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4 The Number of Invertible Matrices over a
Residue Class Ring

We want as clearly as possible to get an idea how large the number

νln := #GLl(Z/nZ)

of invertible l × l matrices over the residue class ring Z/nZ is.
In the special case l = 1 the number ν1n simply counts the invertible

elements of Z/nZ and is given as the value ϕ(n) of the Euler ϕ-function.
In the general case we easily find a trivial upper bound for νln:

νln ≤ #Mll(Z/nZ) = n
l2
.

To find a lower bound we note that (over any ring R) matrices of the form




1

. . .

∗ 1








d1

. . .

dl








1 ∗

. . .

1





are always invertible if d1, . . . , dl ∈ R
×. This gives an injective map

R
l(l−1)

2 × (R×)l ×R
l(l−1)

2 −→ GLl(R).

(Proof of injectivity: Exercise.) This gives the bound

νln ≥ n
l(l−1)

2 · ϕ(n)l · n
l(l−1)

2 = n
l2−l · ϕ(n)l.

Taken together this yields:

Proposition 2
n
l2−l · ϕ(n)l ≤ νln ≤ n

l2
.

Remarks

1. The idea of writing matrices as A = V DW as above—where D is
a diagonal matrix, V , a lower triangular matrix with only 1’s in the
diagonal, and W , an upper triangular matrix likewise with only 1’s
in the diagonal—gives an easy way of constructing invertible matri-
ces without resorting to trial and error and calculating determinants.
This method gives “almost all” invertible matrices—in the theory of
algebraic groups this is the “big Bruhat cell”. Matrices of this type
can be easily inverted by the formula A

−1 = W
−1

D
−1

V
−1.
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2. Two lower bounds for the ϕ-function that we cite without proofs yield
handy bounds for νln. The first of these bounds is

ϕ(n) >
6

π2
· n

lnn
for n ≥ 7.

This yields

νln > n
l2−l ·

�
6

π2
· n

lnn

�l

=
6l

π2l
· n

l2

(lnn)l
for n ≥ 7.

3. The other bound is

ϕ(n) >
n

2 · ln lnn for almost all n.

This yields

νln >
1

(2 · ln lnn)l · n
l2

or
1

(2 · ln lnn)l <
νln

nl2
< 1

for almost all n.

Conclusion “Very many” to “almost all” matrices in Mll(Z/nZ) are in-
vertible. But also note that asymptotically the quotient νln/nl2 is not
bounded away from 0.

Example For n = 26 we give a coarser but very simple version of the lower
bound from Proposition 2: From ϕ(26) = 12 we get

νl,26 ≥ 26l
2−l12l > 16l

2−l8l = 24l
2−l

.

This gives the bounds ν2,26 > 214, ν3,26 > 233, ν4,26 > 260, ν5,26 > 295.
We conclude that the linear cipher is secure from exhaustion at least
for block size 5.

Finally we derive an exact formula for νln.

Lemma 2 Let n = p prime. Then

νlp = p
l2 · ρlp where ρlp =

l�

i=1

�
1− 1

pi

�
.

In particular for fixed l the relative frequency of invertible matrices, ρlp,

converges to 1 with increasing p.
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Proof. We successively build an invertible matrix column by column and
count the possibilities for each column. Since Z/pZ = Fp is a field the first
column is an arbitrary vector �= 0. This makes pl − 1 choices.

Assume we have already chosen i columns. These must be linearly in-
dependent hence span a linear subspace of Fl

p. This subspace consists of pi

elements. The (i + 1)-th column then is an arbitrary vector outside of this
subspace for which we have p

l − p
i choices. Summing up this yields

l−1�

i=0

(pl − p
i) =

l−1�

i=0

p
l(1− p

i−l) = p
l2

l�

j=1

�
1− 1

pj

�

choices. ✸

Lemma 3 Let n = p
e
with p prime and e ≥ 1.

(i) Let A ∈ Mll(Z). Then A mod n is invertible in Mll(Z/nZ) if and only

if A mod p is invertible in Mll(Fp).

(ii) The number of invertible matrices in Mll(Z/nZ) is

νln = n
l2 · ρlp.

(iii) The relative frequency of invertible matrices in Mll(Z/peZ) is ρlp, in-

dependent of the exponent e.

Proof. (i) Since gcd(p,DetA) = 1 ⇐⇒ gcd(n,DetA) = 1, both statements
are equivalent with p � DetA.

(ii) Without restriction we may assume that A has all its entries in
[0 . . . n − 1]. Then we write A = pQ + R where all entries of R are in
[0 . . . p− 1] and all entries of Q are in [0 . . . pe−1 − 1]. The matrix A mod n

is invertible if and only if R mod p is invertible. For R we have νlp choices

by Lemma 2, and for Q we have p
(e−1)l2 choices. Taken together this proves

the claim.
(iii) is a direct consequence of (ii). ✸

Lemma 4 For m and n coprime νl,mn = νlmνln.

Proof. The Chinese Remainder Theorem gives a ring isomorphism

Z/mnZ −→ Z/mZ× Z/nZ

and extends to an isomorphism of the (non-commutative) rings

Mll(Z/mnZ) −→ Mll(Z/mZ)×Mll(Z/nZ).



K. Pommerening, Linear Ciphers 13

The assertion follows from the equality of the numbers of invertible elements.
✸

Induction immediately yields:

Theorem 2 For n ∈ N

νln = n
l2 ·

�

p prime
p|n

ρlp.

In particular the relative frequency of invertible matrices ρln = νln/n
l2
is in-

dependent from the exponents of the prime factors of n. The explicit formula

is

ρln =
�

p prime
p|n

ρlp =
�

p prime
p|n

l�

i=1

�
1− 1

pi

�
.

Example For n = 26 the explicit formula is

νl,26 = 26l
2 ·

l�

i=1

�
1− 1

2i

��
1− 1

13i

�

This evaluates as ν1,26 = 12, ν2,26 = 157, 248, ν3,26 =
1, 634, 038, 189, 056 ≈ 1.5 · 240. Comparing this value of ν3,26 with the
lower bound 233 from above shows how coarse this bound is. For l = 4
we even get ν4,26 ≈ 1.3 · 273, almost secure from exhaustion.

Exercise Let p1 = 2, p2 = 3, p3 = 5, . . . the increasing sequence of the
primes. Let nr = p1 · · · pr for r ≥ 1. Show that for fixed l

lim
r→∞

ρlnr = 0.

This means that the relative frequency of invertible matrices is de-
creasing for this sequence of moduli. Hint : Let ζ be the Riemann

ζ-function. Which values has ζ at the natural numbers i ≥ 1?


