right) \in \Sigma^{r}\). Then
\[
c=f_{\sigma}(a)=\left(a_{\sigma^{-1}}, \ldots, a_{\sigma^{-1} p}, a_{p+\sigma^{-1}}, \ldots, a_{p+\sigma^{-1} p}, \ldots, a_{(q-1) p+\sigma^{-1} p}\right) .
\]

From this we derive the general encryption formula:
\[
c_{i+(j-1) p}=a_{\sigma^{-1} i+(j-1) p} \quad \text { for } 1 \leq i \leq p, 1 \leq j \leq q .
\]

We may express this in matrix notation writing the plaintext as a matrix with \(a_{i+(j-1) p}\) in row \(i\) and column \(j\) :
\[
A=\left(\begin{array}{cccc}
a_{1} & a_{p+1} & \ldots & a_{(q-1) p+1} \\
\vdots & \vdots & a_{i+(j-1) p} & \vdots \\
a_{p} & a_{2 p} & \cdots & a_{q p}
\end{array}\right) \in M_{p, q}(\mathbb{Z} / n \mathbb{Z}) .
\]

Analogously we write the ciphertext as \(C \in M_{p, q}(\mathbb{Z} / n \mathbb{Z})\) where \(C_{i j}=\) \(c_{i+(j-1) p}\) for \(1 \leq i \leq p, 1 \leq j \leq q\).

Then the encryption formula simply is the matrix product:
\[
C=P_{\sigma} A
\]
with the permutation matrix \(P_{\sigma}\).

\section*{Matrix Description of a Columnar Transposition}

The permutation \(\sigma\) also defines a columnar transposition \(g_{\sigma}\) over the alphabet \(\Sigma=\mathbb{Z} / n \mathbb{Z}\) : Writing the plaintext row by row in a \(q \times p\)-matrix gives just the transposed matrix \(A^{T}\) (again assume \(r=p q\) ):
\[

\]
and the ciphertext is read off, as the little arrows suggest, column by column in the order given by \(\sigma\). Thus the encryption function is given by:
\[
\tilde{c}=g_{\sigma}\left(a_{1}, \ldots a_{r}\right)=\left(a_{\sigma^{-1}}, a_{p+\sigma^{-1}}, \ldots, a_{\sigma^{-1} p}, \ldots, a_{(q-1) p+\sigma^{-1} p}\right) .
\]

The encryption formula is:
\[
\begin{aligned}
\tilde{c}_{\mu+(\nu-1) q} & =a_{(\mu-1) p+\sigma^{-1} \nu} \quad \text { for } 1 \leq \mu \leq q, 1 \leq \nu \leq p \\
& =c_{\nu+(\mu-1) p}
\end{aligned}
\]

If we arrange \(\tilde{c}\) column by column as a matrix
\[
\tilde{C}=\left(\begin{array}{cccc}
\tilde{c}_{1} & \tilde{c}_{q+1} & \ldots & \tilde{c}_{(p-1) q+1} \\
\vdots & \vdots & \tilde{c}_{\mu+(\nu-1) q} & \vdots \\
\tilde{c}_{q} & \tilde{c}_{2 q} & \cdots & \tilde{c}_{p q}
\end{array}\right) \in M_{q, p}(\mathbb{Z} / n \mathbb{Z}),
\]
we see that
\[
\tilde{C}^{T}=C=P_{\sigma} A
\]

This shows:
Proposition 6 The result of the columnar transposition corresponding to \(\sigma \in \mathcal{S}_{p}\) on \(\Sigma^{p q}\) arises from the result of the block transposition corresponding to \(\sigma\) by writing the latter ciphertext in \(p\) rows of width \(q\) and transposing the resulting matrix. This produces the former ciphertext in \(q\) rows of width \(p\).

In particular columnar transposition and block transposition are similar.
(The proposition describes the required bijection of \(\Sigma^{*}\) for strings of length \(p q\).)

For texts of a length not a multiple of \(p\) this observation applies after padding up to the next multiple of \(p\). For a columnar transposition with an uncompletely filled last row this does not apply. In spite of this we assess columnar and block transpositions as similar, and conclude: Although a columnar transposition permutes the text over its complete length without period, and therefore seems to be more secure at first sight, it turns out to be an illusory complication.

\section*{Chapter 9}

\section*{Linear Ciphers}

In 1929 the mathematician Lester Hill proposed the use of matrices for encryption. He published his idea in the American Mathematical Monthly. This cryptographic application of linear algebra piqued the curiosity of mathematicians. But its obvious weaknesses soon became evident, so it never found a serious application. The true importance of the method relied on the fact that it was the first systematic use of algebraic methods in cryptology. And by the way its cryptanalysis made clear how dangerous linearity in encryption functions is.

Jack Levine later mentioned that he used this kind of cipher already in 1924 for a contribution to a youth magazine when he was a high-school student.

In this section we use the Appendix Eon the Euclidean algorithm.

\subsection*{9.1 Matrices over Rings}

Let \(R\) be a ring (commutative with 1 ). The "multiplicative group" of \(R\) is the group of invertible elements
\[
R^{\times}=\{a \in R \mid a b=1 \text { for some } b \in R\}=\{a \in R \mid a \text { divides } 1\} .
\]

In the same way the (non-commutative) \(R\)-algebra \(M_{q q}(R)\) of \(q \times q\)-matrices over \(R\) has a group of invertible elements ("general linear group")
\[
G L_{q}(R)=\left\{A \in M_{q q}(R) \mid A B=\mathbf{1}_{q} \text { for some } B \in M_{q q}(R)\right\} .
\]

The determinant defines a multiplicative map
\[
\text { Det: } M_{q q}(R) \longrightarrow R,
\]
and
\[
\begin{gathered}
A \in G L_{q}(R) \Longrightarrow A B=\mathbf{1}_{q} \text { for some } B \Longrightarrow \operatorname{Det} A \cdot \operatorname{Det} B=\operatorname{Det} \mathbf{1}_{q}=1 \\
\Longrightarrow \operatorname{Det} A \in R^{\times} .
\end{gathered}
\]

The converse implication is also true. For a proof we consider the adjoint matrix \(\tilde{A}=\left(\tilde{a}_{i j}\right)\) where
\[
\tilde{a}_{i j}=A_{j i}=\operatorname{Det}\left(\begin{array}{cccccc}
a_{11} & \ldots & a_{1, i-1} & a_{1, i+1} & \ldots & a_{1 q} \\
\vdots & & \vdots & \vdots & & \vdots \\
a_{j-1,1} & \ldots & a_{j-1, i-1} & a_{j-1, i+1} & \ldots & a_{j-1, q} \\
a_{j+1,1} & \ldots & a_{j+1, i-1} & a_{j+1, i+1} & \ldots & a_{j+1, q} \\
\vdots & & \vdots & \vdots & & \vdots \\
a_{q 1} & \ldots & a_{q, i-1} & a_{q, i+1} & \ldots & a_{q q}
\end{array}\right)
\]

Using this we can prove:
Proposition 7 For \(A \in M_{q q}(R)\) the following holds:
(i) \(A \tilde{A}=\operatorname{Det} A \cdot \mathbf{1}_{q}\).
(ii) \(A \in G L_{q}(R) \Longleftrightarrow \operatorname{Det} A \in R^{\times}\); if this is true, then
\[
A^{-1}=\frac{1}{\operatorname{Det} A} \tilde{A}
\]

Proof. (i) is the expansion rule for determinants.
(ii) immediately follows from (i). \(\diamond\)

In particular Det induces a group homomorphism \(G L_{q}(R) \longrightarrow R^{\times}\).
Example For \(R=\mathbb{Z} / n \mathbb{Z}\) the statement (ii) of Proposition 7 can be rewritten as:
\[
A \in M_{q q}(\mathbb{Z}) \text { is invertible } \bmod n \Longleftrightarrow \operatorname{Det} A \text { is coprime with } n .
\]

\section*{Remarks}
1. The expenses for calculating the inverse matrix \(A^{-1}\) are, if statement (ii) is naively evaluated:
- one \(q \times q\)-determinant with \(q\) ! summands, each with \(q\) factors,
- \(q^{2}\) determinants of size \((q-1) \times(q-1)\).

This is extremely inefficient-it is exponential in \(q\).
2. Using Gaussian elimination the expenses drop to \(\mathrm{O}\left(q^{3}\right)\). But this is not quite true: Exact calculation produces rational numbers with huge numerators and denominators that require additional resources.

There is a modification of the elimination algorithm that uses only integers and is much more efficient, see the next section. However also this procedure produces large intermediate results.

An alternative algorithm uses the Chinese Remainder Theorem: Each ring homomorphism \(\varphi: R \longrightarrow R^{\prime}\) induces a homomorphism of \(R\)-algebras
\[
\varphi_{q}: M_{q q}(R) \longrightarrow M_{q q}\left(R^{\prime}\right)
\]
by componentwise evaluation. If \(A \in M_{q q}\) is invertible, then
\[
\varphi_{q}(A) \varphi_{q}\left(A^{-1}\right)=\varphi_{q}\left(A A^{-1}\right)=\varphi_{q}\left(\mathbf{1}_{q}\right)=\mathbf{1}_{q} .
\]

Hence also \(\varphi_{q}(A)\) is invertible. Furthermore \(\operatorname{Det} \varphi_{q}(A)=\varphi(\operatorname{Det} A)\), so we have a commutative diagram


Applying this to \(R=\mathbb{Z}\) we use the residue class homomorphisms \(\mathbb{Z} \longrightarrow \mathbb{F}_{p}(p\) prime) for sufficiently many primes \(p\) such that the product of these primes is \(>\operatorname{Det} A\). Then we calculate
- Det \(A \bmod p\) in all the fields \(\mathbb{F}_{p}\) (avoiding huge numbers, since all intermediate results may be represented as numbers between 0 and \(p-1\) ),
- Det \(A \in \mathbb{Z}\) using the Chinese Remainder Theorem.

\subsection*{9.2 Elimination over the Integers}

How to solve systems of linear equations over the ring \(\mathbb{Z}\) of integers? How to calculate determinants efficiently? How to find an inverse matrix? Like in linear algebra over fields also in the more general situation over rings the triangularization of matrices is crucial for finding efficient algorithms.

For a sufficiently general framework we consider three classes of rings (commutative, with 1, without zero divisors):
- Factorial rings (or UFD domains): All elements have a decomposition into primes, in particular any two elements have a greatest common divisor gcd (in general not unique).
- Principal ideal domains: Each ideal is a principal ideal. Principal ideal domains are factorial, and the gcd of any two elements is a linear combination of these two.
- Euclidean rings: They have a division with remainder. Euclidean rings are principal ideal domains. The gcd of two elements as well as its linear represenation can be efficiently calculated by the extended Euclidean algorithm.

The set of invertible matrices with determinant 1 over a ring is called the "special linear group" \(S L_{n}(R) \subseteq G L_{n}(R)\). It is the kernel of the determinant homomorphism on \(G L_{n}(R)\).

Lemma 9 Let \(R\) be a principal ideal domain, \(a_{1}, \ldots, a_{n} \in R\), and \(d\) a \(\operatorname{gcd}\left(a_{1}, \ldots, a_{n}\right)\). Then there is an invertible matrix \(U \in S L_{n}(R)\) such that
\[
U\left(\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right)=\left(\begin{array}{c}
d \\
0 \\
\vdots \\
0
\end{array}\right)
\]

Proof. Since the case \(n=1\) is trivial we may assume \(n \geq 2\).
If all \(a_{i}=0\), then the assertion is trivial. Otherwise we may assume without restriction that \(a_{1} \neq 0\) (after a permutation that is merged into \(U\) as permutation matrix - if necessary replace a 1 by -1 to make the determinant \(=1\) ).

Let \(d_{2}:=\operatorname{gcd}\left(a_{1}, a_{2}\right)\) (any gcd because in general this is not unique). Then \(d_{2} \neq 0\) and \(d_{2}=c_{1} a_{1}+c_{2} a_{2}\) is a linear combination. From this we get the equation
\[
\left(\begin{array}{cc}
c_{1} & c_{2} \\
-\frac{a_{2}}{d_{2}} & \frac{a_{1}}{d_{2}}
\end{array}\right)\binom{a_{1}}{a_{2}}=\binom{c_{1} a_{1}+c_{2} a_{2}}{-\frac{a_{2} a_{1}}{d_{2}}+\frac{a_{1} a_{2}}{d_{2}}}=\binom{d_{2}}{0}
\]
where the matrix of coefficients
\[
C=\left(\begin{array}{cc}
c_{1} & c_{2} \\
-\frac{a_{2}}{d_{2}} & \frac{a_{1}}{d_{2}}
\end{array}\right) \quad \text { has } \operatorname{Det} C=\frac{c_{1} a_{1}}{d_{2}}+\frac{c_{2} a_{2}}{d_{2}}=1
\]
and therefore is invertible.
We proceed be induction: Assume for the general step that for some \(i \geq 2\)
\[
U^{\prime}\left(\begin{array}{c}
a_{1} \\
\vdots \\
a_{n}
\end{array}\right)=\left(\begin{array}{c}
d^{\prime} \\
0 \\
\vdots \\
0 \\
a_{i} \\
\vdots \\
a_{n}
\end{array}\right) \quad \text { where } a_{i} \neq 0
\]

Then as before we change two coordinates:
\[
\binom{d^{\prime}}{a_{i}} \leadsto\binom{d^{\prime \prime}}{0} .
\]

In this way we successively build the matrix \(U\).

Remark The inverse of the matrix \(C\) in the proof is
\[
C^{-1}=\left(\begin{array}{cc}
\frac{a_{1}}{d_{2}} & -c_{2} \\
\frac{a_{2}}{d_{2}} & c_{1}
\end{array}\right)
\]

From this formula we see that \(U\) and \(U^{-1}\) together can be calculated by at most \(n-1\) executions of the Euclidean algorithm, plus \(n-1\) multiplications of \(n \times n\)-matrices plus at most \(n-1\) multiplications of permutation matrices.

With the help of this lemma we can triangularise matrices. (A more refined analysis would lead to the Hermitean normal form.)

Theorem 13 (i) Let \(R\) be a principal ideal domain, and \(A \in M_{p q}(R)\). Then there exists an invertible matrix \(U \in S L_{p}(R)\) such that \(H=U A\) has the form
\[
\left(\begin{array}{ccc}
* & \ldots & * \\
& \ddots & \vdots \\
& & *
\end{array}\right) \quad \text { für } p \geq q, \quad\left(\begin{array}{cccc}
* & \ldots & \ldots & * \\
& \ddots & \ldots & \\
0 & & *
\end{array}\right) \quad \text { für } p<q .
\]
(ii) If \(R\) is Euclidean, then \(U\) and \(U^{-1}\) together can be calculated by at most \(\frac{p(p-1)}{2}\) executions of the extended Euclidean algorithm.

Special case Let \(A \in M_{p p}(R)\) be a square matrix, and determine \(H=U A\) as in the Theorem. Then
\[
\operatorname{Det} A=\operatorname{Det} H=h_{11} \cdots h_{p p} .
\]

If \(A\) is invertible, then \(A^{-1}=\left(U^{-1} H\right)^{-1}=H^{-1} U\). The calculation of the inverse \(H^{-1}\) of the triangular matrix \(H\) is easy. Thus calculation of determinant and inverse are reduced to triangularisation.

Proof. We prove this by describing an algorithm. Let \(r:=\min \{p, q\}\). Initialize the algorithm by
\[
H:=A, \quad U:=\mathbf{1}_{p}, \quad V:=\mathbf{1}_{p} .
\]

Then loop over \(j=1, \ldots r\). The relations \(U A=H, U V=\mathbf{1}_{p}\) are loop invariants.
- Assume that at the beginning of the \(j\)-th step \(H\) has the form:
\[
\left(\begin{array}{ccccc}
* & & & & \\
& \ddots & & & * \\
& & * & & \\
& & & h_{j j} & \\
& 0 & & \vdots & \\
& & & h_{p j} &
\end{array}\right)
\]

If \(h_{j j}=\ldots=h_{p j}=0\) we finish step \(j\). Otherwise we use the lemma and find a matrix \(U^{\prime} \in S L_{p-j+1}(R)\) together with its inverse \(\left(U^{\prime}\right)^{-1}\) such that
\[
U^{\prime}\left(\begin{array}{c}
h_{j j} \\
\cdots \\
h_{p j}
\end{array}\right)=\left(\begin{array}{c}
d_{j} \\
0 \\
\ldots \\
0
\end{array}\right)
\]

We have \(\left(\begin{array}{cc}1 & 0 \\ 0 & U^{\prime}\end{array}\right) \in S L_{p}(R)\). At the end of the loop we replace
\[
U:=\left(\begin{array}{cc}
1 & 0 \\
0 & U^{\prime}
\end{array}\right) U, \quad H:=\left(\begin{array}{cc}
1 & 0 \\
0 & U^{\prime}
\end{array}\right) H, \quad V:=V\left(\begin{array}{cc}
1 & 0 \\
0 & \left(U^{\prime}\right)^{-1}
\end{array}\right) .
\]

After finishing the last loop \(U\) and \(H\) have the desired form.
Summarizing the expenses we have to add \(\frac{p(p-1)}{2}\) matrix multiplications and the same number of multiplications by permutation matrices. However the total expenses are not yet covered because bounds for the intermediate results are yet missing. More exact considerations give expenses of the order \(\mathrm{O}\left(m^{2} n^{5}\right)\) where \(m\) is an upper bound for the number of digits of the entries of \(A\) and \(n=\max (p, q)\). For further optimizations of this bound search the literature on algebraic algorithms.

\section*{Elimination in Residue Class Rings}

Now how to invert a matrix \(A \in G L_{q}(\mathbb{Z} / n \mathbb{Z})\) ? First interpret \(A\) as an integer matrix and determine \(U \in S L_{q}(\mathbb{Z})\) such that \(H=U A\) is an integer upper triangular matrix as in Theorem 13. Reduction \(\bmod n\) conserves the equation \(H=U A\) as well as \(A^{-1}=H^{-1} U\). Since \(A \bmod n\) is invertible all diagonal elements of \(H\) are invertible \(\bmod n\).

\subsection*{9.3 The Linear Cipher}

\section*{Description}

The alphabet is \(\Sigma=\mathbb{Z} / n \mathbb{Z}\) with the structure as a finite ring.

The keyspace is \(K=G L_{l}(\mathbb{Z} / n \mathbb{Z})\), the multiplicative group of invertible matrices. Section 9.4 estimates the size of the keyspace.

We encrypt blockwise taking blocks of length \(l:\) For \(k \in G L_{l}(\mathbb{Z} / n \mathbb{Z})\) and \(\left(a_{1}, \ldots, a_{l}\right) \in(\mathbb{Z} / n \mathbb{Z})^{l}\) set
\[
\left(\begin{array}{c}
c_{1} \\
\vdots \\
c_{l}
\end{array}\right)=f_{k}\left(a_{1}, \ldots, a_{l}\right)=k \cdot\left(\begin{array}{c}
a_{1} \\
\vdots \\
a_{l}
\end{array}\right)
\]
or elementwise
\[
c_{i}=\sum_{j=1}^{l} k_{i j} a_{j} \quad \text { für } i=1, \ldots, l .
\]

We decrypt with the inverse matrix:
\[
\left(\begin{array}{c}
a_{1} \\
\vdots \\
a_{l}
\end{array}\right)=k^{-1} \cdot\left(\begin{array}{c}
c_{1} \\
\vdots \\
c_{l}
\end{array}\right) .
\]

\section*{Related Ciphers}

Special case: Taking \(k\) as permutation matrix \(P_{\sigma}\) for a permutation \(\sigma \in \mathcal{S}_{l}\) the encryption function \(f_{k}\) is the block transposition defined by \(\sigma\).

Generalization: The affine cipher. Choose as key a pair
\[
(k, b) \in G L_{l}(\mathbb{Z} / n \mathbb{Z}) \times(\mathbb{Z} / n \mathbb{Z})^{l} .
\]

Encrypt by the formula
\[
c=k a+b .
\]

Choosing the unit matrix for \(k\) (as special case) gives the Bellaso cipher with key \(b\).
Remark The original cipher proposed by Hill first permuted the alphabet before applying the linear map. The correspondence between the letters and the numbers \(0, \ldots, 25\) is treated as part of the key.

\section*{Example}

As an illustration we take a "toy example" of unreasonable small dimension \(l=2\) and
\[
k=\left(\begin{array}{cc}
11 & 8 \\
3 & 7
\end{array}\right)
\]

Then Det \(k=77-24=53 \equiv 1 \bmod 26\) and
\[
k^{-1}=\left(\begin{array}{cc}
7 & 18 \\
23 & 11
\end{array}\right) .
\]

The table
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline A & B & C & D & E & F & G & H & I & J & K & L & M \\
\hline 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline \hline N & O & P & Q & R & S & T & U & V & W & X & Y & Z \\
\hline 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 & 25 \\
\hline
\end{tabular}
gives the correspondence between letters and numbers.
Now the plaintext Herr \(=(7,4,17,17)\) is encrypted as
\[
\begin{aligned}
\left(\begin{array}{cc}
11 & 8 \\
3 & 7
\end{array}\right)\binom{7}{4} & =\binom{77+32}{21+28}=\binom{109}{49}=\binom{5}{23}, \\
\left(\begin{array}{cc}
11 & 8 \\
3 & 7
\end{array}\right)\binom{17}{17} & =\binom{187+136}{51+119}=\binom{323}{170}=\binom{11}{14} .
\end{aligned}
\]

Thus \(f_{k}(\) Herr \()=(5,23,11,14)=\) FXLO.
We verify this by decrypting:
\[
\left(\begin{array}{cc}
7 & 18 \\
23 & 11
\end{array}\right)\left(\begin{array}{cc}
5 & 11 \\
23 & 14
\end{array}\right)=\left(\begin{array}{cc}
35+414 & 77+252 \\
115+253 & 253+154
\end{array}\right)=\left(\begin{array}{cc}
7 & 17 \\
4 & 17
\end{array}\right) .
\]

\section*{Assessment}
+ The linear cipher is stronger than block transposition and Bellaso cipher.
+ The frequency distribution of the ciphertext letters is nearly uniform. An attack with ciphertext only doesn't find useful clues.
- The linear cipher is extremely vulnerable for an attack with known plaintext, see Section 9.5 .

\subsection*{9.4 The Number of Invertible Matrices over a Residue Class Ring}

We want as clearly as possible to get an idea how large the number
\[
\nu_{l n}:=\# G L_{l}(\mathbb{Z} / n \mathbb{Z})
\]
of invertible \(l \times l\) matrices over the residue class ring \(\mathbb{Z} / n \mathbb{Z}\) is.
In the special case \(l=1\) the number \(\nu_{1 n}\) simply counts the invertible elements of \(\mathbb{Z} / n \mathbb{Z}\) and is given as the value \(\varphi(n)\) of the Euler \(\varphi\)-function.

In the general case we easily find a trivial upper bound for \(\nu_{l n}\) :
\[
\nu_{l n} \leq \# M_{l l}(\mathbb{Z} / n \mathbb{Z})=n^{l^{2}}
\]

To find a lower bound we note that (over any ring \(R\) ) matrices of the form
\[
\left(\begin{array}{lll}
1 & & \\
& \ddots & \\
* & & 1
\end{array}\right)\left(\begin{array}{lll}
d_{1} & & \\
& \ddots & \\
& & d_{l}
\end{array}\right)\left(\begin{array}{lll}
1 & & * \\
& \ddots & \\
& & 1
\end{array}\right)
\]
are always invertible if \(d_{1}, \ldots, d_{l} \in R^{\times}\). This gives an injective map
\[
R^{\frac{l(l-1)}{2}} \times\left(R^{\times}\right)^{l} \times R^{\frac{l(l-1)}{2}} \longrightarrow G L_{l}(R) .
\]
(Proof of injectivity: Exercise.) This gives the bound
\[
\nu_{l n} \geq n^{\frac{l(l-1)}{2}} \cdot \varphi(n)^{l} \cdot n^{\frac{l(l-1)}{2}}=n^{l^{2}-l} \cdot \varphi(n)^{l} .
\]

Taken together this yields:

\section*{Proposition 8}
\[
n^{l^{2}-l} \cdot \varphi(n)^{l} \leq \nu_{l n} \leq n^{l^{2}} .
\]

\section*{Remarks}
1. The idea of writing matrices as \(A=V D W\) as above -where \(D\) is a diagonal matrix, \(V\), a lower triangular matrix with only 1 's in the diagonal, and \(W\), an upper triangular matrix likewise with only 1's in the diagonal-gives an easy way of constructing invertible matrices without resorting to trial and error and calculating determinants. This method gives "almost all" invertible matrices-in the theory of algebraic groups this is the "big Bruhat cell". Matrices of this type can be easily inverted by the formula \(A^{-1}=W^{-1} D^{-1} V^{-1}\).
2. Two lower bounds for the \(\varphi\)-function that we cite without proofs yield handy bounds for \(\nu_{l n}\). The first of these bounds is
\[
\varphi(n)>\frac{6}{\pi^{2}} \cdot \frac{n}{\ln n} \quad \text { for } n \geq 7
\]

This yields
\[
\nu_{l n}>n^{l^{2}-l} \cdot\left(\frac{6}{\pi^{2}} \cdot \frac{n}{\ln n}\right)^{l}=\frac{6^{l}}{\pi^{2 l}} \cdot \frac{n^{l^{2}}}{(\ln n)^{l}} \quad \text { for } n \geq 7 .
\]
3. The other bound is
\[
\varphi(n)>\frac{n}{2 \cdot \ln \ln n} \quad \text { for almost all } n
\]

This yields
\[
\nu_{l n}>\frac{1}{(2 \cdot \ln \ln n)^{l}} \cdot n^{l^{2}}
\]
or
\[
\frac{1}{(2 \cdot \ln \ln n)^{l}}<\frac{\nu_{l n}}{n^{l^{2}}}<1
\]
for almost all \(n\).
Conclusion "Very many" to "almost all" matrices in \(M_{l l}(\mathbb{Z} / n \mathbb{Z})\) are invertible. But also note that asymptotically the quotient \(\nu_{l n} / n^{l^{2}}\) is not bounded away from 0 .

Example For \(n=26\) we give a coarser but very simple version of the lower bound from Proposition 8: From \(\varphi(26)=12\) we get
\[
\nu_{l, 26} \geq 26^{l^{2}-l} 12^{l}>16^{l^{2}-l} 8^{l}=2^{4 l^{2}-l} .
\]

This gives the bounds \(\nu_{2,26}>2^{14}, \nu_{3,26}>2^{33}, \nu_{4,26}>2^{60}, \nu_{5,26}>2^{95}\). We conclude that the linear cipher is secure from exhaustion at least for block size 5 .

Finally we derive an exact formula for \(\nu_{l n}\).
Lemma 10 Let \(n=p\) prime. Then
\[
\nu_{l p}=p^{l^{2}} \cdot \rho_{l p} \quad \text { where } \quad \rho_{l p}=\prod_{i=1}^{l}\left(1-\frac{1}{p^{i}}\right) .
\]

In particular for fixed \(l\) the relative frequency of invertible matrices, \(\rho_{l p}\), converges to 1 with increasing \(p\).

Proof. We successively build an invertible matrix column by column and count the possibilities for each column. Since \(\mathbb{Z} / p \mathbb{Z}=\mathbb{F}_{p}\) is a field the first column is an arbitrary vector \(\neq 0\). This makes \(p^{l}-1\) choices.

Assume we have already chosen \(i\) columns. These must be linearly independent hence span a linear subspace of \(\mathbb{F}_{p}^{l}\). This subspace consists of \(p^{i}\) elements. The \((i+1)\)-th column then is an arbitrary vector outside of this subspace for which we have \(p^{l}-p^{i}\) choices. Summing up this yields
\[
\prod_{i=0}^{l-1}\left(p^{l}-p^{i}\right)=\prod_{i=0}^{l-1} p^{l}\left(1-p^{i-l}\right)=p^{l^{2}} \prod_{j=1}^{l}\left(1-\frac{1}{p^{j}}\right)
\]
choices. \(\diamond\)

Lemma 11 Let \(n=p^{e}\) with \(p\) prime and \(e \geq 1\).
(i) Let \(A \in M_{l l}(\mathbb{Z})\). Then \(A \bmod n\) is invertible in \(M_{l l}(\mathbb{Z} / n \mathbb{Z})\) if and only if \(A \bmod p\) is invertible in \(M_{l l}\left(\mathbb{F}_{p}\right)\).
(ii) The number of invertible matrices in \(M_{l l}(\mathbb{Z} / n \mathbb{Z})\) is
\[
\nu_{l n}=n^{l^{2}} \cdot \rho_{l p} .
\]
(iii) The relative frequency of invertible matrices in \(M_{l l}\left(\mathbb{Z} / p^{e} \mathbb{Z}\right)\) is \(\rho_{l p}\), independent of the exponent \(e\).

Proof. (i) Since \(\operatorname{gcd}(p, \operatorname{Det} A)=1 \Longleftrightarrow \operatorname{gcd}(n, \operatorname{Det} A)=1\), both statements are equivalent with \(p \nmid \operatorname{Det} A\).
(ii) Without restriction we may assume that \(A\) has all its entries in \([0 \ldots n-1]\). Then we write \(A=p Q+R\) where all entries of \(R\) are in \([0 \ldots p-1]\) and all entries of \(Q\) are in \(\left[0 \ldots p^{e-1}-1\right]\). The matrix \(A \bmod n\) is invertible if and only if \(R \bmod p\) is invertible. For \(R\) we have \(\nu_{l p}\) choices by Lemma 10, and for \(Q\) we have \(p^{(e-1) l^{2}}\) choices. Taken together this proves the claim.
(iii) is a direct consequence of (ii).

Lemma 12 For \(m\) and \(n\) coprime \(\nu_{l, m n}=\nu_{l m} \nu_{l n}\).
Proof. The Chinese Remainder Theorem gives a ring isomorphism
\[
\mathbb{Z} / m n \mathbb{Z} \longrightarrow \mathbb{Z} / m \mathbb{Z} \times \mathbb{Z} / n \mathbb{Z}
\]
and extends to an isomorphism of the (non-commutative) rings
\[
M_{l l}(\mathbb{Z} / m n \mathbb{Z}) \longrightarrow M_{l l}(\mathbb{Z} / m \mathbb{Z}) \times M_{l l}(\mathbb{Z} / n \mathbb{Z}) .
\]

The assertion follows from the equality of the numbers of invertible elements. \(\diamond\)

Induction immediately yields:
Theorem 14 For \(n \in \mathbb{N}\)
\[
\nu_{l n}=n^{l^{2}} \cdot \prod_{\substack{p \text { prime } \\ p \mid n}} \rho_{l p} .
\]

In particular the relative frequency of invertible matrices \(\rho_{l n}=\nu_{l n} / n^{l^{2}}\) is independent from the exponents of the prime factors of \(n\). The explicit formula is
\[
\rho_{l n}=\prod_{\substack{p \text { prime } \\ p \mid n}} \rho_{l p}=\prod_{\substack{p \text { prime } \\ p \mid n}} \prod_{i=1}^{l}\left(1-\frac{1}{p^{i}}\right) .
\]

Example For \(n=26\) the explicit formula is
\[
\nu_{l, 26}=26^{2^{2}} \cdot \prod_{i=1}^{l}\left(1-\frac{1}{2^{i}}\right)\left(1-\frac{1}{13^{i}}\right)
\]

This evaluates as \(\nu_{1,26}=12, \nu_{2,26}=157,248, \nu_{3,26}=\) \(1,634,038,189,056 \approx 1.5 \cdot 2^{40}\). Comparing this value of \(\nu_{3,26}\) with the lower bound \(2^{33}\) from above shows how coarse this bound is. For \(l=4\) we even get \(\nu_{4,26} \approx 1.3 \cdot 2^{73}\), almost secure from exhaustion.

Exercise Let \(p_{1}=2, p_{2}=3, p_{3}=5, \ldots\) the increasing sequence of the primes. Let \(n_{r}=p_{1} \cdots p_{r}\) for \(r \geq 1\). Show that for fixed \(l\)
\[
\lim _{r \rightarrow \infty} \rho_{l n_{r}}=0
\]

This means that the relative frequency of invertible matrices is decreasing for this sequence of moduli. Hint: Let \(\zeta\) be the Riemann \(\zeta\)-function. Which values has \(\zeta\) at the natural numbers \(i \geq 1\) ?

\subsection*{9.5 Cryptanalysis of the Linear Cipher}

\section*{Block Length}

The block length \(l\) leaves its trace as a divisor of the ciphertext length. If however the sender conceals the procedure by padding with meaningless text the cryptanalyst has no choice than to try all possible lengths by brute force.

\section*{Known Plaintext}

Cryptanalyzing the linear cipher needs known plaintext-or some probable plaintext and a bit of trial and error to find the correct position. If the cryptanalyst knows the block length \(l\) and has \(l\) blocks of known plaintext she only has to solve a system of linear equations. This amounts to known plaintext of \(l^{2}\) letters, corresponding to the length of the key. In a few degenerate cases she needs some additional known plaintext.

Let \(\left(a_{11}, \ldots, a_{l 1}\right), \ldots,\left(a_{1 l}, \ldots, a_{l l}\right)\) be the blocks of known plaintext, not necessarily contiguous, and \(\left(c_{11}, \ldots, c_{l 1}\right), \ldots,\left(c_{1 l}, \ldots, c_{l l}\right)\), the corresponding ciphertext blocks.

This yields the matrix equation
\[
\left(\begin{array}{ccc}
k_{11} & \ldots & k_{1 l} \\
\vdots & \ddots & \vdots \\
k_{l 1} & \ldots & k_{l l}
\end{array}\right)\left(\begin{array}{ccc}
a_{11} & \ldots & a_{1 l} \\
\vdots & \ddots & \vdots \\
a_{l 1} & \ldots & a_{l l}
\end{array}\right)=\left(\begin{array}{ccc}
c_{11} & \ldots & c_{1 l} \\
\vdots & \ddots & \vdots \\
c_{l 1} & \ldots & c_{l l}
\end{array}\right)
\]
in short: \(k A=C\) in \(M_{l l}(\mathbb{Z} / n \mathbb{Z})\). Note that the lowercase letter \(k\) also denotes an \(l \times l\)-matrix. In the lucky (but common) case where \(A\) is invertible we immediately solve for \(k\) and get the key
\[
k=C A^{-1} .
\]

Inverting a matrix is efficient by Section 9.2. Furthermore with high probability \(A\) is invertible, see Section 9.4 . Otherwise the cryptanalyst needs some more plaintext. Instead of explicating the solution in detail we consider an example.

\section*{Example}

Imagine the example of Section 9.3 is part of a longer text, and the plaintext Herr is known as well as its location. It consists of two blocks and defines the matrix
\[
A=\left(\begin{array}{ll}
7 & 17 \\
4 & 17
\end{array}\right) .
\]

The determinant is \(\operatorname{Det} A=17 \cdot(7 \cdot 1-4 \cdot 1)=17 \cdot 3=51 \equiv-1 \bmod 26\). The cryptanalyst has luck. She immediately calculates the inverse:
\[
A^{-1}=\left(\begin{array}{ll}
9 & 17 \\
4 & 19
\end{array}\right)
\]

From this she gets the key matrix:
\[
k=\left(\begin{array}{cc}
5 & 11 \\
23 & 14
\end{array}\right)\left(\begin{array}{ll}
9 & 17 \\
4 & 19
\end{array}\right)=\left(\begin{array}{cc}
11 & 8 \\
3 & 7
\end{array}\right) .
\]

\section*{Solving the Affine Cipher}

For solving the affine cipher \(c=k a+b\) the cryptanalyst in general needs \(l+1\) blocks of known plaintext \(a_{0}, \ldots, a_{l}\). By forming differences she gets
\[
\begin{aligned}
c_{l}-c_{0} & =k \cdot\left(a_{l}-a_{0}\right), \\
& \cdots \\
c_{l}-c_{l-1} & =k \cdot\left(a_{l}-a_{l-1}\right) .
\end{aligned}
\]

This reduces the cryptanalysis to that of the linear cipher with \(l\) known plaintext blocks.

\section*{Summary}

Linearity makes a cipher extremely vulnerable for a known plaintext attack. The reason is that systems of linear equations are easily solved, at least over rings that allow practical calculations. (This however is a basic prerequisite for a ring to be useful for cryptography.)

In constructing secure ciphers on wants to prevent known plaintext attacks. Therefore one has to bring in nonlinearity: Solving algebraic equation of higher degree is much more complex. Hence the memento:

Known plaintext is adversary to linearity.
Exercise. Hill's proposal comprised a permutation of the alphabet before applying the linear map. That means executing a monoalphabetic substitution first. Explore the effect on cryptanalysis.

\section*{Chapter 10}

\section*{Theoretical Security}

The theory of this section goes back to Claude Shannon 22] (with later simplifications by Hellman [11]). In his paper Shannon developed the first general mathematical model of cryptology as well as the analysis of cryptosystems by information theoretical methods. The basic question this theory asks is:

How much information about the plaintext is preserved in the ciphertext?
(no matter how difficult or expensive the extraction of this information is.) If this information doesn't suffice to determine the plaintext, then the cipher is secure.

Shannon's ideas are based on the information theory that he had developed before [21].

The practical value of Shannon's theory is limited. But besides it there are almost no sufficient criteria for the security of cryptographic methods that are mathematically proved. In contrast there are lots of necessary criteria derived from cryptanalytic procedures. Lacking better ideas one tries to optimize the cryptographic procedures for these necessary conditions. We saw and shall see many instances of this in these lecture notes.

\subsection*{10.1 A Priori and A Posteriori Probabilities}

\section*{Model Scenario}

Consider
- a finite set \(M_{0} \subseteq M\) of possible plaintexts-for example all plaintexts of length \(r\) or of length \(\leq r\),
- a finite set \(K\) of keys,
- a cipher \(F=\left(f_{k}\right)_{k \in K}\) with \(f_{k}: M \longrightarrow \Sigma^{*}\).

The restriction to a finite set \(M_{0}\) allows us to handle probabilities in the naive way. It is no real restriction since plaintexts of lengths \(>10^{100}\) are extremely unlikely in this universe that has at most \(10^{80}\) elementary particles.

\section*{Motivating Example}

For English plaintexts of length 5 we potentially know exact a priori probabilities, say from a lot of countings. A small excerpt from the list is
\begin{tabular}{|l|l|}
\hline Plaintext & Probability \\
\hline hello & \(p>0\) \\
fruit & \(q>0\) \\
xykph & 0 \\
\(\ldots\) & \(\ldots\) \\
\hline
\end{tabular}

Now assume we see a monoalphabetically encrypted English text XTJJA. Without knowing the key-that is in a situation where all keys have the same probability-and without further context information we nevertheless assign to the single plaintexts different "a posteriori probabilities":
\begin{tabular}{|l|l|}
\hline Plaintext & Probability \\
\hline hello & \(p_{1} \gg p\) \\
fruit & 0 \\
xykph & 0 \\
\(\ldots\) & \(\ldots\) \\
\hline
\end{tabular}

Thus knowledge of the ciphertext alone (and knowledge of the encryption method) changed our information on the plaintext.

A "Bayesian" approach gives a general model of this observation.

\section*{Model}

The probability of plaintexts is given as a function
\[
\begin{array}{cc}
P: M_{0} \longrightarrow[0,1] & \text { where } \\
& P(a)>0 \text { for all } a \in M_{0} \\
\text { and } & \sum_{a \in M_{0}} P(a)=1 .
\end{array}
\]
(This is the a priori probability of plaintexts.)
The probability of keys is likewise given as a function
\[
P: K \longrightarrow[0,1] \quad \text { such that } \sum_{k \in K} P(k)=1 .
\]
(By abuse of notation denoted by the same letter \(P\).) In general we assume a uniform distribution \(P(k)=1 / \# K\) for all \(k \in K\).

The probability of ciphertexts derives from the probabilities of plaintexts and keys, implicitly assumed as independently chosen:
\[
P: \Sigma^{*} \longrightarrow[0,1], \quad P(c):=\sum_{a \in M_{0}} \sum_{k \in K_{a c}} P(a) \cdot P(k),
\]
where \(K_{a c}:=\left\{k \in K \mid f_{k}(a)=c\right\}\) is the set of all keys that transform \(a\) to \(c\).

Remark 1 Only finitely many \(c \in \Sigma^{*}\) have \(P(c) \neq 0\). These form the set
\[
C_{0}:=\left\{c \in \Sigma^{*} \mid P(c)>0\right\}
\]
of "possible ciphertexts".
Remark 2 We have
\[
\begin{aligned}
\sum_{c \in \Sigma^{*}} P(c) & =\sum_{c \in \Sigma^{*}} \sum_{a \in M_{0}} \sum_{k \in K_{a c}} P(a) \cdot P(k) \\
& =\sum_{a \in M_{0}} \sum_{k \in K} P(a) \cdot P(k) \\
& =\sum_{a \in M_{0}} P(a) \cdot \sum_{k \in K} P(k) \\
& =1 .
\end{aligned}
\]

The conditional probability for a ciphertext to stem from a given plaintext \(a \in M_{0}\) is modeled by the function
\[
P(\bullet \mid a): \Sigma^{*} \longrightarrow[0,1], \quad P(c \mid a):=\sum_{k \in K_{a c}} P(k) .
\]

Remark \(3 \sum_{c \in \Sigma^{*}} P(c \mid a)=\sum_{k \in K} P(k)=1\).
Remark \(4 P(c)=\sum_{a \in M_{0}} P(a) \cdot P(c \mid a)\).

\section*{A Posteriori Probabilities of Plaintexts}

The cryptanalyst is interested in the converse, the conditional probability \(P(a \mid c)\) of a plaintext \(a \in M_{0}\) if the ciphertext \(c \in \Sigma^{*}\) is given.

First we describe the probability of the simultaneous occurrence of \(a\) and \(c\) as
\[
P: M_{0} \times \Sigma^{*} \longrightarrow[0,1], \quad P(a, c):=P(a) \cdot P(c \mid a) .
\]

Remark 5 Then
\[
\sum_{a \in M_{0}} P(a, c)=\sum_{a \in M_{0}} P(a) \cdot P(c \mid a)=P(c) .
\]

The conditional probability of a plaintext is given by a function \(P(\bullet \mid c)\) with \(P(a, c)=P(c) \cdot P(a \mid c)\) by the BAYESian formula
\[
P(a \mid c):= \begin{cases}\frac{P(a) \cdot P(c \mid a)}{P(c)} & \text { if } P(c) \neq 0 \\ 0 & \text { if } P(c)=0\end{cases}
\]

Remark \(6 \sum_{c \in \Sigma^{*}} P(c) \cdot P(a \mid c)=\sum_{c \in \Sigma^{*}} P(a) \cdot P(c \mid a)=P(a)\) by Remark 3.

\subsection*{10.2 Perfect Security}

Definition 1 The cipher \(F\) is called perfectly secure on \(M_{0}\) (the finite set of all possible plaintexts) if \(P(\bullet, c)=P\) on \(M_{0}\) for all ciphertexts \(c \in \Sigma^{*}\) of positive probability \(P(c)>0\).

Interpretation: This condition assures that the a posteriori probability \(P(a \mid c)\) of each plaintext \(a \in M_{0}\) is the same as the a priori probability \(P(a)\). Or in other words, the cryptanalyst doesn't get any additional information on the plaintext by knowing the ciphertext.

Lemma \(13 \# M_{0} \leq \# C_{0}\).
Proof. Let \(l \in K\) be a fixed key with \(P(l)>0\). For every ciphertext \(c \in\) \(f_{l}\left(M_{0}\right)\), say \(c=f_{l}(b)\), we then have
\[
P(c)=\sum_{a \in M_{0}} P(a) \cdot \sum_{k \in K_{a c}} P(k) \geq P(b) \cdot P(l)>0 .
\]

Hence \(c \in C_{0}\). From this follows that \(f_{l}\left(M_{0}\right) \subseteq C_{0}\). Since \(f_{l}\) is injective also \(\# M_{0} \leq \# C_{0}\).

Lemma 14 If \(F\) is perfectly secure, then \(K_{a c} \neq \emptyset\) for all \(a \in M_{0}\) and all \(c \in C_{0}\).

Proof. Assume \(K_{a c}=\emptyset\). Then
\[
P(c \mid a)=\sum_{k \in K_{a c}} P(k)=0 .
\]

Hence \(P(a \mid c)=0 \neq P(a)\), contradiction. \(\diamond\)
Therefore each possible plaintext can be transformed into each possible ciphertext. The next lemma says that the number of keys must be very large.

Lemma 15 If \(F\) is perfectly secure, then \(\# K \geq \# C_{0}\).

Proof. Since \(\sum P(a)=1\), we must have \(M_{0} \neq \emptyset\). Let \(a \in M_{0}\). Assume \(\# K<\# C_{0}\). Then there exists a \(c \in C_{0}\) with \(f_{k}(a) \neq c\) for every key \(k \in K\), whence \(K_{a c}=\emptyset\), contradiction.

Theorem 15 [Shannon] Let \(F\) be perfectly secure. Then
\[
\# K \geq \# M_{0}
\]

That is the number of keys is at least as large as the number of possible plaintexts.

Proof. This follows immediately from Lemmas 13 and 15 . \(\diamond\)

Theorem 16 [Shannon] Let \(F\) be a cipher with
\[
P(k)=\frac{1}{\# K} \quad \text { for all } k \in K
\]
(that is all keys have the same probability) and
\[
\# K_{a c}=s \quad \text { for all } a \in M_{0} \text { and all } c \in C_{0} .
\]
with a fixed \(s \geq 1\). Then \(F\) is perfectly secure. Furthermore \(\# K=s \cdot \# C_{0}\).
Proof. Let \(c \in C_{0}\) be a possible cipherext. Then for any possible plaintext \(a \in M_{0}\) :
\[
\begin{aligned}
P(c \mid a) & =\sum_{k \in K_{a c}} \frac{1}{\# K}=\frac{\# K_{a c}}{\# K}=\frac{s}{\# K}, \\
P(c) & =\sum_{a \in M_{0}} P(a) \cdot P(c \mid a)=\frac{s}{\# K} \cdot \sum_{a \in M_{0}} P(a)=\frac{s}{\# K}=P(c \mid a), \\
P(a \mid c) & =\frac{P(c \mid a)}{P(c)} \cdot P(a)=P(a) .
\end{aligned}
\]

Therefore \(F\) is perfectly secure. The second statement follows from
\[
K=\bigcup_{c \in C_{0}} K_{a c}
\]
for all \(a \in M_{0}\).

\subsection*{10.3 Examples of Perfect Security}

\section*{Trivial Examples}

Example 0: \(\# M_{0}=1\). This example is cryptological nonsense since the cryptanalyst knows the only possible plaintext a priori. Hence she cannot gain any additional information on the plaintext by knowing the ciphertext.
Let \(M_{0}=\{a\}\). For all \(c \in C_{0}\) trivially \(P(a \mid c)=1=P(a)\). Hence \(F\) is perfectly secure, no matter how it is defined.

Example 1: \(\# M_{0}=2\). The smallest nontrivial example involves two possible plaintexts. Without restriction we may assume that \(M_{0}=\{0,1\}=\) \(C_{0}=K\). Let \(f_{0}\) be the identity map on \(\{0,1\}\), and \(f_{1}\), the transposition of 0 and 1 . Furthermore let the two keys 0 and 1 have the same probability: \(P(0)=P(1)=\frac{1}{2}\).
Then \(K_{00}=K_{11}=\{0\}, K_{01}=K_{10}=\{1\}\). Theorem 16 tells us that \(F\) is perfectly secure.

\section*{The Shift Cipher}

We provide \(M_{0}=K=C_{0}\) with a group structure, and let \(F: M_{0} \times K \longrightarrow C_{0}\) be the group composition, hence \(f_{k}(a)=a * k\). The sets
\[
K_{a c}=\{k \in K \mid a * k=c\}=\left\{a^{-1} * c\right\}
\]
each consist of one element only. We let \(P(k)=\frac{1}{\# K}\) for all keys \(k \in K\). Then \(F\) is perfectly secure.

The Examples 0 and 1 are the special cases of the one- or two-element group. Also Examples 2 and 3 will be special cases.

Example 2: The Caesar Cipher. This is the shift cipher on the cyclic group \(\Sigma=\mathbb{Z} / n \mathbb{Z}\) of order \(n\).

Hence the Caesar cipher is perfecly secure, if we encrypt messages of length 1 only and randomly choose an independent new key for each message.

Example 3: The One-Time Pad. This is the collection of the shift ciphers on the groups \(\Sigma^{r}=M_{0}\) where \(\Sigma=\mathbb{Z} / n \mathbb{Z}\). Messages are texts of length \(r\), and keys are independently and randomly chosen letter sequences of the same length \(r\).
Because one has to choose a new key for each message this cipher has its name One-Time Pad. Imagine a tear-off calendar where each sheet contains a random letter. After use it is torn off and destroyed.
The One-Time Pad is the prototype of a perfect cipher.

The special case \(\Sigma=\{0,1\}\) gives the binary Vernam/Mauborgne cipher, that is the bitstram encryption with a completely random sequence of key bits.

Counterexample: The Monoalphabetic Substitution. Set \(M_{0}=\Sigma^{r}\) and \(K=\mathcal{S}(\Sigma)\). For \(r=5\) we saw already that
\[
P(\text { fruit } \mid \mathrm{XTJJA})=0<q=P(\text { fruit }) .
\]

Therefore the monoalphabetic substitution is not perfect (for \(r \geq 2\) and \(n \geq 2\) ). For \(r=1\) it is perfect by Theorem 16 (with \(s=(n-1)\) ).).

\subsection*{10.4 Density and Redundancy of a Language}

Shannon's theory provides an idea of an unbreakable cipher via the concept of perfection. Moreover it develops the concept of "unity distance" as a measure of the difference to perfection. This concept takes up the observation that the longer a ciphertext, the easier is its unique decryption.

We don't want to develop this theory in a mathematically precise way, but only give a rough impression. For a mathematiclly more ambitious approach see [14].

\section*{Unique Solution of the Shift Cipher}

Let the ciphertext FDHVDU be the beginning of a message that was encrypted using a CAESAR cipher. We solved it by exhaustion applying all possible 26 keys in order:
\begin{tabular}{|c|c|cccccc|}
\hline Key & Plaintext & \(t=1\) & \(t=2\) & \(t=3\) & \(t=4\) & \(t=5\) & \(t=6\) \\
\hline 0 & fdhvdu & + & & & & & \\
1 & ecguct & + & + & & & & \\
2 & dbftbs & + & & & & & \\
3 & caesar & + & + & + & + & + & + \\
4 & bzdrzq & + & & & & & \\
5 & aycqyp & + & + & & & & \\
6 & zxbpxo & + & & & & & \\
7 & ywaown & \(?\) & & & & & \\
8 & xvznvm & \(?\) & & & & & \\
9 & wuymul & + & + & & & & \\
10 & vtxltk & + & & & & & \\
11 & uswksj & + & + & \(?\) & & & \\
12 & trvjri & + & + & & & & \\
13 & squiqh & + & + & + & + & & \\
14 & rpthpg & + & & & & & \\
15 & qosgof & + & & & & & \\
16 & pnrfne & + & + & & & & \\
17 & omqemd & + & + & & & & \\
18 & nlpdlc & + & & & & & \\
19 & mkockb & + & & & & & \\
20 & ljnbja & + & & & & & \\
21 & kimaiz & + & + & + & \(?\) & \(?\) & \\
22 & jhlzhy & + & & & & & \\
23 & igkygx & + & + & & & & \\
24 & hfjxfw & + & & & & & \\
25 & geiwev & + & + & + & \(?\) & & \\
\hline
\end{tabular}

The flags in this table stand for:
- +: The assumed plaintext makes sense including the \(t\)-th letter.
- ?: The assumed plaintext could make sense including the \(t\)-th letter but with low probability.

Given the first five letters only one of the texts seems to make sense. We would call this value 5 the "unicity distance" of the cipher.

\section*{Mathematical Model}

Let us start again with an \(n\)-letter alphabet \(\Sigma\). The "information content" of a letter is \(\log _{2} n\), for we need \(\left\lceil\log _{2} n\right\rceil\) bits for a binary encoding of all of \(\Sigma\).

Example For \(n=26\) we have \(\log _{2} n \approx 4.7\). Thus we need 5 bits for encoding all letters differently. One such encoding is the teleprinter code.

Now let \(M \subseteq \Sigma^{*}\) be a language. Then \(M_{r}=M \cap \Sigma^{r}\) is the set of "meaningful" texts of length \(r\), and \(\Sigma^{r}-M_{r}\) is the set of "meaningless" texts. Denote the number of the former by
\[
t_{r}:=\# M_{r} .
\]

Then \(\log _{2} t_{r}\) is the "information content" of a text of length \(r\) or the entropy of \(M_{r}\). This is the number of bits we need for distinguishing the elements of \(M_{r}\) in a binary encoding.

Remark More generally the entropy is defined for a model that assigns the elements of \(M_{r}\) different probabilities. Here we implicitly content ourselves with using a uniform probability distribution.

We could consider the relative frequency of meaningful texts, \(t_{r} / n^{r}\), but instead we focus on the relative information content,
\[
\frac{\log _{2} t_{r}}{r \cdot \log _{2} n}:
\]

For an encoding of \(\Sigma^{r}\) we need \(r \cdot \log _{2} n\) bits, for an encoding of \(M_{r}\) only \(\log _{2} t_{r}\) bits. The relative information content is the factor by which we can "compress" the encoding of \(M_{r}\) compared with that of \(\Sigma^{r}\). The complimentary portion
\[
1-\frac{\log _{2} t_{r}}{r \cdot \log _{2} n}
\]
is "redundant".
Usually one relates these quantities to \(\log _{2} n\), the information content of a single letter, and defines:

Definition 2 (i) The quotient
\[
\rho_{r}(M):=\frac{\log _{2} t_{r}}{r}
\]
is called the \(r\)-th density, the difference \(\delta_{r}(M):=\log _{2} n-\rho_{r}(M)\) is called the \(r\)-th redundancy of the language \(M\).
(ii) If \(\rho(M):=\lim _{r \rightarrow \infty} \rho_{r}(M)\) exists, it is called the density of \(M\), and \(\delta(M):=\log _{2} n-\rho(M)\) is called the redundancy of \(M\).

\section*{Remarks}
1. Since \(0 \leq t_{r} \leq n^{r}\), we have \(\varlimsup \rho_{r}(M) \leq \log _{2} n\).
2. If \(M_{r} \neq \emptyset\), then \(t_{r} \geq 1\), hence \(\rho_{r}(M) \geq 0\). If \(M_{r} \neq \emptyset\) for almost all \(r\), then \(\underline{\lim } \rho_{r}(M) \geq 0\).
3. If \(\rho(M)\) exists, then \(t_{r} \approx 2^{r \rho(M)}\) for large \(r\).

For natural languages one knows from empirical observations that \(\rho_{r}(M)\) is (more or less) monotonically decreasing. Therefore density and redundancy exist. Furthermore \(t_{r} \geq 2^{r \rho(M)}\). Here are some empirical values (for \(n=26\) ):
\begin{tabular}{|c|c|c|}
\hline\(M\) & \(\rho(M) \approx\) & \(\delta(M) \approx\) \\
\hline English & 1.5 & 3.2 \\
German & 1.4 & 3.3 \\
\hline
\end{tabular}

The redundancy of English is \(\frac{3.2}{4.7} \approx 68 \%\) (but [3] says 78\%; also see [13). One expects that an English text (written in the 26 letter alphabet) can be compressed by this factor. The redundancy of German is about \(\frac{3.3}{4.7} \approx 70 \%\) [13.

\subsection*{10.5 Unicity Distance}

We now apply our findings on the redundancy to the exhaustion of the key space. We don't deal with the expenses but only consider the feasibility. We follow the simplified approach of Hellman.

\section*{Assumptions}
1. All meaningful texts of length \(r\) have the same probability. [Otherwise we get more complicated formulas. For natural languages this assumption is clearly false when \(r\) is small. However for large \(r\) we might hope that it follows from the usual stochastic conditions.]
2. The densitiy \(\rho(M)\) of the language \(M\) exists. [Otherwise we could derive only a bound.]
3. All keys \(k \in K\) have the same probability and they are \(h=\# K\) in number.
4. All encryption functions \(f_{k}\) for \(k \in K\) respect the lengths of the texts, or in other words \(f\left(M_{r}\right) \subseteq \Sigma^{r}\).

Now let \(c \in \Sigma^{r}\) be a ciphertext. In general-if all encryption functions \(f_{k}\) are different-it fits \(h\) possible plaintexts of length \(r\) in \(\Sigma^{r}\). By far not all of them are meaningful but only
\[
h \cdot \frac{t_{r}}{n^{r}} \approx \frac{h \cdot 2^{r \rho(M)}}{2^{r \cdot \log _{2} n}}=h \cdot 2^{-r \delta(M)} .
\]

We expect a unique solution in \(M_{r}\) if
\[
h \cdot 2^{-r \delta(M)} \leq 1, \quad \log _{2} h-r \delta(M) \leq 0, \quad r \geq \frac{\log _{2} h}{\delta(M)},
\]
at least if all encryption functions \(f_{k}\) are different; otherwise we should replace \(\log _{2} h\) with \(d=d(F)\), the effective key length of the cipher \(F\).

This motivates the following definition:
Definition 3. For a cipher \(F\) with effective key length \(d(F)\) defined on a language \(M\) of redundancy \(\delta(M)\) we call
\[
\mathrm{UD}(F):=\frac{d(F)}{\delta(M)}
\]
the unicity distance.

\section*{Examples}

We always assume the alphabet \(\Sigma=\{\mathrm{A}, \ldots, \mathrm{Z}\}\) with \(n=26\), and the language \(M=\) "English".
1. For the shift cipher we have \(d=\log _{2} 26, \mathrm{UD} \approx 4.7 / 3.2 \approx 1.5\), not about 5 as suspected in the introductory example. This deviation might be due to the many inexact steps in the derivation. In particular for small \(r\) the approximation \(t_{r} \approx 2^{r \rho(M)}\) is very inexact.
2. For the monoalphabetic substitution we have \(d \approx 88.4\), UD \(\approx\) \(88.4 / 3.2 \approx 27.6\). This result is in good concordance with empirical observations on the solvability of monoalphabetic cryptograms.
3. For the Trithemius-Bellaso cipher with period \(l\) we have \(d \approx 4.7 \cdot l\), \(\mathrm{UD} \approx 1.5 \cdot l\).
4. For Porta's disk cipher we have \(d \approx 88.4+4.7 \cdot l, \mathrm{UD} \approx 27.6+1.5 \cdot l\).

5 . For the general polyalphabetic substitution with period \(l\) and independent alphabets \(d \approx 122 \cdot l, \mathrm{UD} \approx 38 \cdot l\).
6. For the One-Time Pad over the group \(G=\Sigma\) we have \(M=K=\) \(C=\Sigma^{*}\), hence \(\# K=\infty\). However it makes sense to interpret \(d_{r} / \delta_{r}=\) \(r \cdot \log _{2} n / 0=\infty\) as unicity distance.

\subsection*{10.6 Cryptological Applications}

The unicity distance is a very coarse measure of the quality of a cipher. In modern cryptology it is almost never used. For an attack with known plaintext it is meaningless (except for perfect ciphers where it is \(\infty\) ).

A large unicity distance is achieved by:
- a large key space,
- lowering the redundancy of the plaintext language, for example by compression.

Application 1: Porta's disk cipher is not so much stronger than the Trithemius-Bellaso cipher because the unicity distance is greater only by the constant summand 27.6. For a longer period the complication by permuting the primary alphabet effects not much additional security.

Application 2: Another application of Shannon's theory is to running text encryption. The cryptanalysis must derive two meaningful plaintexts of total length \(2 r\) from a ciphertext of length \(r\). This can work only for a language of redundancy at least \(50 \%\).
More generally consider a \(q\)-fold running text encryption with \(q\) independent keytexts. If cryptanalysis is feasible, then meaningful plaintext of total length \((q+1) \cdot r\) is excavated from a ciphertext of length \(r\). We conclude that the redundancy of the language is at least \(\geq \frac{q}{q+1}\). Because the redundancy of German, \(70 \%\), is smaller than \(\frac{3}{4}\) we conclude that a triple running text encryption is secure. For English that has somewhat less redundancy even a double running text encryption seems to be secure.

Application 3: The unicity distance may serve as an indication for how much ciphertext corresponding to a single key may be known to the enemy without being of use. Or in other words: How often the key must change.

A general short summary of Shannon's theory consists of the rule: \(A\) necessary condition for the solvability of a cipher is that "information content of the ciphertext + redundancy of the plaintext language" \(\geq\) "information content of the plaintext + information content of the key".

\section*{Appendix A}

\section*{Permutations and Rejewski's Theorem}

\section*{A. 1 The Symmetric Group}

A permutation is a bijective map of a set \(M\) onto itself. The permutations of \(M\) form a group \(\mathcal{S}(M)\).

This group is (at least in discrete mathematics, including cryptologic applications) of particular interest when the set \(M\) is finite. In most applications the nature of the elements doesn't matter. (A more formal statement is: "A bijection between two sets \(M\) und \(N\) induces an isomorphism of the groups \(\mathcal{S}(M)\) und \(\mathcal{S}(N)\) ".) Therefore we often simply take the set \(\{1, \ldots, n\}\) of natural numbers as our set \(M\) and denote the group \(\mathcal{S}(M)\) by \(\mathcal{S}_{n}\). This group is called the symmetric group of order \(n\).

Proposition 1 The symmetric group of order \(n\) has \(n\) ! elements:
\[
\# \mathcal{S}_{n}=n!
\]

Proof. A permutation \(\pi\) is uniquely determined by its values at the arguments \(1, \ldots, n\). For \(\pi(1)\) we have \(n\) possibilities, for \(\pi(2)\) then \(n-1, \ldots\), for \(\pi(n-1)\) two and for \(\pi(n)\) only one. This makes a total of \(n!\). \(\diamond\)
(Note that the dots "..." are a sloppy version of a proof by complete induction. In the remainder of this text we write \(\pi x\) instead of \(\pi(x)\).)

\section*{A. 2 Description of Permutations}

Often a permutation \(\pi\) of the set \(\{1, \ldots, n\}\) is represented by its value table, written in two rows:
\[
\left(\begin{array}{cccc}
1 & 2 & \ldots & n \\
\pi 1 & \pi 2 & \ldots & \pi n
\end{array}\right)
\]

Of course this representation my also be used with other sets \(M\); for \(M=\) \(\{\mathrm{A}, \ldots, \mathrm{Z}\}\), the alphabet of classic cryptology, a permutation is the same as a monoalphabetic substitution \(\sigma\) and denoted in the form
\[
\left(\begin{array}{ccc}
A & \ldots & Z \\
\sigma A & \ldots & \sigma Z
\end{array}\right)
\]
(often without parantheses); below each letter we write its image under encryption.

Another description of a permutation \(\pi\) is the cycle representation. Let's illustrate this first with an example where \(n=5\) : The permutation
\[
\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
3 & 4 & 1 & 5 & 2
\end{array}\right)
\]
has a natural graphical representation:

and this graph is completely characterized by the arrangement
\[
(13)(245)
\]
of numbers. This means that each parenthesis defines a "cycle"-start with any element, write its image right of it, then the image thereof, and so on until you get back to the start. Then take any element that's not yet written down (if there is one) and do as before until all elements are met. Fixed points of the permutation yield cycles of length one. The general formula is
\[
\left(a_{1}, \pi a_{1}, \ldots, \pi^{k_{1}-1} a_{1}\right) \cdots\left(a_{i}, \pi a_{i}, \ldots, \pi^{k_{i}-1} a_{i}\right) \cdots
\]
where \(k_{i}\) is the smallest natural number \(\geq 1\) with \(\pi^{k_{i}} a_{i}=a_{i}\).
This consideration shows:
Proposition 2 Each permutation of a finite set has a decomposition into disjoint cycles. This representation is unique except for the order of the cycles and cyclic permutations of the elements inside the cycles.

\section*{A. 3 Group Theoretic Interpretation}

A cycle by itself represents a permutation: permute its elements in the written order in a cyclic way, and let all other elements of \(M\) fixed.

Example: The cycle (2 45 ) in \(\mathcal{S}_{5}\) corresponds to the permutation
\[
\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
1 & 4 & 3 & 5 & 2
\end{array}\right) \quad \text { or in cycle representation } \quad(1)(245)(3)
\]

The cycle \((i)\) in \(\mathcal{S}_{n}\) defines the identity map, no matter which \(i=1, \ldots, n\) we choose. If we identify cycles with the permutations they describe, we immediately get:

Lemma 1 Disjoint cycles commute as elements of the group \(\mathcal{S}_{n}\).
If we write the cycles of the cycle decomposition of a permutation next to each other, we just get the product of the corresponding permutations in \(\mathcal{S}_{n}\). Therefore we may express Proposition 2 in the following way:

Corollary 8 Each permutation is a product of disjoint cycles. This representation is unique except for the order of the factors.

\section*{A. 4 Partitions}

If \(r_{k}\) is the number of cycles of length \(k\) of a permutation \(\pi \in \mathcal{S}_{n}\), then we have
\[
n \cdot r_{n}+\cdots+1 \cdot r_{1}=n .
\]

Call a finite sequence \(\left[s_{1} s_{2} \ldots s_{m}\right.\) ] of natural numbers with \(s_{1} \geq \ldots \geq s_{m} \geq 1\) a partition of \(n\), if \(n=s_{1}+\cdots+s_{m}\). If we write down the cycle lengths of a permutation \(\pi \in \mathcal{S}_{n}\) ordered by magnitude - each length with the multiplicity with which it occurs - then we get a partition of \(n\). Call this the (cycle) type of \(\pi\).

Example: The cycle type of
\[
\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
3 & 4 & 1 & 5 & 2
\end{array}\right)=(13)(245)
\]
is
\[
\left[\begin{array}{ll}
3 & 2] .
\end{array}\right.
\]

We often visualise partitions by Young diagrams. Given a partition [ \(s_{1} s_{2} \ldots s_{m}\) ] of \(n\) we build the corresponding Young diagram in the following way: Take \(m\) rows and put \(s_{i}\) squares in row \(i\), left aligned. The partition [73321] of 16 has the diagram

(The defining condition of a Young diagram is that none of the rows is longer than the row above it.)

\section*{A. 5 Conjugate Permutations}

Given \(\pi, \rho \in \mathcal{S}_{n}\), how are the cycle representations of \(\pi\) and of the conjugate permutation \(\rho \pi \rho^{-1}\) connected? First we consider the case of a single cycle \(\pi\),
\[
\pi=\left(a_{1} \ldots a_{k}\right),
\]
hence \(\pi a_{i}=a_{1+(i \bmod k)}\) for \(i=1, \ldots, k\), all other elements being fixed by \(\pi\). Then, for \(b_{i}=\rho a_{i}\), we have
\[
\rho \pi \rho^{-1} b_{i}=\rho \pi a_{i}=\rho a_{1+(i \bmod k)}=b_{1+(i \bmod k)},
\]
hence
\[
\rho \pi \rho^{-1}=\left(b_{1} \ldots b_{k}\right) .
\]

Therefore also \(\rho \pi \rho^{-1}\) is a cycle of length \(k\).
Conjugating with \(\rho\) is an inner automorphism of the group \(\mathcal{S}_{n}\), that means \(\rho\left(\pi_{1} \pi_{2}\right) \rho^{-1}=\left(\rho \pi_{1} \rho^{-1}\right)\left(\rho \pi_{2} \rho^{-1}\right)\). Therefore in the general case we can conjugate the single cycles of \(\pi\) with \(\rho\) and get as a result the first part the following theorem:

Theorem 1 (i) Let \(\pi, \rho \in \mathcal{S}_{n}\) be two permutations. Then we get the cycle decomposition of the conjugate permutation \(\rho \pi \rho^{-1}\) from that of \(\pi\) by replacing each cycle \(\left(a_{1} \ldots a_{k}\right)\) of \(\pi\) with the cycle \(\left(\rho a_{1} \ldots \rho a_{k}\right)\).
(ii) Two permutations of a finite set are conjugated if and only if they have the same cycle type.

In other words: The conjugacy classes of the symmetric group \(\mathcal{S}_{n}\) are in a natural correspondence with the partitions of \(n\) resp. with the Young diagrams with exactly \(n\) squares.

Proof. We only have to show the inverse direction of statement (ii). To this end let \(\sigma, \tau \in \mathcal{S}_{n}\) be of the same cycle type. Write the cycle decompositions of \(\sigma\) and \(\tau\) below each other in such a way that cycles of the same length align; from this read off a permutation \(\rho\) with \(\rho \sigma \rho^{-1}=\tau\) : Simply map each element to the one below it.

This theorem, as simple as it is, is an essential ingredient to the cryptanalysis of the cipher machine Enigma, and therefore sometimes was called "the theorem that won world war II"; this is an obvious exaggeration, but with a certain confidence we may state that it helped in shortening the war in a significant way.

Exercise. Given \(\sigma, \tau \in \mathcal{S}_{n}\), describe all solutions \(\rho\) of \(\rho \sigma \rho^{-1}=\tau\). (For the case \(\tau=\sigma\) see the next section.)

\section*{A. 6 Centralizers of Permutations}

Theorem 1 provides an easy approach to determining the centralizer of a permutation. First let us consider a single cycle \(\pi=\left(a_{1} a_{2} \ldots a_{k}\right)\) of length \(2 \leq k \leq n\). Then \(\pi\) acts transitively on the subset \(A:=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}\) and fixes all elements of the complement \(\bar{A}=\{1, \ldots, n\}-A\). For \(\rho \in \mathcal{S}_{n}\) the conjugate \(\rho \pi \rho^{-1}\) is the cycle ( \(\rho a_{1} \ldots \rho a_{k}\) ) by Theorem 1. By definition \(\rho\) centralizes \(\pi\) if and only if \(\rho \pi \rho^{-1}=\pi\). Therefore for \(\rho \in C_{\mathcal{S}_{n}}(\pi)\), the centralizer of \(\pi\), we must have \(\rho a_{1}=a_{i}\) for some \(i\), and then \(\rho a_{2}=a_{i+1}\) and so on, reducing the indices mod \(n\) if necessary. That is, \(\rho\) acts on \(A\) as \(\pi^{i}\), and on \(\bar{A}\) as an arbitrary permutation. In the reverse direction each permutation with these properties centralizes \(\pi\). Let \(\mathcal{S}_{n}^{A} \leq \mathcal{S}_{n}\) be the subgroup of permutations that fix \(A\) elementwise. It is canonically isomorphic with \(\mathcal{S}_{n-k}\). Using this notation we may formulate the result of our considerations as:

Proposition 3 Let \(\pi=\left(a_{1} a_{2} \ldots a_{k}\right) \in \mathcal{S}_{n}\) be a single cycle of length \(2 \leq k \leq n\), and \(A=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}\). Then the centralizer \(C_{\mathcal{S}_{n}}(\pi)\) of \(\pi\) in \(\mathcal{S}_{n}\) is the direct product of the subgroups \(<\pi>\) and \(\mathcal{S}_{n}^{A}\), and is isomorphic with the direct product \(\mathcal{Z}_{k} \times \mathcal{S}_{n-k}\).

Here \(\mathcal{Z}_{k}\) is the cyclic group of order \(k\).
We want to apply this result to arbitrary permutations. First we observe:
Proposition 4 Let \(\pi=\pi_{1} \cdots \pi_{s}\) be a product of disjoint cycles \(\pi_{i}\). For \(k=1, \ldots, n\) let
\[
A_{k}:=\{a \mid 1 \leq k \leq n, a \text { is in a cycle of } \pi \text { of length } k\} .
\]

Let \(\rho \in \mathcal{S}_{n}\) centralize \(\pi\). Then \(\rho\left(A_{k}\right)=A_{k}\) for all \(k\), and \(\rho \mid A_{k}\) centralizes \(\pi \mid A_{k}\).

Proof. Let \(\pi_{i}=\left(a_{i 1} \cdots a_{i k}\right)\) be a cycle of length \(k\). Then \(\rho \pi_{i} \rho^{-1}=\) ( \(\rho a_{i 1} \cdots \rho a_{i k}\) ) is a cycle of length \(k\), and \(\rho \pi \rho^{-1}=\rho \pi_{1} \rho^{-1} \cdots \rho \pi_{l} \rho^{-1}\) is the unique decomposition into disjoint cycles. If \(\rho\) centralizes \(\pi\), then ( \(\rho a_{i 1} \cdots \rho a_{i k}\) ) is one of cycles of \(\pi\) of length \(k\). Therefore \(\rho\left(A_{k}\right)=A_{k}\). The
second assertion follows because the actions of \(\pi\) and \(\rho\) on \(\{1, \ldots, n\}\) directly decompose into the actions on the subsets \(A_{k}\). \(\diamond\)

Proposition 4 reduces the task of determining the centralizer to the case where all the cycles \(\pi_{i}\) have the same length \(k\). Let \(\pi_{i}=\left(b_{i 1} \ldots b_{i k}\right)\), and \(B_{i}:=\left\{b_{i 1}, \ldots, b_{i k}\right\}\). Then \(\{1, \ldots, n\}=B_{1} \dot{\cup} \cdots \dot{\cup} B_{s}\) (and \(\left.n=k s\right)\).

Now consider the centralizer \(C:=C_{\mathcal{S}_{n}}(\pi)\), and take a \(\rho \in C\). Then \(\rho\) doesn't necessarily respect the subsets \(B_{i}\), but it permutes them: There is a unique \(j=\bar{\sigma} i\)-depending on \(\rho\)-such that \(\rho\left(B_{i}\right)=B_{j}\). This defines a permutation \(\bar{\sigma} \in \mathcal{S}_{s}\) of the indices \(1, \ldots, s\). This way we get a group homomorphism
\[
\Phi: C \longrightarrow \mathcal{S}_{s}, \quad \rho \mapsto \bar{\sigma} .
\]

Lift \(\bar{\sigma} i\) to a permutation \(\sigma \in \Phi^{-1}(\bar{\sigma}) \subseteq \mathcal{S}_{n}\) by setting \(\sigma b_{i h}:=b_{\bar{\sigma} i, h}\). Then also \(\sigma \in C\), and \(\sigma^{-1} \rho\) is in the subgroup
\[
C^{\circ}:=\operatorname{ker} \Phi=\left\{\tau \in C \mid \tau\left(B_{i}\right)=B_{i} \text { for } i=1, \ldots, s\right\}
\]
of permutations that centralize \(\pi\) and respect the \(B_{i}\). The following characterization of this subgroup is immediate, because for \(\tau \in C^{\circ}\) the restriction \(\tau \mid B_{i}\) centralizes \(\pi_{i} \mid B_{i}\) and therefore is a power of \(\pi_{i} \mid B_{i}\).

Lemma 2 The subgroup \(C^{\circ}\) is the set of permutations with cycle decomposition of the type \(\pi_{1}^{a_{1}} \cdots \pi_{s}^{a_{s}}\), and is isomorphic with the direct product \(\mathcal{Z}_{k}^{s}\) of s cyclic groups \(\mathcal{Z}_{k}\). This isomorphism defines an embedding \(e: \mathcal{Z}_{k}^{s} \longrightarrow C\). The sequence
\[
\mathbf{1} \longrightarrow \mathcal{Z}_{k}^{s} \xrightarrow{e} C_{\mathcal{S}_{n}}(\pi) \xrightarrow{\Phi} \mathcal{S}_{s} \longrightarrow \mathbf{1}
\]
is exact. The centralizer \(C_{\mathcal{S}_{n}}(\pi)\) has \(k^{s} \cdot s\) ! elements.
This result easily generalizes to the general case. Let \(\pi=\pi_{1} \cdots \pi_{s}\) be a product of disjoint cycles \(\pi_{i}\), let \(k_{i}\) be the length of \(\pi_{i}\), and let \(r_{k}\) be the number of cycles of length \(k_{i}=k\), for \(k=1, \ldots, n\). Note that \(r_{1}+\cdots+n r_{n}=\) \(n\), and many of the \(r_{k}\) are 0 . Then we have a natural epimorphism
\[
\Phi: C \longrightarrow \prod_{k=1}^{n} \mathcal{S}_{r_{k}}
\]
with kernel
\[
C^{\circ}:=\operatorname{ker} \Phi=<\pi_{1}>\cdots<\pi_{s}>\cong \prod_{i=1}^{s} \mathcal{Z}_{k_{i}}
\]

We sum this up to a Theorem.
Theorem 2 For each permutation \(\pi \in \mathcal{S}_{n}\) we have a natural exact sequence
\[
\mathbf{1} \longrightarrow \prod_{i=1}^{s} \mathcal{Z}_{k_{i}} \xrightarrow{e} C_{\mathcal{S}_{n}}(\pi) \xrightarrow{\Phi} \prod_{k=1}^{n} \mathcal{S}_{r_{k}} \longrightarrow \mathbf{1}
\]
where the \(k_{i}\) are the lengths of the cycles of \(\pi\) and the \(r_{k}\) are the numbers of cycles of \(\pi\) of length \(k\).

The centralizer \(C_{\mathcal{S}_{n}}(\pi)\) of \(\pi\) has
\[
\# C_{\mathcal{S}_{n}}(\pi)=\prod_{i=1}^{s} k_{i} \cdot \prod_{k=1}^{n} r_{k}!
\]
elements.
Example. In \(\mathcal{S}_{n}\) both permutations (13)(245) and (245) \(=(245)(1)(3)\) have a 6 element centralizer isomorphic with \(\mathcal{Z}_{3} \times \mathcal{Z}_{2}\). Its elements (in both cases) are the three different powers of (245) times the two different powers of (13).

\section*{A. 7 Transpositions}

A transposition is a cycle of length 2, that is a permutation that interchanges two elements and fixes all the other ones. The formula
\[
\left(a_{1} a_{2} \ldots a_{k}\right)=\left(a_{1} a_{k}\right) \cdots\left(a_{1} a_{3}\right)\left(a_{1} a_{2}\right)
\]
shows:
Lemma 3 Each cycle of length \(k\) can be written as a product of \(k-1\) transpositions.

From this and Proposition 2 we conclude:
Corollary 9 Each permutation \(\pi\) can be written as a product of \(n-r\) transpositions where \(r\) is the number of cycles with more than one element in the cycle decomposition of \(\pi\).

Note that these transpositions need not be disjoint, therefore generally they don't commute, and the decomposition into transpositions is not unique. Even the number of transpositions is not unique; but at least we have:

Proposition 5 If we write a permutation \(\pi \in \mathcal{S}_{n}\) as a product of transpositions in different ways, then the number of transpositions either is always even or always odd.

Proof. Let \(\pi=\tau_{1} \cdots \tau_{s}\) where the \(\tau_{i}\) are transpositions. On the other hand let \(\pi=\zeta_{1} \cdots \zeta_{r}\) be the decomposition into disjoint cycles (complete, that means including all cycles of length 1 ). If we multiply \(\pi\) from the left with a transposition \(\tau=(a b)\), we can distinguish two cases:

Case 1. \(a\) und \(b\) are in the same cycle. Because the cycles commute we may assume that this is the first one \(\zeta_{1}=\left(a_{1} \ldots a_{k}\right)\), and \(a=a_{1}, b=a_{i}\). Then \(\tau \pi\) has the effect that
\[
\begin{array}{ccll}
a_{1} \stackrel{\pi}{\mapsto} & a_{2} & \stackrel{\tau}{\mapsto} a_{2} \\
& \vdots & \\
a_{i-1} \mapsto & a_{i} & \mapsto a_{1} \\
a_{i} \mapsto & a_{i+1} & \mapsto a_{i+1} \\
& \vdots & \\
a_{k} \mapsto & a_{1} & \mapsto a_{i}
\end{array}
\]

Therefore \(\tau \pi=\left(a_{1} \ldots a_{i-1}\right)\left(a_{i} \ldots a_{k}\right) \zeta_{2} \ldots\) (all other cycles unchanged).
Case 2. \(a\) and \(b\) are in different cycles. Assume that these are the first two \(\zeta_{1}=\left(a_{1} \ldots a_{k}\right)\) and \(\zeta_{2}=\left(b_{1} \ldots b_{l}\right)\), and \(a=a_{1}, b=b_{1}\). Then \(\tau \pi=\left(a_{1} \ldots a_{k} b_{1} \ldots b_{l}\right) \zeta_{3} \ldots\).

In any case the number of cycles grows by 1 or decreases by 1 , hence is \(r \pm 1\). If we multiply with another transposition from the left, the total number of cycles becomes \(r+2, r\) or \(r-2\). After multiplication with \(q\) transpositions we have \(r+t_{q}\) cycles, where \(t_{q} \equiv q(\bmod 2)\). Therefore the product \(\tau_{s} \cdots \tau_{1} \pi\) has \(r+t_{s}\) cycles where \(t_{s} \equiv s(\bmod 2)\). But this is the identy map \(\pi^{-1} \pi\) and therefore \(r+t_{s}=n\). Hence \(s \equiv n-r(\bmod 2)\), no matter what was the starting decomposition into transpositions.

\section*{A. 8 The Alternating Group}

If we assign to each permutation in \(\mathcal{S}_{n}\) the parity of the number of transpositions in an arbitrary decomposition, then, by the last section, we get a well-defined function
\[
\operatorname{sgn}: \mathcal{S}_{n} \longrightarrow \mathbb{F}_{2},
\]
that obviously is a group homomorphism into the additive group. We call the kernel the alternating group of order \(n\) and denote it by \(\mathcal{A}_{n}\). The elements of \(\mathcal{A}_{n}\), that is the permutations that decompose into an even number of transpositions, are called even permutations, the other ones odd. \(\mathcal{A}_{n}\) is a normal subgroup of index 2 in \(\mathcal{S}_{n}\) and therefore has \(n!/ 2\) elements.

\section*{A. 9 Involutions}

Call a permutation an involution, if it has order 2 as a group element in \(\mathcal{S}_{n}\), or alternativly, if its cycle decomposition consists of transpositions (and fixed points) only. An involution ist proper, if it has no fixed points.

Of course this is possible only, if \(n\) is even. Then a proper involution is a product of \(n / 2\) disjoint 2 -cycles (i. e. cycles of length 2 ).

A task that occurs in computing the total number of keys of Enigma, is determining the number of involutions in the symmetric group \(\mathcal{S}_{n}\) that have exactly \(k 2\)-cycles where \(0 \leq 2 k \leq n\). It equals the number \(d(n, k)\) of possibilities of choosing \(k\) pairs from \(n\) elements (where the order of the pairs does not matter).
\begin{tabular}{|l|c|l|c|}
\hline Choose & possibilities & choose & possibilities \\
\hline 1st element: & \(n\) & & \\
\hline 1st partner: & \(n-1\) & 1st pair: & \(n(n-1) / 2\) \\
\hline 2nd element: & \(n-2\) & & \\
2nd partner: & \(n-3\) & 2nd pair: & \((n-2)(n-3) / 2\) \\
\hline\(\ldots\) & \(\ldots\) & \(\ldots\) & \(\ldots\) \\
\hline\(k\)-th element: & \(n-2(k-1)\) & & \\
\(k\)-th partner: & \(n-2(k-1)-1\) & \(k\)-th pair: & \((n-2 k+2)(n-2 k+1) / 2\) \\
\hline
\end{tabular}

Adding all together and respecting the order we get
\[
\frac{n(n-1) \cdots(n-2 k+2)(n-2 k+1)}{2^{k}}=\frac{n!}{(n-2 k)!\cdot 2^{k}}
\]
possibilities. If we now disregard the order we have always \(k\) ! identical choices. Hence we have shown:

Proposition 6 The number of involutions in the symmetric group \(\mathcal{S}_{n}\) that have exactly \(k\) 2-cycles is
\[
d(n, k)=\frac{n!}{2^{k} k!(n-2 k)!} \quad \text { for } 0 \leq 2 k \leq n .
\]

Example: In the case of the Wehrmacht Enigma we have \(n=26\) and \(k=10\), and the number of possible involutions is
\[
\frac{26!}{2^{10} \cdot 10!\cdot 6!}=150738274937250 .
\]

\section*{A. 10 Products of Proper Involutions}

The cryptanalysis of the Enigma by Rejewski involves products of two proper involutions \(\sigma\) and \(\tau\). Let ( \(a b\) ) be a cycle of \(\tau\). If \((a b)\) is also a cycle of \(\sigma\), then \(\sigma \tau\) fixes the two elements \(a\) and \(b\), hence has the two cycles ( \(a\) ) and \((b)\) of length 1.

In the general case starting with an arbitrary element \(a_{1}\) one finds a chain \(a_{1}, a_{2}, a_{3}, \ldots, a_{2 k}\) such that
\[
\begin{array}{cc}
\tau=\left(a_{1} a_{2}\right)\left(a_{3} a_{4}\right) \cdots\left(a_{2 k-1} a_{2 k}\right) & \times \text { other 2-cycles }, \\
\sigma= & \left(a_{2} a_{3}\right)\left(a_{4} a_{5}\right) \cdots\left(a_{2 k} a_{1}\right)
\end{array} \quad \times \text { other 2-cycles. } . ~ \$
\]

In the product \(\sigma \tau\) these become the two cycles
\[
\left(a_{1} a_{3} \ldots a_{2 k-1}\right)\left(a_{2 k} \ldots a_{4} a_{2}\right)
\]
of length \(k\). In particular all cycle lengths occur in an even number, the cycle type is matched.

Theorem 3 [Rejewski] A permutation is the product of two proper involutions, if and only if its cycle type is matched.

Proof. In order to prove the inverse direction we take a permutation \(\pi\) of matched type and give solutions \(\sigma, \tau\) of the equation \(\sigma \tau=\pi\).

In the simplest case, where \(\pi\) only consists of two cycles of the same length:
\[
\pi=\left(p_{1} p_{2} \ldots p_{k}\right)\left(q_{1} q_{2} \ldots q_{k}\right)
\]
an obvious solution is
\[
\begin{aligned}
\tau & =\left(p_{1} q_{k}\right)\left(p_{2} q_{k-1}\right) \cdots\left(p_{k} q_{1}\right), \\
\sigma & =\left(p_{2} q_{k}\right)\left(p_{3} q_{k-1}\right) \cdots\left(p_{1} q_{1}\right) .
\end{aligned}
\]

In the general case we analogously construct the solution for each matching pair of cycles of the same length. \(\diamond\)

Therefore the following procedure gives a decomposition of a partition of matched type into two proper involutions: Write cycles of the same length below each other, the lower one in reverse direction. Then read off the 2 cycles of \(\tau\) by pairing the elements in the same column, and the 2 -cycles of \(\sigma\) by pairing each element with the one diagonally to the left below it.

Example: Let \(\pi=(\mathrm{D})(\mathrm{K})(\) AXT \()\) (CGY) (BLFQVEOUM) (HJPSWIZRN). Then we write down the scheme
(D) (AXT) (BLFQVEOUM)
(K) (YGC) (NRZIWSPJH)
and read off a solution of \(\sigma \tau=\pi\) :
\[
\tau=(\mathrm{DK})(\mathrm{AY})(\mathrm{XG})(\mathrm{TC})(\mathrm{BN})(\mathrm{LR})(\mathrm{FZ})(\mathrm{QI})(\mathrm{VW})(\mathrm{ES})(\mathrm{OP})(\mathrm{UJ})(\mathrm{MH}),
\]
\[
\sigma=(\mathrm{DK})(\mathrm{XY})(\mathrm{TG})(\mathrm{AC})(\mathrm{LN})(\mathrm{FR})(\mathrm{QZ})(\mathrm{VI})(\mathrm{EW})(\mathrm{OS})(\mathrm{UP})(\mathrm{MJ})(\mathrm{BH}) .
\]

It's also easy to find all solutions: Cyclically shift the lower cycles. If there are more then two cycles of the same length also consider all possible pairings. The solution is uniquely determined as soon as a 2 -cycle of \(\sigma\) or \(\tau\) is fixed for each cycle pair.

Exercise. Work out the formula for the number of solutions.

\section*{Appendix B}

\section*{Stirling's Formula}

Following preliminary work by de Moivre (1718) Stirling in 1730 [27] stated his famous formula that expresses the factorial in a way that leads to a very useful assessment of its asymptotic behaviour. Here we reproduce the notably narrow bounds given by RobBins [19] following a method attributed to Cesìro [2] and Fisher [6].

Theorem 1 For all natural numbers \(n \geq 1\) we have
\[
n!=\sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n} \cdot e^{r_{n}}
\]
where the error term \(r_{n}\) is bounded by
\[
\frac{1}{12 n+1} \leq r_{n} \leq \frac{1}{12 n}
\]

The approximation is illustrated by the following table, where \(s_{n}\) is the upper bound and \(t_{n}\), the lower bound from the theorem.
\begin{tabular}{|l|lllllllll|}
\hline\(n\) & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\hline\(s_{n}\) & 1.002 & 2.001 & 6.001 & 24.001 & 120.003 & 720.01 & 5040.04 & 40320.2 & 362881.4 \\
\(n!\) & 1 & 2 & 6 & 24 & 120 & 720 & 5040 & 40320 & 362880 \\
\(t_{n}\) & 0.996 & 1.997 & 5.996 & 23.991 & 119.970 & 719.87 & 5039.33 & 40315.9 & 362850.1 \\
\hline
\end{tabular}

This suggests that the upper bound is closer to the true value then the lower bound; and the absolute errors increase. The relative errors however decrease quite fast, see Corollary 10 below.

Proof. We consider the sequence
\[
a_{n}=\frac{n!}{\left(\frac{n}{e}\right)^{n} \cdot \sqrt{n}}
\]
and show that it decreases monotonically; because all of its members are positive, we then know that it converges.

Dividing two consecutive terms we get
\[
\begin{gathered}
\frac{a_{n}}{a_{n+1}}=\frac{n!\left(\frac{n+1}{e}\right)^{n+1} \cdot \sqrt{n+1}}{\left(\frac{n}{e}\right)^{n} \cdot \sqrt{n} \cdot(n+1)!}=\frac{1}{e} \cdot\left(\frac{n+1}{n}\right)^{n+1 / 2} \\
\log \frac{a_{n}}{a_{n+1}}=-1+\left(n+\frac{1}{2}\right) \cdot \log \frac{n+1}{n}
\end{gathered}
\]

Lemma 2 below immediately gives
\[
0<\frac{1}{12} \cdot\left(\frac{1}{n+\frac{1}{12}}-\frac{1}{n+\frac{1}{12}+1}\right)<\log \frac{a_{n}}{a_{n+1}}<\frac{1}{12} \cdot\left(\frac{1}{n}-\frac{1}{n+1}\right) .
\]

From the left inequality we conclude \(a_{n}>a_{n+1}\) as claimed.
Now let \(a=\lim _{n \rightarrow \infty} a_{n}\). Then \(a \geq 0\) and by telescoping
\[
\frac{1}{12} \cdot\left(\frac{1}{n+\frac{1}{12}}-\frac{1}{n+\frac{1}{12}+k}\right)<\log \frac{a_{n}}{a_{n+k}}<\frac{1}{12} \cdot\left(\frac{1}{n}-\frac{1}{n+k}\right) .
\]

For \(k \rightarrow \infty\) we get
\[
\begin{gathered}
\frac{1}{12 n+1} \leq \log \frac{a_{n}}{a} \leq \frac{1}{12 n}, \\
e^{\frac{1}{12 n+1}} \leq \frac{a_{n}}{a} \leq e^{\frac{1}{12 n}} .
\end{gathered}
\]

To complete the proof of the theorem we have to show that \(a=\sqrt{2 \pi}\).
From Wallis' product formula, see Lemma 3 below, and using \(k!=\) \(a_{k} k^{k+1 / 2} / e^{k}\), we get
\[
\begin{aligned}
\sqrt{\pi}= & \lim _{n \rightarrow \infty} \frac{a_{n}^{2} \cdot n^{2 n+1} \cdot 2^{2 n} \cdot e^{2 n}}{e^{2 n} \cdot a_{2 n} \cdot(2 n)^{2 n+1 / 2} \cdot \sqrt{n+1 / 2}} \\
& =a \cdot \lim _{n \rightarrow \infty} \frac{\sqrt{n}}{\sqrt{2} \cdot \sqrt{n+1 / 2}}=\frac{a}{\sqrt{2}} .
\end{aligned}
\]

Therefore \(a=\sqrt{2 \pi}\).

Lemma 1 For \(0<x<1\)
\[
\frac{3 x}{3-x^{2}}<\frac{1}{2} \log \frac{1+x}{1-x}<x \cdot\left(1+\frac{1}{3} \cdot \frac{x^{2}}{1-x^{2}}\right) .
\]

Proof. For \(|x|<1\) we have the well-known power series expansion
\[
\frac{1}{2} \log \frac{1+x}{1-x}=x+\frac{x^{3}}{3}+\frac{x^{5}}{5}+\ldots=\sum_{\nu=1}^{\infty} \frac{x^{2 \nu-1}}{2 \nu-1} .
\]

For \(0<x<1\) we get the upper bound
\[
\begin{gathered}
\frac{1}{2} \log \frac{1+x}{1-x}<x+\frac{x^{3}}{3}+\frac{x^{5}}{3} \cdots=x+\sum_{\nu=2}^{\infty} \frac{x^{2 \nu-1}}{3}=x+\frac{x^{3}}{3}\left(1+x^{2}+x^{4}+\cdots\right) \\
=x+\frac{x^{3}}{3} \cdot \frac{1}{1-x^{2}}=x \cdot\left(1+\frac{1}{3} \cdot \frac{x^{2}}{1-x^{2}}\right)
\end{gathered}
\]

For the lower bound we use
\[
\frac{1}{2} \log \frac{1+x}{1-x}>x+\frac{x^{3}}{3}+\frac{x^{5}}{9} \cdots=\sum_{\nu=1}^{\infty} \frac{x^{2 \nu-1}}{3^{\nu-1}}=x \cdot \sum_{\nu=0}^{\infty} \frac{x^{2 \nu}}{3^{\nu}}=x \cdot \frac{1}{1-\frac{x^{2}}{3}} .
\]

Lemma 2 For \(n \in \mathbb{N}_{1}\)
\(2+\frac{1}{6} \cdot\left(\frac{1}{n+\frac{1}{12}}-\frac{1}{n+\frac{1}{12}+1}\right)<(2 n+1) \cdot \log \frac{n+1}{n}<2+\frac{1}{6} \cdot\left(\frac{1}{n}-\frac{1}{n+1}\right)\)
Proof. In Lemma 1 we substitute \(x=\frac{1}{2 n+1}\). Then
\[
\frac{1+x}{1-x}=\frac{1+\frac{1}{2 n+1}}{1-\frac{1}{2 n+1}}=\frac{2 n+2}{2 n}=\frac{n+1}{n} .
\]

This gives the upper bound
\(\frac{1}{2} \cdot \log \frac{n+1}{n}<\frac{1}{2 n+1} \cdot\left(1+\frac{1}{3} \cdot \frac{1}{4 n^{2}+4 n}\right)=\frac{1}{2 n+1} \cdot\left(1+\frac{1}{12} \cdot \frac{1}{n(n+1)}\right)\),
as claimed. At the lower bound we get
\[
\frac{1}{2} \cdot \log \frac{n+1}{n}>\frac{3(2 n+1)}{3(2 n+1)^{2}-1},
\]
whence
\((2 n+1) \cdot \log \frac{n+1}{n}>\frac{6(2 n+1)^{2}}{3(2 n+1)^{2}-1}=2+\frac{2}{3(2 n+1)^{2}-1}=2+\frac{2}{12 n^{2}+12 n+2}\).
The lower bound we aim at evaluates to
\[
\begin{aligned}
& 2+\frac{1}{6} \cdot\left(\frac{1}{n+\frac{1}{12}}-\frac{1}{n+\frac{1}{12}+1}\right)=2+2 \cdot\left(\frac{1}{12 n+1}-\frac{1}{12 n+13}\right) \\
= & 2+2 \cdot \frac{12}{(12 n+1)(12 n+13)}=2+2 \cdot \frac{12}{12 \cdot 12 n^{2}+14 \cdot 12 n+13}=2+2 \cdot \frac{2}{12 n^{2}+14 n+\frac{13}{12}}
\end{aligned}
\]
which is clearly smaller for \(n \geq 1\).

\section*{Lemma 3 (Product formula of Wallis)}
\[
\sqrt{\pi}=\lim _{n \rightarrow \infty} \frac{2^{2 n} \cdot(n!)^{2}}{(2 n)!\cdot \sqrt{n+1 / 2}}
\]

Proof. Starting with the product expansion of the sine function,
\[
\sin (\pi x)=\pi x \cdot \prod_{k=1}^{\infty}\left(1-\frac{x^{2}}{k^{2}}\right)
\]
and substituting \(x=1 / 2\), we get
\[
\begin{gathered}
1=\frac{\pi}{2} \cdot \prod_{k=1}^{\infty} \frac{4 k^{2}-1}{4 k^{2}} \\
\frac{\pi}{2}=\prod_{k=1}^{\infty} \frac{(2 k)^{4}}{(2 k-1) 2 k \cdot 2 k(2 k+1)}=\lim _{n \rightarrow \infty} \frac{2^{4 n} \cdot(n!)^{4}}{((2 n)!)^{2}(2 n+1)}
\end{gathered}
\]
and this immediately gives the assertion. \(\diamond\)

Corollary 10 If we replace \(n\) ! by \(s_{n}=\sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n} \cdot e^{\frac{1}{12 n}}\), the relative error is bounded by
\[
1 \leq \frac{s_{n}}{n!}<e^{\frac{1}{(12 n)^{2}}}
\]

Proof. Let \(t_{n}=\sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n} \cdot e^{\frac{1}{12 n+1}}\). Then
\[
1 \leq \frac{s_{n}}{n!} \leq \frac{s_{n}}{t_{n}}=e^{\frac{1}{12 n}-\frac{1}{12 n+1}}=e^{\frac{1}{12 n(12 n+1)}}<e^{\frac{1}{(12 n)^{2}}}
\]
\(\diamond\)

Note that the "usual" textbook estimate gives the lower bound \(1 \leq r_{n}\). From this we get the bound \(e^{\frac{1}{12 n}}\) for the relative error that has only a linear term in the denominator of the exponential instad of the quadratic one.

Corollary 11 For all natural numbers \(n \geq 1\)
\[
\sqrt{2 \pi n} \cdot\left(1+\frac{1}{13 n}\right)<\frac{n!e^{n}}{n^{n}}<\sqrt{2 \pi n} \cdot\left(1+\frac{1}{11 n}\right)
\]

For \(n \rightarrow \infty\)
\[
\frac{n!e^{n}}{n^{n}}=\sqrt{2 \pi n}+\mathrm{O}\left(\frac{1}{\sqrt{n}}\right)
\]

Proof. We use the inequality \(e^{x}>1+x\) for all real \(x \neq 0\). For \(0<x<1\) we therefore have \(1-x \leq e^{-x}\), whence \(e^{x} \leq \frac{1}{1-x}=1+\frac{1}{\frac{1}{x}-1}\). Therefore
\[
\frac{n!e^{n}}{n^{n}}<\sqrt{2 \pi n} \cdot\left(1+\frac{1}{12 n-1}\right) \leq \sqrt{2 \pi n} \cdot\left(1+\frac{1}{11 n}\right) .
\]

For the lower bound we have
\[
\frac{n!e^{n}}{n^{n}}>\sqrt{2 \pi n} \cdot\left(1+\frac{1}{12 n+1}\right) \geq \sqrt{2 \pi n} \cdot\left(1+\frac{1}{13 n}\right) .
\]
\(\diamond\)

Corollary 12 For all natural numbers \(n \geq 1\)
\[
\frac{1}{\sqrt{2 \pi n}} \cdot\left(1-\frac{1}{12 n}\right)<\frac{n^{n}}{n!e^{n}}<\frac{1}{\sqrt{2 \pi n}} \cdot\left(1-\frac{1}{14 n}\right)
\]

For \(n \rightarrow \infty\)
\[
\frac{n^{n}}{n!e^{n}}=\frac{1}{\sqrt{2 \pi n}}+\mathrm{O}\left(\frac{1}{\sqrt{n^{3}}}\right)
\]

Proof. The lower bound is immediate from \(1-x \leq e^{-x}\). For the upper bound we use \(e^{-x}<\frac{1}{1+x}=1-\frac{1}{\frac{1}{x}+1}\), and get
\[
\frac{n^{n}}{n!e^{n}}<\frac{1}{\sqrt{2 \pi n}} \cdot\left(1-\frac{1}{12 n+2}\right) \leq \frac{1}{\sqrt{2 \pi n}} \cdot\left(1-\frac{1}{14 n}\right) .
\]

\section*{Appendix C}

\section*{Kasiski's Test: Couldn't the Repetitions be by Accident?}

\section*{C. 1 Repetitions in a Polyalphabetic Ciphertext}

Kasiski's method finds the period of a polyalphabetic cipher in the following way: If a string of characters repeatedly appears in the ciphertext, assume that the distance between the occurrences is a multiple of the period. Find as many repetitions as possible and calculate the greatest common divisor of the distances. This gives the period or a small multiple of it.

For the historic context of this method see [15]; Babbage had invented the method ten years earlier than Kasiski but never published his results, see [24].

Kasiski's method is based on the following observations [16, Section 14]:
1. If a plaintext is encrypted by distinct alphabets that cyclically repeat with a period of \(l\), and if a certain sequence of letters occurs \(k\) times in the text, then it will be encrypted with the same sequence of alphabets \(k / l\) times in the mean.
2. If a repeating sequence of letters is encrypted by the same sequence of alphabets, then the ciphertext contains a repeated pattern; the distance of the two occurrences is a multiple of the period \(l\).
3. Not every repeated pattern in the ciphertext arises in this way; but the probability of an accidental repetition is noticeably smaller.

Because of observation 3 the cryptanalyst has to omit some of the distances - by intuition, but essentially by trial and error. Therefore an obvious and natural question is: Is the probability of an accidental repetition really much smaller, as stated in 3 ?

The answer is a simple exercise in probability theory, a corollary of the Birthday Paradox. In spite of its simplicity, there seems to be no explicit
reference to this result in the cryptologic literature in the context of Kasiski's method.

The goal of this paper is to show that elementary calculus may give a satisfying answer to the question in the title. The intermediate results might be improved by refined theoretic considerations. There is room for experimental mathematics as well. The final section discusses some open problems that make up suitable undergraduate projects.

Note. The Birthday Paradox also has other applications in cryptology, the most renowned is to hash functions: the Birthday Paradox tells how long the hashes should be in order to avoid collisions (= repetitions), see [17, Sections 9.5 and 9.7] [20, Section 7.4] [26, Section 7.3]. For statistical applications see [5, Chapter II, Section 3].

\section*{C. 2 Counting Repetitions}

In several situations we want to know the probability that certain data agree or that certain events repeat. Here are three sample questions:
- What is the probability that at least two of a group of people meeting accidentally in the same room share their birthdays?
- What is the probability that at least two of \(r\) randomly and independently chosen character strings of length \(t\) are the same?
- Draw \(r\) balls from an urn containing \(N\) distinct balls (with replacement). What is the probability that you get at least one of the balls twice?

Let us calculate the probability in the urn experiment. There are \(N\) possible events of which we observe \(r\) (with possible repetitions).
- The probability that the first event is a repetition is 0 .
- Therefore the probability that the first event is not a repetition is \(1=\frac{N}{N}\).
- The probability that the second event is not a repetition is \(\frac{N-1}{N}\).
- The probability that then also the third event is not a repetition is \(\frac{N-2}{N}\). (There are \(N-2\) choices left that don't give a repetition.)
- The general case: If there was no repetition among the first \(r-1\) events, then the probability is \(\frac{N-r+1}{N}\) that also the \(r\)-th event is not a repetition.

From this we get the following well-known result [5, chapter II, Section 3]:

Theorem 1 The probability of a repetition in a sequence of \(r\) independent events from a set of \(N\) is
\[
K(N, r)=1-Q(N, r)
\]
where
\[
Q(N, r)=\frac{N \cdot(N-1) \cdots(N-r+1)}{N^{r}}=\left[1-\frac{1}{N}\right] \cdots\left[1-\frac{r-1}{N}\right] .
\]

\section*{C. 3 Applications}

Birthdays: For \(N \approx 365.22, r=23\), we have \(Q(N, r) \approx 0.493\), therefore the probability of a coincidence is \(\approx 0.507\). If there are 23 people in the same room, the probability that two of them share their birthdays, is greater then \(\frac{1}{2}\). From this observation the Birthday Paradox got its name.

Character strings: Consider strings over the alphabet \(\{\mathrm{A}, \ldots, \mathrm{Z}\}\). Choose \(r\) strings of length \(t\) randomly and independently: This makes \(N=26^{t}\) possible events. The probability that at least two strings are identical is \(K\left(26^{t}, r\right)\). For \(r=100,300,1000,5000\) let these probabilities be \(p_{t}\), \(q_{t}, r_{t}, s_{t}\), respectively. Direct calculation from Theorem 1 - with the help of a small computer program - gives Table C.1. The table shows for example, that for \(r=1000\) there is more than a \(60 \%\) chance that we find two identical four letter strings; but two identical five letter strings are rather unlikely (probability \(<5 \%\) ).
\begin{tabular}{|c||c|c|c|c|c|c|c||c|}
\hline\(t \rightarrow\) & 1 & 2 & 3 & 4 & 5 & 6 & 7 & \(r \downarrow\) \\
\hline\(p_{t}\) & 1 & \(\mathbf{1 . 0 0 0}\) & \(\mathbf{0 . 2 4 6}\) & 0.011 & 0.00042 & & & 100 \\
\(q_{t}\) & 1 & 1.000 & \(\mathbf{0 . 9 2 3}\) & \(\mathbf{0 . 0 9 4}\) & 0.0038 & 0.00015 & & 300 \\
\(r_{t}\) & 1 & 1 & 1.000 & \(\mathbf{0 . 6 6 5}\) & \(\mathbf{0 . 0 4 1}\) & 0.0016 & & 1000 \\
\(s_{t}\) & 1 & 1 & 1.000 & 1.000 & \(\mathbf{0 . 6 5 1}\) & \(\mathbf{0 . 0 4 0}\) & 0.0016 & 5000 \\
\hline
\end{tabular}

Table C.1: Probabilities for repetitions of strings. Entries \(<10^{-4}\) are omitted. Values given as 1 are exact, values given as 1.000 are rounded off. In each row the cut point " \(50 \%\) probability" lies between the two entries in boldface.

\section*{C. 4 Bounds for the Number of Repetitions}

The formula in Theorem 1 is awkward for manual calculation; it also gives no direct idea of the order of magnitude of the probability. Fortunately,
using some elementary calculus, we find convenient bounds that also show the behaviour for large values of the parameters. First we derive an upper bound for the number \(K(N, r)\) of repetitions:
- The probability that the \(i\)-th event is a repetition is \(\leq \frac{i-1}{N}\), because there were only \(i-1\) events before.
- Therefore the probability that up to the \(r\)-th event there is a repetition is
\[
K(N, r) \leq \frac{0}{N}+\cdots+\frac{i-1}{N}+\cdots+\frac{r-1}{N}=\frac{r(r-1)}{2 N} .
\]

From this we get the right inequalities of Theorem 2.
Theorem 2 (i) The probability \(K(N, r)\) of a repetition is bounded by
\[
1-e^{-\frac{r(r-1)}{2 N}} \leq K(N, r) \leq \frac{r(r-1)}{2 N} .
\]
(ii) If \(r \leq \sqrt{2 N}\), then we have
\[
\left(1-\frac{1}{e}\right) \cdot \frac{r(r-1)}{2 N} \leq K(N, r) \leq \frac{r(r-1)}{2 N} .
\]
or, somewhat weaker,
\[
0.3 \cdot \frac{r(r-1)}{N} \leq K(N, r) \leq 0.5 \cdot \frac{r(r-1)}{N} \text {. }
\]
(iii) If \(r \leq \sqrt{N}\), then \(K(N, r)<\frac{1}{2}\).
(iv) If \(r \geq 1+\sqrt{2 N \ln 2}\), then \(K(N, r)>\frac{1}{2}\).

Proof. The left inequality in (i) follows from the inequality \(1-x \leq e^{-x}\) for \(x \in \mathbb{R}\), hence
\[
Q(N, r) \leq e^{-\frac{1}{N}} \cdots e^{-\frac{r-1}{N}} \leq e^{-\frac{r(r-1)}{2 N}},
\]
and \(K(N, r)=1-Q(N, r)\).
The lower bound in (ii) follows from the inequality \(1-e^{-x} \geq\left(1-\frac{1}{e}\right) x\) in the real interval \(0 \leq x \leq 1\); and this is true because the function \(f(x)=\) \(1-e^{-x}\) is concave ( \(\cap\)-shaped), \(g(x)=\left(1-\frac{1}{e}\right) \cdot x\) is linear, and \(f(0)=g(0)\), \(f(1)=g(1)\).

For (iii) the upper bound simplifies to \(K(N, r)<\frac{r^{2}}{2 N} \leq \frac{N}{2 N}=\frac{1}{2}\).
In (iv) we have \(r(r-1)>2 N \ln 2\). Therefore the left hand side of (i) is \(>\frac{1}{2}\). \(\diamond\)

Theorem 2 (iii) and (iv) together give the rule of thumb that appears in many cryptography textbooks, see [20, Section 7.4] [26, Section 7.3]:

The cut point " \(50 \%\) probability" for repetitions is close to \(r=\sqrt{N}\).

More exactly it is between \(\sqrt{N}\) and \(1+1.18 \sqrt{N}\). As a special case of Theorem 2 (iii) with \(N=n^{t}\) we immediately get

Theorem 3 For r random character strings of length \(t\) over an alphabet of \(n\) characters with \(r \leq n^{t / 2}\) the probability of a repetition is less than \(\frac{1}{2}\).

\section*{C. 5 The Probability of Accidental Repetitions}

Now we apply this to the substrings of a random character string of length \(r\) (over an \(n\) letter alphabet), where "random" means that each character is chosen independently and with probability \(\frac{1}{n}\). We abandon the exact mathematical reasoning and make the simplifying assumption that the substrings are stochastically independent; this is clearly not perfectly correct, because the substrings overlap-but see the discussion in the final section. We also neglect the fact that a string of length \(r\) has only \(r-t+1\) substrings of length \(t\). Then the probability that a repetition of length \(t\) occurs is (approximately) \(K\left(n^{t}, r\right)\), and Table C. 1 above illustrates the order of magnitude of these numbers (when \(n=26\) ).

Theorem 3 immediately gives: For a random character string of length \(r \leq n^{t / 2}\) (over an \(n\) letter alphabet) the probability of a repetition of length \(t\) is \(<\frac{1}{2}\). That means: For random strings up to a length of \(n^{t / 2}\) a repetition of any substring of length \(t\) is fairly unlikely. Or to express it conversely:

For random strings of length \(r\) a repetition of any substring of length \(t\) is rather unlikely \((<50 \%)\) as long as
\[
\text { (A) } \quad t \geq 2 \cdot \frac{\log r}{\log n}
\]

For \(n=26\) the bound (A) is approximately \(t \geq 1.413 \cdot \log r\) (logarithm in base 10).

This is the main answer to the title question. For a nonmathematician maybe we would express it as follows:
- For texts of length 100, accidential repetitions of length 3 or more are rather unlikely; Table C. 1 gives the more exact result that the probability is \(<25 \%\).
- For texts of length 300 , accidential repetitions of length 4 or more are rather unlikely (Table C.1 probability \(<10 \%\) ), but at least one acci-
dental repetition of length 3 occurs with high probability (Table C.1: \(>90 \%\) ).

And so on-use formula (A), Table C.1, or Theorem 2 ,
One might wish to derive more statistical results on the probabilities of repetitions. However the simple statements given here are sufficient as a justification for Kasiski's method; in particular considering the cut point " \(50 \%\) " seems adequate for the cryptanalyst, even if this simplistic view is somewhat unsatisfactory for the mathematician.

\section*{C. 6 Kasiski's Test}

When the cryptanalyst carries out Kasiski's test he doesn't examine a random text. In order to apply the results of the preceding section we have to make one further simplifying assumption: a polyalphabetic ciphertext behaves randomly except for the effect of the period. Now when we find a repetition of length \(t\), and \(t\) is as least as large as in (A), then we are pretty sure that we have found a true (or causal) repetition and the period is a divisor of the distance. The smaller \(t\) is, the more we are prepared to reject some repetitions; again Table C. 1 gives more precise hints for ciphertexts of lenghts \(100,300,1000\), or 5000 . If we find a "long" repetition, we may assume with extremely high probability that it is a causal repetition.

\section*{C. 7 Discussion}

Are the theoretical results above exact enough for Kasiski's test in view of the simplyfing assumptions that we had to make? Here we give only some coarse empirical results, leaving room for more elaborate investigations.
1. May we really apply the theorems and the resulting Table C.1 to the substrings of a long character string? to get empirical evidence Wwe generated 100 random texts of lengths 100 and 300 each, 26 random texts of lengths 1000,5000 each, over the 26 character alphabet, and found no remarkable deviations from the theoretical results derived for independent strings.
2. Is the number of accidental repetitions in a polyalphabetic ciphertext really as low as in a random text? We encrypted 100 English plaintexts of length 300 with keys of lengths 6,10 , and 17 each (with mixed alphabets by the way). Here we found small deviations: The ciphertexts seem to have fewer accidental repetitions than random texts, see figures C. 1 and C. 2 for key lenghts 6 and 17. A partial explanation is given below.

These simulation results confirm that the formulas in this paper apply to polyalphabetic ciphertexts with negligeable deviations.

Here are some observations and heuristic arguments that could merit some further investigations:
- Why is the number of accidental repetitions in item 2 smaller than in random strings? One major effect is: there can be no accidental repetitions whose distance is a multiple of \(l\), the period of the cipher; each such repetition must be causal since ciphertext and key conform. Therefore we expect that the number of repetitions (for any length) is smaller by \(1 / l\). However this is not yet the complete truth: Non-accidental, but "false", repetitions may arise in some other ways, as shown in [1, Section 17.4]: when the key contains a repeated substring - as in "seventyseven" - or when key and plaintext contain the same word, for example if the key for a military text contains the word "division". It seems hard to adequately adjust a general model to fit these observations. But unfortunately in exceptional cases these effects can lead to annoying long "accidental" repetitions, not predicted by the estimates above.
- How many causal repetitions can we expect? This depends on the statistics of the plaintext language. Possible approaches are:
- Simulation. In the experiment of item 2 we also counted the causal repetitions and found significantly more causal than accidental repetitions. See Figures C. 1 and C. 2 for repetitions of length 3.
- Start with trigram freqencies and calculate the resulting probabilities for repetitions of length three in a ciphertext, depending on the key length, under suitable simplifying assumptions.
- Model the language by a Markov source of low order and derive the relevant probabilities.
- Consider the distribution of the number of repetitions of a fixed length - in random texts, or accidental or causal repetitions in ciphertexts. They all seem to follow a Poisson distribution. Determine the parameters.

Figures C. 1 and C. 2 show a selection of typical simulation results. The \(x\) axis represents the number of repetitions of length 3 in one text; note that one long repetition of length \(t \geq 3\) counts as \(t-2\) repetitions of length 3 . The \(y\)-value shows how often exactly \(x\) repetitions occurred in 100 texts (all of length 300 ). The fat gray line gives this frequency for random texts and serves as reference, it is the same in both diagrams. The thin gray line gives the frequency of \(x\) accidental repetitions, the black line the frequency of \(x\) causal repetitions in the polyalphabetic ciphertexts.


Figure C.1: Distribution of the number of repetitions in polyalphabetic ciphertexts, key length 6. \(x\)-axis: number of repetitions of length \(3, y\)-axis: number of occurrences of \(x\) repetitions. Fat gray line: random texts, thin gray line: accidental repetitions, black line: causal repetitions; one count of 31 causal repetitions falls outside the picture.


Figure C.2: Distribution of the number of repetitions, key length 17.

\section*{Appendix D}

\section*{Empirical Experiments with Language Statistics}

In this appendix we describe the experiments that led to empirical results on the language statistics

MFL \(=\) Most Frequent Letter score
BLW = Bigram Log-Weight score
\(\kappa=\) Coincidence Index of two texts
\(\varphi=\) Inner Coincidence Index of a text
\(\chi=\) Kullback's Cross-Product Sum
for English and German (and some also for French).

\section*{D. 1 Empirical Results on MFL Scores}

For English we take a text of 20000 letters, an extract from the Project Gutenberg etext of Kim, by Rudyard Kipling, http://www.gutenberg.org/ebooks/2226. The partial 20000 letter text is at http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/ Files/Kim20K.txt. We divide this text into 2000 substrings of 10 letters each. To this set of substrings we apply the Perl script http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Perl /fritestE.pl. The results are collected and evaluated in a spreadsheet, found at http://www.staff.uni-mainz.de/pommeren/Cryptology /Classic/Files/statFriE.xls.

We do the same for random text, constructed by taking 20000 random numbers between 0 and 25 from random.org, see .../Files/rnd10E.txt. The Perl script .../Perl/RandOrg.pl transforms the random numbers to text.

Figure D. 1 shows some characteristics of the distribution. Table D. 1 compares the expected and observed distributions. For random texts they match well, taking into account variations caused by drawing a sample. Also for English the observations seem to match the predicted values. The empirical values amount to a power of \(68 \%\) (instead of \(67 \%\) ) and a predictive value of \(75 \%\) ( \(75 \%\) ).

We repeat this procedure for German and French. As texts we take Schachnovelle by Stefan Zweig, http://gutenberg.spiegel.de /buch/7318/1, and De la Terre à la Lune by Jules Verne, http://www.gutenberg.org/ebooks/799. The 20000 letter extracts are in http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic /Files/Schach20K.txt and.. /Files/Lune20K.txt. We generate independent random texts, see .../Files/rnd10D.txt and \(\ldots /\) Files/rnd10F.txt. (The random texts being independent, the observed values for random texts differ.) The Perl scripts, adapted to the differing collections of most-frequent letters, are \(\ldots\)...Perl/fritestD.pl and \(\ldots\). Perl/fritestF.pl.

The results are in Figures D. 2 and D.3, and Tables D. 2 and D.3. The comprehensive evaluation is in the spreadsheets \(\ldots\)../Files/statFriD.xls and .../Files/statFriF.xls.

The empirical values amount to a power of \(63 \%\) (theory: \(67 \%\) ) and a predictive value of \(75 \%(75 \%)\) for German, and a power of \(87 \%(86 \%)\) and a predictive value of \(88 \%\) ( \(87 \%\) ).

Exercise. Verify the calculations of powers and predictive values.


Figure D.1: MFL scores for 2000 English (blue) and random (red) text chunks of 10 letters each

Table D.1: Expected and observed frequencies of MFL scores for 2000 English and 2000 random text chunks of 10 letters
\begin{tabular}{|c||c|c||c|c|}
\hline \multicolumn{1}{|c|}{} & \multicolumn{2}{c|}{ Random } & \multicolumn{2}{c|}{ English } \\
score & expected & observed & expected & observed \\
\hline 0 & 16 & 12 & 0 & 0 \\
1 & 98 & 102 & 0 & 0 \\
2 & 274 & 256 & 2 & 2 \\
3 & 456 & 491 & 8 & 11 \\
4 & 500 & 494 & 40 & 52 \\
5 & 374 & 380 & 134 & 132 \\
6 & 194 & 182 & 318 & 316 \\
7 & 70 & 66 & 514 & 513 \\
8 & 16 & 15 & 546 & 587 \\
9 & 2 & 1 & 344 & 304 \\
10 & 0 & 1 & 98 & 83 \\
\hline
\end{tabular}


Figure D.2: MFL scores for 2000 German (blue) and random (red) text chunks of 10 letters each

Table D.2: Expected and observed frequencies of MFL scores for 2000 German and 2000 random text chunks of 10 letters
\begin{tabular}{|c||c|c||c|c|}
\hline \multicolumn{1}{|c|}{} & \multicolumn{2}{c|}{ Random } & \multicolumn{2}{c|}{ German } \\
score & expected & observed & expected & observed \\
\hline 0 & 16 & 22 & 0 & 0 \\
1 & 98 & 111 & 0 & 0 \\
2 & 274 & 287 & 0 & 3 \\
3 & 456 & 443 & 6 & 4 \\
4 & 500 & 493 & 32 & 31 \\
5 & 374 & 363 & 116 & 110 \\
6 & 194 & 184 & 290 & 277 \\
7 & 70 & 78 & 500 & 553 \\
8 & 16 & 18 & 564 & 632 \\
9 & 2 & 1 & 378 & 314 \\
10 & 0 & 0 & 114 & 76 \\
\hline
\end{tabular}


Figure D.3: MFL scores for 2000 French (blue) and random (red) text chunks of 10 letters each

Table D.3: Expected and observed frequencies of MFL scores for 2000 French and 2000 random text chunks of 10 letters
\begin{tabular}{|c||c|c||c|c|}
\hline \multicolumn{1}{|c|}{} & \multicolumn{2}{c|}{ Random } & \multicolumn{2}{c|}{ French } \\
score & expected & observed & expected & observed \\
\hline 0 & 16 & 17 & 0 & 0 \\
1 & 98 & 102 & 0 & 0 \\
2 & 274 & 290 & 0 & 0 \\
3 & 456 & 463 & 2 & 1 \\
4 & 500 & 491 & 14 & 5 \\
5 & 374 & 376 & 62 & 18 \\
6 & 194 & 188 & 196 & 160 \\
7 & 70 & 61 & 424 & 472 \\
8 & 16 & 11 & 602 & 719 \\
9 & 2 & 1 & 506 & 484 \\
10 & 0 & 0 & 192 & 141 \\
\hline
\end{tabular}

\section*{D. 2 Empirical Results on BLW Scores}

We extract 20000 letters from each of the texts Kim, Schachnovelle, and De la Terre à la Lune, and decompose them into 2000 chunks à 10 letters, see the files eng10a.txt, ger10a.txt, and fra10a.txt in the directory http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/ Files/. Likewise we generate random texts, see rnd10Ea.txt, rnd10Da.txt, and rnd10Fa.txt. We collect the results in the spreadsheets ER10res.xls, DR10res.xls, and FR10res.xls.

The results are summarized in Tables D.4, D.5, D.6, and Figures D.4, D.5. D. 6

The empirical results for the \(5 \%\)-level of the error of the first kind are as follows.

English. We take the threshold value \(T=11\) for English texts. Then 86 of 2000 English scores are \(\leq T\), the error of the first kind is \(\alpha=\) \(86 / 2000=4.2 \%\). For random texts 1964 of 2000 scores are \(\leq T\), the power is \(1964 / 2000=99.5 \%\). There are 36 random scores and 1914 English scores > T, the predictive value for English is 1914/1950 = \(98.2 \%\).

German. We take the threshold value \(T=12\) for German texts. Then 84 of 2000 German scores are \(\leq T\), the error of the first kind is \(\alpha=\) \(84 / 2000=4.2 \%\). For random texts 1991 of 2000 scores are \(\leq T\), the power is \(1991 / 2000=99.6 \%\). There are 9 random scores and 1916 German scores \(>T\), the predictive value for German is 1916/1925 \(=\) \(99.5 \%\).

French. We take the threshold value \(T=11\) for French texts. Then 58 of 2000 French scores are \(\leq T\), the error of the first kind is \(\alpha=58 / 2000=\) \(2.9 \%\). For random texts 1967 of 2000 scores are \(\leq T\), the power is \(1967 / 2000=98.3 \%\). There are 33 random scores and 1942 French scores \(>T\), the predictive value for French is \(1942 / 1975=98.3 \%\).

The BLW score is significantly stronger than the MFL score.

Table D.4: Frequencies of BLW scores for English vs. random 10 letter texts
\begin{tabular}{|c|c|c|}
\hline Score & Random & English \\
\hline \(0 \leq x \leq 1\) & 32 & 0 \\
\(1<x \leq 2\) & 97 & 0 \\
\(2<x \leq 3\) & 187 & 0 \\
\(3<x \leq 4\) & 254 & 0 \\
\(4<x \leq 5\) & 324 & 3 \\
\(5<x \leq 6\) & 301 & 1 \\
\(6<x \leq 7\) & 271 & 4 \\
\(7<x \leq 8\) & 216 & 1 \\
\(8<x \leq 9\) & 156 & 8 \\
\(9<x \leq 10\) & 77 & 18 \\
\(10<x \leq 11\) & 49 & 51 \\
\(11<x \leq 12\) & 25 & 120 \\
\(12<x \leq 13\) & 6 & 196 \\
\(13<x \leq 14\) & 3 & 322 \\
\(14<x \leq 15\) & 2 & 413 \\
\(15<x \leq 16\) & 0 & 406 \\
\(16<x \leq 17\) & 0 & 255 \\
\(17<x \leq 18\) & 0 & 157 \\
\(18<x \leq 19\) & 0 & 40 \\
\(19<x<\infty\) & 0 & 5 \\
\hline
\end{tabular}


Figure D.4: BLW scores for 2000 English (red) and random (blue) text chunks of 10 letters each

Table D.5: Frequencies of BLW scores for German vs. random texts
\begin{tabular}{|c|c|c|}
\hline Score & Random & German \\
\hline \(0 \leq x \leq 1\) & 38 & 0 \\
\(1<x \leq 2\) & 105 & 0 \\
\(2<x \leq 3\) & 207 & 0 \\
\(3<x \leq 4\) & 269 & 0 \\
\(4<x \leq 5\) & 296 & 0 \\
\(5<x \leq 6\) & 319 & 0 \\
\(6<x \leq 7\) & 256 & 0 \\
\(7<x \leq 8\) & 185 & 1 \\
\(8<x \leq 9\) & 143 & 2 \\
\(9<x \leq 10\) & 96 & 15 \\
\(10<x \leq 11\) & 47 & 21 \\
\(11<x \leq 12\) & 30 & 45 \\
\(12<x \leq 13\) & 4 & 95 \\
\(13<x \leq 14\) & 4 & 202 \\
\(14<x \leq 15\) & 1 & 332 \\
\(15<x \leq 16\) & 0 & 411 \\
\(16<x \leq 17\) & 0 & 396 \\
\(17<x \leq 18\) & 0 & 298 \\
\(18<x \leq 19\) & 0 & 134 \\
\(19<x \leq 20\) & 0 & 41 \\
\(20<x<\infty\) & 0 & 7 \\
\hline
\end{tabular}


Figure D.5: BLW scores for 2000 German (red) and random (blue) text chunks of 10 letters each


Figure D.6: BLW scores for 2000 French (red) and random (blue) text chunks of 10 letters each

Table D.6: Frequencies of BLW scores for French vs. random texts
\begin{tabular}{|c|c|c|}
\hline Score & Random & French \\
\hline \(0 \leq x \leq 1\) & 122 & 0 \\
\(1<x \leq 2\) & 195 & 0 \\
\(2<x \leq 3\) & 266 & 0 \\
\(3<x \leq 4\) & 315 & 0 \\
\(4<x \leq 5\) & 274 & 0 \\
\(5<x \leq 6\) & 264 & 0 \\
\(6<x \leq 7\) & 215 & 2 \\
\(7<x \leq 8\) & 140 & 0 \\
\(8<x \leq 9\) & 94 & 10 \\
\(9<x \leq 10\) & 53 & 15 \\
\(10<x \leq 11\) & 29 & 31 \\
\(11<x \leq 12\) & 21 & 50 \\
\(12<x \leq 13\) & 8 & 114 \\
\(13<x \leq 14\) & 2 & 239 \\
\(14<x \leq 15\) & 2 & 322 \\
\(15<x \leq 16\) & 0 & 415 \\
\(16<x \leq 17\) & 0 & 420 \\
\(17<x \leq 18\) & 0 & 258 \\
\(18<x \leq 19\) & 0 & 115 \\
\(19<x \leq 20\) & 0 & 8 \\
\(20<x<\infty\) & 0 & 1 \\
\hline
\end{tabular}


Figure D.7: Frequency of coincidence counts for 2000 English text pairs of 100 letters-to get coincidence indices divide \(x\)-values by 100

\section*{D. 3 Empirical Values of the Coincidence Index}

\section*{The Kappa Distribution for English Texts}

We want to learn more about the distribution of coincidence indices \(\kappa(a, b)\) for English texts (or text chunks) \(a\) and \(b\). To this end we take a large English text-in this case the book The Poisoned Pen by Arthur B. Reeve (that by the way contains a cryptogram) from Project Gutenberg - and chop it into chunks \(a, b, c, d, \ldots\) of \(r\) letters each. Then we count \(\kappa(a, b), \kappa(c, d), \ldots\) and list the values in the first column of a spreadsheet for easy evaluation. See the Perl program kapstat.pl in http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Perl/ and the spreadsheet EnglKap.xls in http://www.staff.uni-mainz.de/ pommeren/Cryptology/Classic/Files/

In fact we also record the pure incidence counts as integers. This makes it easier drawing a histogram without generating discretization artefacts.

The text has 449163 letters. Taking \(r=100\) we get 2245 text pairs. We take the first 2000 of them. Table D. 7 and Figure D. 7 show some characteristics of the distribution.

\section*{The Kappa Distribution for German Texts}

We repeat this procedure for German texts, using Scepter und Hammer by Karl May from the web page of the Karl-May-Gesellschaft. We take the first 2000 text pairs. The results are in Table D. 8 and Figure D. 8 .

Table D.7: Distribution of \(\kappa\) for 2000 English text pairs of 100 letters
\begin{tabular}{|ll|ll|}
\hline Minimum: & 0.00 & & \\
Median: & 0.06 & Mean value: & 0.0669 \\
Maximum: & 0.25 & Standard dev: & 0.0272 \\
1st quartile: & 0.05 & \(5 \%\) quantile: & 0.0300 \\
3rd quartile: & 0.08 & \(95 \%\) quantile: & 0.1200 \\
\hline
\end{tabular}


Figure D.8: Frequency of coincidence counts for 2000 German text pairs of 100 letters-to get coincidence indices divide x-values by 100

Table D.8: Distribution of \(\kappa\) for 2000 German text pairs of 100 letters
\begin{tabular}{|ll|ll|}
\hline Minimum: & 0.00 & & \\
Median: & 0.08 & Mean value: & 0.0787 \\
Maximum: & 0.26 & Standard dev: & 0.0297 \\
1st quartile: & 0.06 & \(5 \%\) quantile: & 0.0300 \\
3rd quartile: & 0.10 & 95\% quantile: & 0.1300 \\
\hline
\end{tabular}


Figure D.9: Frequency of coincidence counts for 2000 random text pairs of 100 letters-to get coincidence indices divide \(x\)-values by 100

Table D.9: Distribution of \(\kappa\) for 2000 random text pairs of 100 letters
\begin{tabular}{|ll|ll|}
\hline Minimum: & 0.00 & & \\
Median: & 0.04 & Mean value: & 0.040 \\
Maximum: & 0.12 & Standard dev: & 0.020 \\
1st quartile: & 0.03 & \(5 \%\) quantile: & 0.010 \\
3rd quartile: & 0.05 & 95\% quantile: & 0.070 \\
\hline
\end{tabular}

\section*{The Kappa Distribution for Random Texts}

Finally the same procedure for random texts. To this end we generate a 400000 character text by the built-in (pseudo-) random generator of Perl. Since the simulation might depend on the quality of the random generator we enhance the random text in the following way: We generate 8132 random letters by the cryptographically strong BBS-generator and use them as key for a BELASO encryption of our random text, repeating the key several times. In spite of this periodicity we may assume that the result gives a 400000 character random text of good quality. This provides us with 2000 text pairs of length 100. The results are in Table D.9 and Figure D.9. Note that the values fit the theoretical values almost perfectly.


Figure D.10: Frequency of inner coincidence counts for 2000 English texts of 100 letters-to get \(\varphi\) values divide \(x\)-values by 4950

Table D.10: Distribution of \(\varphi\) for 2000 English texts of 100 letters
\begin{tabular}{|ll|ll|}
\hline Minimum: & 0.0481 & & \\
Median: & 0.0634 & Mean value: & 0.0639 \\
Maximum: & 0.0913 & Standard dev: & 0.0063 \\
1st quartile: & 0.0594 & \(5 \%\) quantile: & 0.0549 \\
3rd quartile: & 0.0677 & \(95 \%\) quantile: & 0.0750 \\
\hline
\end{tabular}

\section*{D. 4 The Distribution of the Inner Coincidence Index}

\section*{The Phi Distribution for English Texts}

For empirically determining the distribution of the inner coincidence index \(\varphi(a)\) we use the Perl program phistat.pl from http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Perl/. For English texts (or text chunks) \(a\), we again take a large English textin this case the book The Fighting Chance by Robert W. Chambers from Project Gutenberg-and chop it into chunks \(a, b, c, d, \ldots\) of \(r\) letters each. Then we count \(\varphi(a), \varphi(b), \ldots\) and list the values in the first column of a spreadsheet. See the file EnglPhi.xls in http:// www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Files/. The text has 602536 letters. We take the first 262006 of them and consider the first 2000 pieces of 100 letters each. Table D. 10 and Figure D. 10 show some characteristics of the distribution.


Figure D.11: Frequency of inner coincidence counts for 2000 German texts of 100 letters-to get \(\varphi\) values divide \(x\)-values by 4950

Table D.11: Distribution of \(\varphi\) for 2000 German texts of 100 letters
\begin{tabular}{|ll|ll|}
\hline Minimum: & 0.0517 & & \\
Median: & 0.0752 & Mean value: & 0.0763 \\
Maximum: & 0.1152 & Standard dev: & 0.0099 \\
1st quartile: & 0.0689 & \(5 \%\) quantile: & 0.0618 \\
3rd quartile: & 0.0828 & 95\% quantile: & 0.0945 \\
\hline
\end{tabular}

\section*{The Phi Distribution for German Texts}

We repeat this procedure for German texts, using Scepter und Hammer by Karl May. We already consumed its first 400000 letters for \(\kappa\). Now we take the next 200000 letters - in fact we skip 801 letters in between-and form 2000 text chunks with 100 letters each. The results are in Table D. 11 and Figure D.11.

\section*{The Phi Distribution for Random Texts}

And now the same procedure for random text. The results are in Table D. 12 and Figure D.12,

\section*{The Phi Distribution for 26 Letter Texts}

Since the \(\varphi\) test performs so excellently for 100 letter texts we dare to look at 26 letter texts - a text length that occurs in the Meet-in-the-Middle attack against rotor machines.

Here we give the results as tables only.
The decision threshold on the \(5 \%\)-level is 0.0585 . For English texts the test has a power of only \(50 \%\), for German, near \(75 \%\). So we have a method


Figure D.12: Frequency of inner coincidence counts for 2000 random texts of 100 letters-to get \(\varphi\) values divide \(x\)-values by 4950

Table D.12: Distribution of \(\varphi\) for 2000 random texts of 100 letters
\begin{tabular}{|ll|ll|}
\hline Minimum: & 0.0331 & & \\
Median: & 0.0398 & Mean value: & 0.0401 \\
Maximum: & 0.0525 & Standard dev: & 0.0028 \\
1st quartile: & 0.0382 & \(5 \%\) quantile: & 0.0360 \\
3rd quartile: & 0.0418 & \(95 \%\) quantile: & 0.0451 \\
\hline
\end{tabular}

Table D.13: Distribution of \(\varphi\) for 2000 English texts of 26 letters
\begin{tabular}{|ll|ll|}
\hline Minimum: & 0.0227 & & \\
Median: & 0.0585 & Mean value: & 0.0606 \\
Maximum: & 0.1385 & Standard dev: & 0.0154 \\
1st quartile: & 0.0492 & \(5 \%\) quantile: & 0.0400 \\
3rd quartile: & 0.0677 & 95\% quantile: & 0.0892 \\
\hline
\end{tabular}

Table D.14: Distribution of \(\varphi\) for 2000 German texts of 26 letters
\begin{tabular}{|ll|ll|}
\hline Minimum: & 0.0308 & & \\
Median: & 0.0708 & Mean value: & 0.0725 \\
Maximum: & 0.1785 & Standard dev: & 0.0204 \\
1st quartile: & 0.0585 & \(5 \%\) quantile: & 0.0431 \\
3rd quartile: & 0.0831 & \(95 \%\) quantile: & 0.1108 \\
\hline
\end{tabular}
to recognize monoalphabetic ciphertext that works fairly well for texts as short as 26 letters.

Table D.15: Distribution of \(\varphi\) for 2000 random texts of 26 letters
\begin{tabular}{|ll|ll|}
\hline Minimum: & 0.0154 & & \\
Median: & 0.0400 & Mean value: & 0.0401 \\
Maximum: & 0.0954 & Standard dev: & 0.0112 \\
1st quartile: & 0.0338 & \(5 \%\) quantile: & 0.0246 \\
3rd quartile: & 0.0462 & \(95 \%\) quantile: & 0.0585 \\
\hline
\end{tabular}

\section*{D. 5 Kullback's Cross-Product Sum Statistic}

We collect empirical results for 2000 pairs of 100 letter texts using chistat.pl from http://www.staff.uni-mainz.de/pommeren/ Cryptology/Classic/Perl/. For English we use the book Dr Thorndyke Short Story Omnibus by R. Austin Freeman from Project Gutenberg. We extract a first part of 402347 letters (Thorn1.txt) and take the first 400000 of them for our statistic. In the same way for German we use Die Juweleninsel by Karl May from Karl-MayGesellschaft (Juwelen1.txt, 434101 letters). For random texts we generate 400000 letters by Perl's random generator (RndT400K.txt). (All files in http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/ Files/.)

The results are in Tables D.16, D.17, and D.18, We see that \(\chi\)-in contrast with the coincidence index \(\kappa\)-performs extremely well, in fact in our experiments it even completely separates English and German texts from random texts of length 100 . It is a test with power near \(100 \%\) and error probability near \(0 \%\). The \(\chi\) test even distinguishes between English and German texts at the \(5 \%\) error level with a power of almost \(75 \%\). For this assertion compare the \(95 \%\) quantile for English with the first quartile for German.

Table D.16: Distribution of \(\chi\) for 2000 English text pairs of 100 letters
\begin{tabular}{|ll|ll|}
\hline Minimum: & 0.0500 & & \\
Median: & 0.0660 & Mean value: & 0.0663 \\
Maximum: & 0.0877 & Standard dev: & 0.0049 \\
1st quartile: & 0.0630 & \(5 \%\) quantile: & 0.0587 \\
3rd quartile: & 0.0693 & 95\% quantile: & 0.0745 \\
\hline
\end{tabular}

The results for 100 letter texts encourage us to try 26 letter texts. To this end we need 104000 letters for each language. We extract the next 104009 letters from Dr Thorndyke Short Story Omnibus (Thorn2.txt), and the next

Table D.17: Distribution of \(\chi\) for 2000 German text pairs of 100 letters
\begin{tabular}{|ll|ll|}
\hline Minimum: & 0.0578 & & \\
Median: & 0.0792 & Mean value: & 0.0794 \\
Maximum: & 0.1149 & Standard dev: & 0.0074 \\
1st quartile: & 0.0742 & \(5 \%\) quantile: & 0.0677 \\
3rd quartile: & 0.0840 & \(95 \%\) quantile: & 0.0923 \\
\hline
\end{tabular}

Table D.18: Distribution of \(\chi\) for 2000 random text pairs of 100 letters
\begin{tabular}{|ll|ll|}
\hline Minimum: & 0.0337 & & \\
Median: & 0.0400 & Mean value: & 0.0400 \\
Maximum: & 0.0475 & Standard dev: & 0.0020 \\
1st quartile: & 0.0387 & \(5 \%\) quantile: & 0.0367 \\
3rd quartile: & 0.0413 & \(95 \%\) quantile: & 0.0433 \\
\hline
\end{tabular}

Table D.19: Distribution of \(\chi\) for 2000 English text pairs of 26 letters
\begin{tabular}{|ll|ll|}
\hline Minimum: & 0.0266 & & \\
Median: & 0.0666 & Mean value: & 0.0666 \\
Maximum: & 0.1169 & Standard dev: & 0.0120 \\
1st quartile: & 0.0577 & \(5 \%\) quantile: & 0.0488 \\
3rd quartile: & 0.0740 & \(95 \%\) quantile: & 0.0873 \\
\hline
\end{tabular}

104293 letters from Die Juweleninsel (Juwelen2.txt). We construct random text by taking 104000 random numbers between 0 and 25 from random.org (RndT104K.txt). The results are in Tables D.19, D.20, and D.21. The \(\chi\)-test is quite strong even for 26 letters: At the \(5 \%\) error level its power is around \(91 \%\) for English, \(98 \%\) for German.

Table D.20: Distribution of \(\chi\) for 2000 German text pairs of 26 letters
\begin{tabular}{|ll|ll|}
\hline Minimum: & 0.0325 & & \\
Median: & 0.0784 & Mean value: & 0.0793 \\
Maximum: & 0.1538 & Standard dev: & 0.0154 \\
1st quartile: & 0.0680 & \(5 \%\) quantile: & 0.0562 \\
3rd quartile: & 0.0888 & \(95 \%\) quantile: & 0.1065 \\
\hline
\end{tabular}

Table D.21: Distribution of \(\chi\) for 2000 random text pairs of 26 letters
\begin{tabular}{ll|ll|}
\hline Minimum: & 0.0178 & & \\
Median: & 0.0385 & Mean value: & 0.0386 \\
Maximum: & 0.0680 & Standard dev: & 0.0075 \\
1st quartile: & 0.0340 & \(5 \%\) quantile: & 0.0266 \\
3rd quartile: & 0.0429 & \(95 \%\) quantile: & 0.0518 \\
\hline
\end{tabular}

\section*{Appendix E}

\section*{The Euclidean Algorithm}

\section*{E. 1 The Algorithm}

Euclid's algorithm gives the greatest common divisor (gcd) of two integers,
\[
\operatorname{gcd}(a, b)=\max \{d \in \mathbb{Z}|d| a, d \mid b\}
\]

If for simplicity we define \(\operatorname{gcd}(0,0)=0\), we have a function
\[
\operatorname{gcd}: \mathbb{Z} \times \mathbb{Z} \longrightarrow \mathbb{N}
\]
with the following properties:
Lemma 1 For any \(a, b, c, q \in \mathbb{Z}\) we have:
(i) \(\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a)\).
(ii) \(\operatorname{gcd}(a,-b)=\operatorname{gcd}(a, b)\).
(iii) \(\operatorname{gcd}(a, 0)=|a|\).
(iv) \(\operatorname{gcd}(a-q b, b)=\operatorname{gcd}(a, b)\).

Proof. Trivial; for (iv) use the equivalence \(d|a, b \Longleftrightarrow d| a-q b, b . \diamond\)
One usually writes Euclid's algorithm as a sequence of divisions with remainder:
\[
r_{0}=|a|, r_{1}=|b|, \ldots, r_{i-1}=q_{i} r_{i}+r_{i+1},
\]
where \(q_{i}\) is the integer quotient and \(r_{i+1}\) is the unique division remainder with \(0 \leq r_{i+1}<r_{i}\). As soon as \(r_{n} \neq 0\) and \(r_{n+1}=0\), we have \(r_{n}=\operatorname{gcd}(a, b)\). For from Lemma 1 we get
\[
\operatorname{gcd}(a, b)=\operatorname{gcd}\left(r_{0}, r_{1}\right)=\operatorname{gcd}\left(r_{1}, r_{2}\right)=\ldots=\operatorname{gcd}\left(r_{n}, 0\right)=r_{n} .
\]

Since moreover
\[
r_{1}>r_{2}>\ldots>r_{i} \geq 0 \quad \text { for all } i,
\]
we reach the terminating condition \(r_{n+1}=0\) after at most \(n \leq|b|\) iteration steps (i. e. divisions).

A small additional consideration even gives more. Note that each \(r_{i}\) is an integer linear combination of the two preceeding division remainders, hence of \(|a|\) and \(|b|\) :
\[
r_{i+1} \in \mathbb{Z} r_{i}+\mathbb{Z} r_{i-1} \subseteq \ldots \subseteq \mathbb{Z} r_{1}+\mathbb{Z} r_{0}=\mathbb{Z} a+\mathbb{Z} b
\]
for \(r_{0}\) and \(r_{1}\) this is immediate, and in the general case it follows by induction: Let \(r_{j}=|a| x_{j}+|b| y_{j}\) for \(0 \leq j \leq i\). Then
\[
\begin{aligned}
r_{i+1}=r_{i-1}-q_{i} r_{i} & =|a| x_{i-1}+|b| y_{i-1}-q_{i}|a| x_{i}-q_{i}|b| y_{i} \\
& =|a|\left(x_{i-1}-q_{i} x_{i}\right)+|b|\left(y_{i-1}-q_{i} y_{i}\right) .
\end{aligned}
\]

This consideration even gives an explicit construction for the coefficients; for they sastisfy the recursive formulas
\[
\begin{array}{lll}
x_{i+1}=x_{i-1}-q_{i} x_{i} & \text { with } & x_{0}=1, x_{1}=0, \\
y_{i+1}=y_{i-1}-q_{i} y_{i} & \text { with } & y_{0}=0, y_{1}=1,
\end{array}
\]
that agree with the formula for the \(r_{i}\) except for the start values:
\[
r_{i+1}=r_{i-1}-q_{i} r_{i} \quad \text { with } \quad r_{0}=|a|, r_{1}=|b| .
\]

The extended Euclidean algorithm (sometimes called algorithm of LAGRANGE) is the synopsis of these three recursive formulas. In summary we have shown (if we properly adjust the signs of \(x_{n}\) and \(y_{n}\) ):

Proposition 1 The extended Euclidean algorithm gives the greatest common divisor \(d\) of two integers \(a\) and \(b\) and integer coefficients \(x\) and \(y\) with \(a x+b y=d\) in finitely many steps.

\section*{Bemerkungen}
1. The least common multiple is efficiently calculated by the formula
\[
\operatorname{lcm}(a, b)=\frac{a b}{\operatorname{gcd}(a, b)} .
\]
2. One calculates the greatest common divisor of several inegers by the formula
\[
\operatorname{gcd}\left(\ldots\left(\operatorname{gcd}\left(\operatorname{gcd}\left(a_{1}, a_{2}\right), a_{3}\right) \ldots, a_{r}\right) ;\right.
\]
this allows for a bit of optimisation. An analogous statement holds for the least common multiple.

\section*{E. 2 Analysis of Euclid's Algorithm}

The algorithm of the last section has a hidden problem: Though the quotients and division remainders are safely bounded by the input parameters, the coefficients \(x_{i}\) and \(y_{i}\) are uncontrolled at first sight. How can we guarantee that we don't get an overflow, if we use the usual integer arithmetic with bounded precision? Now, the following reasoning controls the growth:

Lemma 2 For the coefficients \(x_{i}\) and \(y_{i}\) in the extended Euclidean algorithm we have:
(i) \(x_{i}>0\), if \(i\) is even, \(x_{i} \leq 0\), if \(i\) is odd, and \(\left|x_{i+1}\right| \geq\left|x_{i}\right|\) for \(i=1, \ldots, n\).
(ii) \(y_{i} \leq 0\), if \(i\) is even, \(y_{i}>0\), if \(i\) is odd, and \(\left|y_{i+1}\right| \geq\left|y_{i}\right|\) for \(i=2, \ldots, n\).
(iii) \(x_{i+1} y_{i}-x_{i} y_{i+1}=(-1)^{i+1}\) for \(i=0, \ldots, n\); in particular the \(x_{i}\) and \(y_{i}\) are always coprime for \(i=0, \ldots, n+1\).
(iv) \(\left|x_{i}\right| \leq|b|,\left|y_{i}\right| \leq|a|\) for \(i=0, \ldots, n+1\), if \(b \neq 0\) resp. \(a \neq 0\).

Proof. (Sketch.) Show (i), (ii), and (iii) by induction. From \(0=r_{n+1}=\) \(|a| x_{n+1}+|b| y_{n+1}\) then follows \(x_{n+1} \mid b\) and \(y_{n+1} \mid a\).

The Euclidean algorithm is very efficient - the number of iteration steps grows only linearly with the number of digits of the input parameters, the entire execution time only quadratically. In the following we perform a quite exact analysis. Without loss of generality we may assume \(b \neq 0\).

Given the length \(n\) of the division chain - how large must \(b\) be? We have \(r_{n} \geq 1, r_{n-1} \geq 2\), and \(r_{i-1} \geq r_{i}+r_{i+1}\). The Fibonacci numbers \(F_{n}\) are recursively defined by
\[
F_{0}=0, F_{1}=1, F_{n}=F_{n-1}+F_{n-2} \quad \text { for } n \geq 2 .
\]

Hence by induction we get \(r_{i} \geq F_{n+2-i}\), where the induction starts with \(r_{n} \geq 1=F_{2}, r_{n-1} \geq 2=F_{3}\); in particular we get \(|b| \geq F_{n+1}\). In other words:

Proposition 2 (Binet 1841) For \(a, b \in \mathbb{Z}\) with \(0<b<F_{n+1}\) the Eucliden algorithm finds the greatest common divisor in at most \(n-1\) iteration steps.

Addendum. This is true also for \(b=F_{n+1}\), except if \(a \equiv F_{n+2} \equiv F_{n}\) \((\bmod b)\).

This gives a quite elegant mathematical formulation, but not yet an explicit bound. However the growth of the Fibonacci numbers is well-known. One can express it by the golden section \(\varphi=\frac{1+\sqrt{5}}{2}\), that is defined by \(\varphi^{2}-\varphi-1=0\).

Lemma 3 For a real number \(c \in \mathbb{R}\) and an index \(k \in \mathbb{N}\) let \(F_{k}>c \cdot \varphi^{k}\) and \(F_{k+1}>c \cdot \varphi^{k+1}\). Then \(F_{n}>c \cdot \varphi^{n}\) for all \(n \geq k\).

Proof. (By induction.)
\[
F_{n}=F_{n-1}+F_{n-2}>c \varphi^{n-1}+c \varphi^{n-2}=c \varphi^{n-2}(\varphi+1)=c \varphi^{n}
\]
for \(n \geq k+2\).

Corollary \(1 F_{n+1}>0.43769 \cdot \varphi^{n+1}\) for \(n \geq 2\).
Proof.
\[
\begin{aligned}
\varphi^{2} & =\varphi+1=\frac{3+\sqrt{5}}{2} \\
\varphi^{3} & =\varphi^{2}+\varphi=2+\sqrt{5} \\
\varphi^{4} & =\varphi^{3}+\varphi^{2}=\frac{7+3 \sqrt{5}}{2}
\end{aligned}
\]

Therefore
\[
\begin{aligned}
& \frac{F_{3}}{\varphi^{3}}=\frac{2}{2+\sqrt{5}}=\frac{2(\sqrt{5}-2)}{1}=2 \sqrt{5}-4>0.47 \\
& \frac{F_{4}}{\varphi^{4}}=\frac{3 \cdot 2}{7+3 \sqrt{5}}=\frac{6(7-3 \sqrt{5})}{49-45}=\frac{21-9 \sqrt{5}}{2}>0.43769
\end{aligned}
\]
which proves the assertion. \(\diamond\)

Corollary 2 Let \(a, b \in \mathbb{Z}\) with \(b \geq 2\). Then the number of iteration steps in the Euclidean algorithm for \(\operatorname{gcd}(a, b)\) is less then \(0.718+4.785 \cdot \log _{10}(b)\).

Proof. If the division chain has length \(n\), then \(b \geq F_{n+1}\),
\[
\begin{aligned}
& \qquad b \geq F_{n+1}>0.43769 \cdot \varphi^{n+1} \\
& \log _{10}(b)>\log _{10}(0.43769)+(n+1) \cdot \log _{10}(\varphi)>-0.35884+0.20898 \cdot(n+1) \\
& \text { hence } n<0.718+4.785 \cdot \log _{10}(b) . \diamond
\end{aligned}
\]

Somewhat coarser, but simply to remember, is the following version:
Corollary 3 Let \(a, b \in \mathbb{Z}\) with \(b \geq 2\). Then the number of iteration steps in the Euclidean algorithm for \(\operatorname{gcd}(a, b)\) is less then five times the number of digits of \(b\) except for \(b=8, a \equiv 5(\bmod 8)\), where 5 iteration steps are needed.

If we additionally consider the costs for the multiplication and division of large numbers depending on their number of digits, we get a working time that grows quadratically with the number of digits as shown in the following.

If \(a\) has \(m\) digits (with respect to a base \(B\) of the integers), and \(b\) has \(p\) digits, then the expense for the first division alone is already \(\leq c \cdot(m-p) \cdot p\); here \(c\) is a constant that is at most twice as large as the constant that bounds the expense for "multiplying quotient \(\times\) divisor back". Considering actual computer architectures we would take \(B=2^{32}\) or \(2^{64}\), and count the basic operations addition, subtraction, multiplication, division with remainder, and comparison of 1-digit numbers (in base \(B\) ) as primitive steps. Fortunately the involved numbers shrink in an exponential way along the Euclidean division chain. The division step
\[
r_{i-1}=q_{i} r_{i}+r_{i+1}
\]
yet requires \(\leq c \cdot \log _{B}\left(q_{i}\right) \log _{B}\left(r_{i}\right)\) primitive operations, hence the entire division chain needs
\[
\begin{aligned}
A(a, b) & \leq c \cdot \sum_{i=1}^{n} \log _{B}\left(q_{i}\right) \log _{B}\left(r_{i}\right) \leq c \cdot \log _{B}|b| \cdot \sum_{i=1}^{n} \log _{B}\left(q_{i}\right) \\
& =c \cdot \log _{B}|b| \cdot \log _{B}\left(q_{1} \cdots q_{n}\right) .
\end{aligned}
\]

We further estimate the product of the \(q_{i}\) :
\[
|a|=r_{0}=q_{1} r_{1}+r_{2}=q_{1}\left(q_{2} r_{2}+r_{3}\right)+r_{2}=\ldots=q_{1} \cdots q_{n} r_{n}+\cdots \geq q_{1} \cdots q_{n}
\]
and get the coarse bound
\[
A(a, b) \leq c \cdot \log _{B}|b| \cdot \log _{B}|a| .
\]

Proposition 3 The number of primitive operations in the Euclidean algorithm for two integers \(a\) and \(b\) with \(\leq m\) digits is \(\leq c \cdot m^{2}\).

Note that \(c\) is a known small constant.
So the expense for the Euclidean algorithm with input \(a\) and \(b\) is not significantly larger then the expense for multiplying \(a\) and \(b\). We won't discuss sharper estimates or potential enhancements of this bound. But note that an algorithm by Lehmer allows replacing a great amount of divisions of large numbers in the division chain by primitive operations.

\section*{E. 3 Congruence Division}

The extended Euclidean algorithm also provides a solution of the - not entirely trivial-problem of efficient division in the ring \(\mathbb{Z} / n \mathbb{Z}\) of integers \(\bmod n\).

Proposition 4 Let \(n \in \mathbb{N}, n \geq 2\), and \(a, b \in \mathbb{Z}\) with \(\operatorname{gcd}(b, n)=d\). Then a is divisible by \(b\) in \(\mathbb{Z} / n \mathbb{Z}\), if and only if \(d \mid a\). In this case there are exactly \(d\) solutions \(z\) of \(z b \equiv a(\bmod n)\) with \(0 \leq z<n\), and any two of them differ by a multiple of \(n / d\). If \(d=x n+y b\) and \(a=t d\), then \(z=y t\) is a solution.

Proof. If \(b\) divides \(a\), then \(a \equiv b z(\bmod n)\), so \(a=b z+k n\), hence \(d \mid a\). For the converse let \(a=t d\). By Proposition 1 we find \(x, y\) with \(n x+b y=d\); hence \(n x t+b y t=a\) and byt \(\equiv a(\bmod n)\). If also \(a \equiv b w(\bmod n)\), then \(b(z-w) \equiv 0(\bmod n)\), hence \(z-w\) a multiple of \(n / d\).

Proposition 4 contains an explicit algorithm for the division. An important special case is \(d=1\) with a notably simple formulation:

Corollary 1 If \(b\) and \(n\) are coprime, then each \(a\) in \(\mathbb{Z} / n \mathbb{Z}\) is divisible by \(b\) in a unique way.

Since \(d=1\) the calculation of the inverse \(y\) of \(b\) follows immediately from the formula \(1=n x+b y\); for \(b y \equiv 1(\bmod n)\).

Corollary \(2(\mathbb{Z} / n \mathbb{Z})^{\times}=\{b \bmod n \mid \operatorname{gcd}(b, n)=1\}\).
Therefore the invertible elements of the ring \(\mathbb{Z} / n \mathbb{Z}\) are exactly the equivalence classes of the integers coprime with \(n\). The most important case is: \(n=p\) prime:

Corollary \(3 \mathbb{F}_{p}:=\mathbb{Z} / p \mathbb{Z}\) is a field.
Proof. For \(b \in \mathbb{F}_{p}, b \neq 0\) there is exactly one \(c \in \mathbb{F}_{p}\) with \(b c=1\).

Corollary 4 (Fermat's Little Theorem) \(a^{p} \equiv a(\bmod p)\) for all \(a \in \mathbb{Z}\).
Proof. The elements \(\neq 0\) of \(\mathbb{F}_{p}\) form the multiplicative group \(\mathbb{F}_{p}^{\times}\). Because the order of an element always divides the group order, we have \(a^{p-1} \equiv 1\) \((\bmod p)\) for \(a\) coprime with \(p\). Otherwise we have \(p \mid a\), hence \(a \equiv 0 \equiv a^{p}\) \((\bmod p)\).

\section*{E. 4 The Chinese Remainder Algorithm}

The Chinese remainder problem asks for the solution of simultaneous congruences. The simplest case worth of mention is:

Proposition 5 (Chinese Remainder Theorem) Let \(m\) and \(n\) coprime natural numbers \(\geq 1\), and \(a, b\) arbitrary integers. Then there is exactly one integer \(x, 0 \leq x<m n\), such that
\[
x \equiv a \quad(\bmod m), x \equiv b \quad(\bmod n) .
\]

Proof. Let us first show the uniqueness: If \(y\) is another solution, then \(y=\) \(x+k m=x+l n\) with integers \(k\) und \(l\), and \(k m=l n\). Since \(m\) and \(n\) are coprime we conclude \(n \mid k, k=c n\),
\[
y=x+c m n \equiv x \quad(\bmod m n) .
\]

For the existence proof we try \(x=a+t m\); then necessarily \(x \equiv a(\bmod m)\) and
\[
x \equiv b \quad(\bmod n) \Longleftrightarrow b-a \equiv x-a \equiv t m \quad(\bmod n) .
\]

Such a \(t\) exists by Proposition 4 Reduce this solution \(x \bmod (m n)\).
The proof was constructive and easily leads to an algorithm. In the general case, for multiple congruences, the Chinese remainder problem looks like follows:
- Given \(q\) pairwise coprime integers \(n_{1}, \ldots, n_{q} \geq 1\) and \(q\) integers \(a_{1}, \ldots, a_{q}\),
- find an integer \(x\) such that \(x \equiv a_{i}\left(\bmod n_{i}\right)\) for \(i=1, \ldots q\).

One approach is suitably adapting Proposition 5. More interesting is an abstract formulation that also comprises interpolation of polynomials; also in this more general formulation we recognise Proposition 5 together with its proof, if we bear in mind that for integers \(m\) and \(n\) with greatest common divisor \(d\) we have the equivalences:
\[
m, n \text { coprime } \Longleftrightarrow d=1 \Longleftrightarrow \mathbb{Z} m+\mathbb{Z} n=\mathbb{Z}
\]

Proposition 6 (General Chinese Remainder Theorem) Let \(R\) be a commutative ring with \(1, q \geq 1, \mathfrak{a}_{1}, \ldots, \mathfrak{a}_{q} \unlhd R\) ideals with \(\mathfrak{a}_{i}+\mathfrak{a}_{j}=R\) for \(i \neq j\). Let \(a_{1}, \ldots, a_{q} \in R\) be given. Then there exists an \(x \in R\) with \(x-a_{i} \in \mathfrak{a}_{i}\) for \(i=1, \ldots, q\), and the equivalence class \(x \bmod \mathfrak{a}_{1} \cap \cdots \cap \mathfrak{a}_{q}\) is uniquely determined.

Proof. As before the uniqueness is quite simple: If \(x-a_{i}, y-a_{i} \in \mathfrak{a}_{i}\), then \(x-y \in \mathfrak{a}_{i}\); if this is true for all \(i\), then \(x-y \in \mathfrak{a}_{1} \cap \cdots \cap \mathfrak{a}_{q}\).

We prove the existence by induction on \(q\). In the case \(q=1\) we simply take \(x=a_{1}\). Now let \(q \geq 2\), and assume \(y\) with \(y-a_{i} \in \mathfrak{a}_{i}\) for \(i=1, \ldots, q-1\) is already found. Idea: We can add to \(y\) an \(s \in \mathfrak{a}_{1} \cap \cdots \cap \mathfrak{a}_{q-1}\) without giving up what we already have, the solution of the first \(q-1\) congruences. We need
the statement: For each \(r \in R\) there is an \(s \in \mathfrak{a}_{1} \cap \cdots \cap \mathfrak{a}_{q-1}\) with \(r-s \in \mathfrak{a}_{q}\), or in other words,
\[
\left(\mathfrak{a}_{1} \cap \cdots \cap \mathfrak{a}_{q-1}\right)+\mathfrak{a}_{q}=R .
\]

To prove this intermediate assertion we choose \(c_{i} \in \mathfrak{a}_{i}\) for \(i=1, \ldots, q-1\) and \(b_{1}, \ldots, b_{q-1} \in \mathfrak{a}_{q}\) with \(b_{i}+c_{i}=1\). Then
\[
1=\left(b_{1}+c_{1}\right) \cdots\left(b_{q-1}+c_{q-1}\right)=c_{1} \cdots c_{q-1}+b
\]
with \(c_{1} \cdots c_{q-1} \in \mathfrak{a}_{1} \cap \cdots \cap \mathfrak{a}_{q-1}\) and \(b \in \mathfrak{a}_{q}\).
Now for \(a_{q}-y \in R\) choose an \(s \in \mathfrak{a}_{1} \cap \cdots \cap \mathfrak{a}_{q-1}\) with \(a_{q}-y-s \in \mathfrak{a}_{q}\), and set \(x=y+s\). Then \(x \equiv y \equiv a_{i}\left(\bmod \mathfrak{a}_{i}\right)\) for \(i=1, \ldots, q-1\), and \(x \equiv y+s \equiv a_{q}\left(\bmod \mathfrak{a}_{q}\right)\).

\section*{Remarks and Examples}
1. For \(R=\mathbb{Z}\) or any principal ideal domain, and \(\mathfrak{a}_{i}=R n_{i}\) we have \(\mathfrak{a}_{1} \cap \cdots \cap \mathfrak{a}_{q}=R\left(n_{1} \cdots n_{q}\right)\). From this we get the usual formulation of the Chinese Remainder Theorem.
2. If \(R\) is a principal ideal domain, then the construction of the solution proceeds as follows: If \(\mathfrak{a}_{i}=R n_{i}\), then choose \(s\) in the intermediate assertion such that \(s=t n_{1} \cdots n_{q-1}\) with
\[
r-t n_{1} \cdots n_{q-1} \in R n_{q}
\]
(congruence division \(\bmod n_{q}\) ). Therefore an explicit algorithm for the Chinese remainder problem exists in \(R\), if one exists for the congruence division, in any case for \(R=\mathbb{Z}\).
3. In the case \(R=\mathbb{Z}\) we iteratively calculate
\[
\begin{array}{cc}
x_{1}=a_{1} \bmod n_{1}, & s_{1}=n_{1} \\
t_{i} \text { with } 0 \leq t_{i} \leq n_{i}-1 & \text { and } a_{i}-x_{i-1}-t_{i} s_{i-1} \in R n_{i} \\
x_{i}=x_{i-1}+t_{i} s_{i-1}, & s_{i}=s_{i-1} n_{i}
\end{array}
\]

In particular \(s_{k}=n_{1} \cdots n_{k}\). By induction one immediately proves \(0 \leq x_{i} \leq s_{i}-1\) for all \(i\). Finally one gets the solution \(x=x_{q}\). This consideration guarantees that none of the intermediate results causes an overflow. The expense essentially consists of \(q-1\) congruence divisions and \(2 \cdot(q-1)\) ordinary integer multiplications. Therefore the total expense is of order \(c q \times\) (the expense for a multiplication of long integers) with a small constant \(c\).
4. The general look of the solution formula is
\[
x=x_{1}+t_{1} n_{1}+\cdots+t_{q-1} n_{1} \cdots n_{q-1} .
\]
5. As an example we treat Sun-Tsu's problem from the 1st Century. In our notation its formulation is: Find \(x\) such that
\[
x \equiv 2 \quad(\bmod 3), \quad x \equiv 3 \quad(\bmod 5), \quad x \equiv 2 \quad(\bmod 7)
\]

Our algorithm gives step by step:
\[
\begin{array}{rr}
x_{1}=2, & s_{1}=3, \\
1-3 t_{2} \in 5 \mathbb{Z}, & t_{2}=2, \\
x_{2}=2+2 \cdot 3=8, & s_{2}=15, \\
-6-15 t_{3} \in 7 \mathbb{Z}, & t_{3}=1, \\
x=x_{3}=8+1 \cdot 15=23 . &
\end{array}
\]
6. For the polynomial ring \(K[T]\) over a field \(K\) the interpolation problem is a special case of the Chinese remainder problem. Our algorithm in this case is just Newton's interpolation procedure.

\section*{E. 5 Euler's Phi Function}

An important application of the Chinese Remainder Theorem follows; we assume \(n \geq 2\). The integers \(\bmod n\) form the ring \(\mathbb{Z} / n \mathbb{Z}\). The multiplicative group \(\bmod n\) consists of the invertible elements of this ring, and is compactly denoted by
\[
\mathbb{M}_{n}:=(\mathbb{Z} / n \mathbb{Z})^{\times}
\]

Its order is given by the Euler \(\varphi\) function:
\[
\varphi(n)=\# \mathbb{M}_{n}=\#\{a \in[0 \cdots n-1] \mid a \text { coprime with } n\}
\]

Corollary 1 For \(m\) and \(n\) coprime, \(\varphi(m n)=\varphi(m) \varphi(n)\).
Proof. The Chinese Remainder Theorem just says that the natural ring homomorphism
\[
F: \mathbb{Z} / m n \mathbb{Z} \longrightarrow \mathbb{Z} / m \mathbb{Z} \times \mathbb{Z} / n \mathbb{Z}, \quad x \mapsto(x \bmod m, x \bmod n),
\]
is bijective, hence even a ring isomorphism. Moreover \(F\left(\mathbb{M}_{m n}\right)=\mathbb{M}_{m} \times \mathbb{M}_{n}\). Therefore
\[
\varphi(m n)=\# \mathbb{M}_{m n}=\# \mathbb{M}_{m} \cdot \# \mathbb{M}_{n}=\varphi(m) \varphi(n)
\]
as was to be shown.
If \(p\) is prime, then \(\varphi(p)=p-1\). More generally \(\varphi\left(p^{e}\right)=p^{e}-p^{e-1}=\) \(p^{e}\left(1-\frac{1}{p}\right)\), if \(e \geq 1\), because \(p^{e}\) exactly has the divisors \(p x\) with \(1 \leq x \leq p^{e-1}\). From Corollary 1 we conclude:

Corollary 2 Let \(n=p_{1}^{e_{1}} \cdots p_{r}^{e_{r}}\) be the prime decomposition (all \(e_{i} \geq 1\) ). Then
\[
\varphi(n)=n \cdot \prod_{i=1}^{r}\left(1-\frac{1}{p_{i}}\right)
\]

\section*{Bibliography}
[1] F. L. Bauer, Decrypted Secrets; Methods and Maxims of Cryptology. Springer, Berlin 1997.
[2] E. Cesàro, Corso di analisi algebrica con introduzione al calcolo infinitesimale. Bocca, Torino 1894.
[3] C. A. Deavours, Unicity points in cryptanalysis. Cryptologia 1 (1977), 469-684.
[4] C. A. Deavours, L. Kruh, Machine Cryptography and Modern Cryptanalysis. Artech House, Norwood 1985.
[5] W. Feller, An Introduction to Probability Theory and Its Applications. Volume I. Wiley, New York 1957.
[6] A. Fisher, Mathematical Theory of Probabilities. Macmillan, New York 1915.
[7] W. F. Friedman, The Riverbank Publications Volume 1 (contains Publications No. 15, 16, 17, and 18). Aegean Park Press, Laguna Hills 1979.
[8] R. Ganesan, A. T. Sherman, Statistical Techniques for Language Recognition: An Introduction and Guide for Cryptanalysts. Cryptologia 17 (1993), 321-366.
[9] R. Ganesan, A. T. Sherman, Statistical Techniques for Language Recognition: An Empirical Study Using Real and Simulated English. Cryptologia 18 (1994), 289-331.
[10] A. M. Gleason, Elementary Course in Probability for the Cryptanalyst. Aegean Park Press, Laguna Hills 1985.
[11] M. E. Hellman, An extension of the Shannon theory approach to cryptography. IEEE Trans Information Theory 23 (1977), 289-294.
[12] A. M. Jaglom, I. M, Jaglom, Wahrscheinlichkeit und Information. VEB Deutscher Verlag der Wissenschaften, Berlin 1967.
[13] H. Jürgensen, Language redundancy and the unicity point. Cryptologia 7 (1983), 37-48.
[14] H. Jürgensen, D. E. Matthews, Some results on the information theoretic analysis of cryptosystems. Crypto 83, 303-356.
[15] D. Kahn, The Codebreakers. Macmillan, New York 1967.
[16] S. Kullback, Statistical Methods in Cryptanalysis. Aegean Park Press, Laguna Hills 1976.
[17] A. J. Menezes, P. C. van Oorschot, S. A. Vanstone, Handbook of Applied Cryptography. CRC Press, Boca Raton 1997.
[18] J. Reeds, Entropy calculations and particular methods of cryptanalysis. Cryptologia 1 (1977), 235-254.
[19] H. Robbins, A remark on Stirling's formula. Amer. Math. Monthly 62 (1955), 26-29.
[20] B. Schneier, Applied Cryptography. John Wiley, New York 1996.
[21] C. E. Shannon, A mathematical theory of communication. Bell System Technical Journal 27 (1948), 379-423, 623-656.
[22] C. E. Shannon, Communication theory of secrecy systems. Bell System Technical Journal 28 (1949), 656-715.
[23] C. E. Shannon, The entropy of printed english. Bell System Technical Journal 30 (1941), 50-64.
[24] S. Singh, The Code Book. Fourth Estate, London 1999.
[25] A. Sinkov, Elementary Cryptanalysis. The Mathematical Association of America, Washington, 1966.
[26] D. R. Stinson, Cryptography - Theory and Practice. CRC Press, Boca Raton 1995.
[27] J. Stirling, Methodus Differentialis: sive Tractatus de Summatione et Interpolatione Serierum Infinitarum. G. Strahan, Londini (London) 1730.```

