4 The Number of Invertible Matrices over a Residue Class Ring

We want as clearly as possible to get an idea how large the number

$$
\nu_{l n}:=\# G L_{l}(\mathbb{Z} / n \mathbb{Z})
$$

of invertible $l \times l$ matrices over the residue class ring $\mathbb{Z} / n \mathbb{Z}$ is.
In the special case $l=1$ the number $\nu_{1 n}$ simply counts the invertible elements of $\mathbb{Z} / n \mathbb{Z}$ and is given as the value $\varphi(n)$ of the Euler φ-function.

In the general case we easily find a trivial upper bound for $\nu_{l n}$:

$$
\nu_{l n} \leq \# M_{l l}(\mathbb{Z} / n \mathbb{Z})=n^{l^{2}} .
$$

To find a lower bound we note that (over any ring R) matrices of the form

$$
\left(\begin{array}{lll}
1 & & \\
& \ddots & \\
* & & 1
\end{array}\right)\left(\begin{array}{lll}
d_{1} & & \\
& \ddots & \\
& & d_{l}
\end{array}\right)\left(\begin{array}{lll}
1 & & * \\
& \ddots & \\
& & 1
\end{array}\right)
$$

are always invertible if $d_{1}, \ldots, d_{l} \in R^{\times}$. This gives an injective map

$$
R^{\frac{l(l-1)}{2}} \times\left(R^{\times}\right)^{l} \times R^{\frac{l(l-1)}{2}} \longrightarrow G L_{l}(R) .
$$

(Proof of injectivity: Exercise.) This gives the bound

$$
\nu_{l n} \geq n^{\frac{l(l-1)}{2}} \cdot \varphi(n)^{l} \cdot n^{\frac{l(l-1)}{2}}=n^{l^{2}-l} \cdot \varphi(n)^{l} .
$$

Taken together this yields:

Proposition 2

$$
n^{l^{2}-l} \cdot \varphi(n)^{l} \leq \nu_{l n} \leq n^{l^{2}} .
$$

Remarks

1. The idea of writing matrices as $A=V D W$ as above -where D is a diagonal matrix, V, a lower triangular matrix with only 1's in the diagonal, and W, an upper triangular matrix likewise with only 1 's in the diagonal-gives an easy way of constructing invertible matrices without resorting to trial and error and calculating determinants. This method gives "almost all" invertible matrices-in the theory of algebraic groups this is the "big Bruhat cell". Matrices of this type can be easily inverted by the formula $A^{-1}=W^{-1} D^{-1} V^{-1}$.
2. Two lower bounds for the φ-function that we cite without proofs yield handy bounds for $\nu_{l n}$. The first of these bounds is

$$
\varphi(n)>\frac{6}{\pi^{2}} \cdot \frac{n}{\ln n} \quad \text { for } n \geq 7
$$

This yields

$$
\nu_{l n}>n^{l^{2}-l} \cdot\left(\frac{6}{\pi^{2}} \cdot \frac{n}{\ln n}\right)^{l}=\frac{6^{l}}{\pi^{2 l}} \cdot \frac{n^{l^{2}}}{(\ln n)^{l}} \quad \text { for } n \geq 7
$$

3. The other bound is

$$
\varphi(n)>\frac{n}{2 \cdot \ln \ln n} \quad \text { for almost all } n
$$

This yields

$$
\nu_{l n}>\frac{1}{(2 \cdot \ln \ln n)^{l}} \cdot n^{l^{2}}
$$

or

$$
\frac{1}{(2 \cdot \ln \ln n)^{l}}<\frac{\nu_{l n}}{n^{l^{2}}}<1
$$

for almost all n.
Conclusion "Very many" to "almost all" matrices in $M_{l l}(\mathbb{Z} / n \mathbb{Z})$ are invertible. But also note that asymptotically the quotient $\nu_{l n} / n^{l^{2}}$ is not bounded away from 0 .

Example For $n=26$ we give a coarser but very simple version of the lower bound from Proposition 2: From $\varphi(26)=12$ we get

$$
\nu_{l, 26} \geq 26^{l^{2}-l} 12^{l}>16^{l^{2}-l} 8^{l}=2^{4 l^{2}-l}
$$

This gives the bounds $\nu_{2,26}>2^{14}, \nu_{3,26}>2^{33}, \nu_{4,26}>2^{60}, \nu_{5,26}>2^{95}$. We conclude that the linear cipher is secure from exhaustion at least for block size 5 .

Finally we derive an exact formula for $\nu_{l n}$.
Lemma 2 Let $n=p$ prime. Then

$$
\nu_{l p}=p^{l^{2}} \cdot \rho_{l p} \quad \text { where } \quad \rho_{l p}=\prod_{i=1}^{l}\left(1-\frac{1}{p^{i}}\right) .
$$

In particular for fixed l the relative frequency of invertible matrices, $\rho_{l p}$, converges to 1 with increasing p.

Proof. We successively build an invertible matrix column by column and count the possibilities for each column. Since $\mathbb{Z} / p \mathbb{Z}=\mathbb{F}_{p}$ is a field the first column is an arbitrary vector $\neq 0$. This makes $p^{l}-1$ choices.

Assume we have already chosen i columns. These must be linearly independent hence span a linear subspace of \mathbb{F}_{p}^{l}. This subspace consists of p^{i} elements. The $(i+1)$-th column then is an arbitrary vector outside of this subspace for which we have $p^{l}-p^{i}$ choices. Summing up this yields

$$
\prod_{i=0}^{l-1}\left(p^{l}-p^{i}\right)=\prod_{i=0}^{l-1} p^{l}\left(1-p^{i-l}\right)=p^{l^{2}} \prod_{j=1}^{l}\left(1-\frac{1}{p^{j}}\right)
$$

choices. \diamond

Lemma 3 Let $n=p^{e}$ with p prime and $e \geq 1$.
(i) Let $A \in M_{l l}(\mathbb{Z})$. Then $A \bmod n$ is invertible in $M_{l l}(\mathbb{Z} / n \mathbb{Z})$ if and only if $A \bmod p$ is invertible in $M_{l l}\left(\mathbb{F}_{p}\right)$.
(ii) The number of invertible matrices in $M_{l l}(\mathbb{Z} / n \mathbb{Z})$ is

$$
\nu_{l n}=n^{l^{2}} \cdot \rho_{l p}
$$

(iii) The relative frequency of invertible matrices in $M_{l l}\left(\mathbb{Z} / p^{e} \mathbb{Z}\right)$ is $\rho_{l p}$, independent of the exponent e.

Proof. (i) Since $\operatorname{gcd}(p, \operatorname{Det} A)=1 \Longleftrightarrow \operatorname{gcd}(n, \operatorname{Det} A)=1$, both statements are equivalent with $p \nmid \operatorname{Det} A$.
(ii) Without restriction we may assume that A has all its entries in $[0 \ldots n-1]$. Then we write $A=p Q+R$ where all entries of R are in $[0 \ldots p-1]$ and all entries of Q are in $\left[0 \ldots p^{e-1}-1\right]$. The matrix $A \bmod n$ is invertible if and only if $R \bmod p$ is invertible. For R we have $\nu_{l p}$ choices by Lemma 2, and for Q we have $p^{(e-1) l^{2}}$ choices. Taken together this proves the claim.
(iii) is a direct consequence of (ii).

Lemma 4 For m and n coprime $\nu_{l, m n}=\nu_{l m} \nu_{l n}$.
Proof. The Chinese Remainder Theorem gives a ring isomorphism

$$
\mathbb{Z} / m n \mathbb{Z} \longrightarrow \mathbb{Z} / m \mathbb{Z} \times \mathbb{Z} / n \mathbb{Z}
$$

and extends to an isomorphism of the (non-commutative) rings

$$
M_{l l}(\mathbb{Z} / m n \mathbb{Z}) \longrightarrow M_{l l}(\mathbb{Z} / m \mathbb{Z}) \times M_{l l}(\mathbb{Z} / n \mathbb{Z})
$$

The assertion follows from the equality of the numbers of invertible elements. \diamond

Induction immediately yields:
Theorem 2 For $n \in \mathbb{N}$

$$
\nu_{l n}=n^{l^{2}} \cdot \prod_{\substack{p \text { prime } \\ p \mid n}} \rho_{l p}
$$

In particular the relative frequency of invertible matrices $\rho_{l n}=\nu_{l n} / n^{l^{2}}$ is independent from the exponents of the prime factors of n. The explicit formula is

$$
\rho_{l n}=\prod_{\substack{p \text { prime } \\ p \mid n}} \rho_{l p}=\prod_{\substack{p \\ p r i m e \\ p \mid n}} \prod_{i=1}^{l}\left(1-\frac{1}{p^{i}}\right)
$$

Example For $n=26$ the explicit formula is

$$
\nu_{l, 26}=26^{l^{2}} \cdot \prod_{i=1}^{l}\left(1-\frac{1}{2^{i}}\right)\left(1-\frac{1}{13^{i}}\right)
$$

This evaluates as $\nu_{1,26}=12, \nu_{2,26}=157,248, \nu_{3,26}=$ $1,634,038,189,056 \approx 1.5 \cdot 2^{40}$. Comparing this value of $\nu_{3,26}$ with the lower bound 2^{33} from above shows how coarse this bound is. For $l=4$ we even get $\nu_{4,26} \approx 1.3 \cdot 2^{73}$, almost secure from exhaustion.

Exercise Let $p_{1}=2, p_{2}=3, p_{3}=5, \ldots$ the increasing sequence of the primes. Let $n_{r}=p_{1} \cdots p_{r}$ for $r \geq 1$. Show that for fixed l

$$
\lim _{r \rightarrow \infty} \rho_{l n_{r}}=0
$$

This means that the relative frequency of invertible matrices is decreasing for this sequence of moduli. Hint: Let ζ be the Riemann ζ-function. Which values has ζ at the natural numbers $i \geq 1$?

