
Linear Ciphers

Klaus Pommerening
Fachbereich Physik, Mathematik, Informatik

der Johannes-Gutenberg-Universität
Saarstraße 21

D-55099 Mainz

January 16, 2000—English version July 28, 2014—last change
January 19, 2021

In 1929 the mathematician Lester Hill proposed the use of matrices for
encryption. He published his idea in the American Mathematical Monthly.
This cryptographic application of linear algebra piqued the curiosity of
mathematicians. But its obvious weaknesses soon became evident, so it never
found a serious application. The true importance of the method relied on
the fact that it was the first systematic use of algebraic methods in cryptol-
ogy. And by the way its cryptanalysis made clear how dangerous linearity
in encryption functions is.

Jack Levine later mentioned that he used this kind of cipher
already in 1924 for a contribution to a youth magazine when he
was a high-school student.

In this section we use the appendix on the Euclidean algorithm.
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1 Matrices over Rings

Let R be a ring (commutative with 1). The “multiplicative group” of R is
the group of invertible elements

R× = {a ∈ R | ab = 1 for some b ∈ R} = {a ∈ R | a divides 1}.

In the same way the (non-commutative) R-algebra Mqq(R) of q×q-matrices
over R has a group of invertible elements (“general linear group”)

GLq(R) = {A ∈Mqq(R) |AB = 1q for some B ∈Mqq(R)}.

The determinant defines a multiplicative map

Det: Mqq(R) −→ R,

and

A ∈ GLq(R) =⇒ AB = 1q for some B =⇒ DetA ·DetB = Det1q = 1

=⇒ DetA ∈ R×.

The converse implication is also true. For a proof we consider the adjoint
matrix Ã = (ãij) where

ãij = Aji = Det



a11 . . . a1,i−1 a1,i+1 . . . a1q
...

...
...

...
aj−1,1 . . . aj−1,i−1 aj−1,i+1 . . . aj−1,q
aj+1,1 . . . aj+1,i−1 aj+1,i+1 . . . aj+1,q

...
...

...
...

aq1 . . . aq,i−1 aq,i+1 . . . aqq


Using this we can prove:

Proposition 1 For A ∈Mqq(R) the following holds:
(i) AÃ = DetA · 1q.
(ii) A ∈ GLq(R)⇐⇒ DetA ∈ R×; if this is true, then

A−1 =
1

DetA
Ã.

Proof. (i) is the expansion rule for determinants.
(ii) immediately follows from (i). 3

In particular Det induces a group homomorphism GLq(R) −→ R×.
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Example For R = Z/nZ the statement (ii) of Proposition 1 can be rewrit-
ten as:

A ∈Mqq(Z) is invertible mod n⇐⇒ DetA is coprime with n.

Remarks

1. The expenses for calculating the inverse matrix A−1 are, if state-
ment (ii) is naively evaluated:

• one q×q-determinant with q! summands, each with q factors,

• q2 determinants of size (q − 1)× (q − 1).

This is extremely inefficient—it is exponential in q.

2. Using Gaussian elimination the expenses drop to O(q3). But this
is not quite true: Exact calculation produces rational numbers
with huge numerators and denominators that require additional
resources.

There is a modification of the elimination algorithm that uses only integers
and is much more efficient, see the next section. However also this procedure
produces large intermediate results.

An alternative algorithm uses the Chinese Remainder Theorem: Each
ring homomorphism ϕ : R −→ R′ induces a homomorphism of R-algebras

ϕq : Mqq(R) −→Mqq(R
′)

by componentwise evaluation. If A ∈Mqq is invertible, then

ϕq(A)ϕq(A
−1) = ϕq(AA

−1) = ϕq(1q) = 1q.

Hence also ϕq(A) is invertible. Furthermore Detϕq(A) = ϕ(DetA), so we
have a commutative diagram

Mqq(R)
ϕq−−−−→ Mqq(R

′)

Det

y yDet

R −−−−→
ϕ

R′

Applying this to R = Z we use the residue class homomorphisms Z −→ Fp (p
prime) for sufficiently many primes p such that the product of these primes
is > DetA. Then we calculate

• DetA mod p in all the fields Fp (avoiding huge numbers, since all inter-
mediate results may be represented as numbers between 0 and p− 1),

• DetA ∈ Z using the Chinese Remainder Theorem.



K. Pommerening, Linear Ciphers 4

2 Elimination over the Integers

How to solve systems of linear equations over the ring Z of integers? How
to calculate determinants efficiently? How to find an inverse matrix? Like
in linear algebra over fields also in the more general situation over rings the
triangularization of matrices is crucial for finding efficient algorithms.

For a sufficiently general framework we consider three classes of rings
(commutative, with 1, without zero divisors):

• Factorial rings (or UFD domains): All elements have a decomposi-
tion into primes, in particular any two elements have a greatest com-
mon divisor gcd (in general not unique).

• Principal ideal domains: Each ideal is a principal ideal. Principal
ideal domains are factorial, and the gcd of any two elements is a linear
combination of these two.

• Euclidean rings: They have a division with remainder. Euclidean
rings are principal ideal domains. The gcd of two elements as well as
its linear represenation can be efficiently calculated by the extended
Euclidean algorithm.

The set of invertible matrices with determinant 1 over a ring is called the
“special linear group” SLn(R) ⊆ GLn(R). It is the kernel of the determinant
homomorphism on GLn(R).

Lemma 1 Let R be a principal ideal domain, a1, . . . , an ∈ R, and d a
gcd(a1, . . . , an). Then there is an invertible matrix U ∈ SLn(R) such that

U


a1
a2
...
an

 =


d
0
...
0


Proof. Since the case n = 1 is trivial we may assume n ≥ 2.

If all ai = 0, then the assertion is trivial. Otherwise we may assume
without restriction that a1 6= 0 (after a permutation that is merged into U as
permutation matrix—if necessary replace a 1 by −1 to make the determinant
= 1).

Let d2 := gcd(a1, a2) (any gcd because in general this is not unique).
Then d2 6= 0 and d2 = c1a1 + c2a2 is a linear combination. From this we get
the equation (

c1 c2
−a2
d2

a1
d2

)(
a1
a2

)
=

(
c1a1 + c2a2
−a2a1

d2
+ a1a2

d2

)
=

(
d2
0

)
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where the matrix of coefficients

C =

(
c1 c2
−a2
d2

a1
d2

)
has DetC =

c1a1
d2

+
c2a2
d2

= 1

and therefore is invertible.
We proceed be induction: Assume for the general step that for some

i ≥ 2

U ′

a1...
an

 =



d′

0
...
0
ai
...
an


where ai 6= 0

Then as before we change two coordinates:(
d′

ai

)
;

(
d′′

0

)
.

In this way we successively build the matrix U . 3

Remark The inverse of the matrix C in the proof is

C−1 =

(a1
d2
−c2

a2
d2

c1

)
From this formula we see that U and U−1 together can be calculated
by at most n − 1 executions of the Euclidean algorithm, plus n − 1
multiplications of n×n-matrices plus at most n− 1 multiplications of
permutation matrices.

With the help of this lemma we can triangularise matrices. (A more
refined analysis would lead to the Hermitean normal form.)

Theorem 1 (i) Let R be a principal ideal domain, and A ∈Mpq(R). Then
there exists an invertible matrix U ∈ SLp(R) such that H = UA has the
form 

∗ . . . ∗
. . .

...
∗

0

 f̈ı¿½r p ≥ q,

∗ . . . . . . ∗
. . . . . .

0 ∗

 f̈ı¿½r p < q.

(ii) If R is Euclidean, then U and U−1 together can be calculated by at

most p(p−1)
2 executions of the extended Euclidean algorithm.
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Special case Let A ∈Mpp(R) be a square matrix, and determine H = UA
as in the Theorem. Then

DetA = DetH = h11 · · ·hpp.

If A is invertible, then A−1 = (U−1H)−1 = H−1U . The calculation of
the inverse H−1 of the triangular matrix H is easy. Thus calculation
of determinant and inverse are reduced to triangularisation.

Proof. We prove this by describing an algorithm. Let r := min{p, q}.
Initialize the algorithm by

H := A, U := 1p, V := 1p.

Then loop over j = 1, . . . r. The relations UA = H, UV = 1p are loop
invariants.

• Assume that at the beginning of the j-th step H has the form:

∗
. . . ∗

∗
hjj

0
...
hpj


If hjj = . . . = hpj = 0 we finish step j. Otherwise we use the lemma
and find a matrix U ′ ∈ SLp−j+1(R) together with its inverse (U ′)−1

such that

U ′

hjj. . .
hpj

 =


dj
0
. . .
0


We have

(
1 0
0 U ′

)
∈ SLp(R). At the end of the loop we replace

U :=

(
1 0
0 U ′

)
U, H :=

(
1 0
0 U ′

)
H, V := V

(
1 0
0 (U ′)−1

)
.

After finishing the last loop U and H have the desired form. 3

Summarizing the expenses we have to add p(p−1)
2 matrix multiplications

and the same number of multiplications by permutation matrices. However
the total expenses are not yet covered because bounds for the intermediate
results are yet missing. More exact considerations give expenses of the order
O(m2n5) where m is an upper bound for the number of digits of the entries
of A and n = max(p, q). For further optimizations of this bound search the
literature on algebraic algorithms.
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Elimination in Residue Class Rings

Now how to invert a matrix A ∈ GLq(Z/nZ)? First interpret A as an integer
matrix and determine U ∈ SLq(Z) such that H = UA is an integer upper
triangular matrix as in Theorem 1. Reduction mod n conserves the equation
H = UA as well as A−1 = H−1U . Since A mod n is invertible all diagonal
elements of H are invertible mod n.
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3 The Linear Cipher

Description

The alphabet is Σ = Z/nZ with the structure as a finite ring.
The keyspace is K = GLl(Z/nZ), the multiplicative group of invertible

matrices. Section 4 estimates the size of the keyspace.
We encrypt blockwise taking blocks of length l: For k ∈ GLl(Z/nZ)

and (a1, . . . , al) ∈ (Z/nZ)l setc1...
cl

 = fk(a1, . . . , al) = k ·

a1...
al


or elementwise

ci =
l∑

j=1

kijaj for i = 1, . . . , l.

We decrypt with the inverse matrix:a1...
al

 = k−1 ·

c1...
cl

 .

Related Ciphers

Special case: Taking k as permutation matrix Pσ for a permutation σ ∈ Sl
the encryption function fk is the block transposition defined by σ.

Generalization: The affine cipher. Choose as key a pair

(k, b) ∈ GLl(Z/nZ)× (Z/nZ)l.

Encrypt by the formula
c = ka+ b.

Choosing the unit matrix for k (as special case) gives the Bellaso
cipher with key b.

Remark The original cipher proposed by Hill first permuted the alpha-
bet before applying the linear map. The correspondence between the
letters and the numbers 0, . . . , 25 is treated as part of the key.



K. Pommerening, Linear Ciphers 9

Example

As an illustration we take a “toy example” of unreasonable small dimension
l = 2 and

k =

(
11 8
3 7

)
.

Then Det k = 77− 24 = 53 ≡ 1 mod 26 and

k−1 =

(
7 18
23 11

)
.

The table

A B C D E F G H I J K L M

0 1 2 3 4 5 6 7 8 9 10 11 12

N O P Q R S T U V W X Y Z

13 14 15 16 17 18 19 20 21 22 23 24 25

gives the correspondence between letters and numbers.
Now the plaintext Herr = (7, 4, 17, 17) is encrypted as(

11 8
3 7

)(
7
4

)
=

(
77 + 32
21 + 28

)
=

(
109
49

)
=

(
5
23

)
,(

11 8
3 7

)(
17
17

)
=

(
187 + 136
51 + 119

)
=

(
323
170

)
=

(
11
14

)
.

Thus fk(Herr) = (5, 23, 11, 14) = FXLO.
We verify this by decrypting:(

7 18
23 11

)(
5 11
23 14

)
=

(
35 + 414 77 + 252
115 + 253 253 + 154

)
=

(
7 17
4 17

)
.

Assessment

+ The linear cipher is stronger than block transposition and Bellaso ci-
pher.

+ The frequency distribution of the ciphertext letters is nearly uniform. An
attack with ciphertext only doesn’t find useful clues.

− The linear cipher is extremely vulnerable for an attack with known plain-
text, see Section 5.
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4 The Number of Invertible Matrices over a
Residue Class Ring

We want as clearly as possible to get an idea how large the number

νln := #GLl(Z/nZ)

of invertible l × l matrices over the residue class ring Z/nZ is.
In the special case l = 1 the number ν1n simply counts the invertible

elements of Z/nZ and is given as the value ϕ(n) of the Euler ϕ-function.
In the general case we easily find a trivial upper bound for νln:

νln ≤ #Mll(Z/nZ) = nl
2
.

To find a lower bound we note that (over any ring R) matrices of the form1
. . .

∗ 1


d1 . . .

dl


1 ∗

. . .

1


are always invertible if d1, . . . , dl ∈ R×. This gives an injective map

R
l(l−1)

2 × (R×)l ×R
l(l−1)

2 −→ GLl(R).

(Proof of injectivity: Exercise.) This gives the bound

νln ≥ n
l(l−1)

2 · ϕ(n)l · n
l(l−1)

2 = nl
2−l · ϕ(n)l.

Taken together this yields:

Proposition 2
nl

2−l · ϕ(n)l ≤ νln ≤ nl
2
.

Remarks

1. The idea of writing matrices as A = V DW as above—where D is
a diagonal matrix, V , a lower triangular matrix with only 1’s in the
diagonal, and W , an upper triangular matrix likewise with only 1’s
in the diagonal—gives an easy way of constructing invertible matri-
ces without resorting to trial and error and calculating determinants.
This method gives “almost all” invertible matrices—in the theory of
algebraic groups this is the “big Bruhat cell”. Matrices of this type
can be easily inverted by the formula A−1 = W−1D−1V −1.
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2. Two lower bounds for the ϕ-function that we cite without proofs yield
handy bounds for νln. The first of these bounds is

ϕ(n) >
6

π2
· n

lnn
for n ≥ 7.

This yields

νln > nl
2−l ·

(
6

π2
· n

lnn

)l
=

6l

π2l
· nl

2

(lnn)l
for n ≥ 7.

3. The other bound is

ϕ(n) >
n

2 · ln lnn
for almost all n.

This yields

νln >
1

(2 · ln lnn)l
· nl2

or
1

(2 · ln lnn)l
<

νln

nl2
< 1

for almost all n.

Conclusion “Very many” to “almost all” matrices in Mll(Z/nZ) are in-
vertible. But also note that asymptotically the quotient νln/n

l2 is not
bounded away from 0.

Example For n = 26 we give a coarser but very simple version of the lower
bound from Proposition 2: From ϕ(26) = 12 we get

νl,26 ≥ 26l
2−l12l > 16l

2−l8l = 24l
2−l.

This gives the bounds ν2,26 > 214, ν3,26 > 233, ν4,26 > 260, ν5,26 > 295.
We conclude that the linear cipher is secure from exhaustion at least
for block size 5.

Finally we derive an exact formula for νln.

Lemma 2 Let n = p prime. Then

νlp = pl
2 · ρlp where ρlp =

l∏
i=1

(
1− 1

pi

)
.

In particular for fixed l the relative frequency of invertible matrices, ρlp,
converges to 1 with increasing p.
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Proof. We successively build an invertible matrix column by column and
count the possibilities for each column. Since Z/pZ = Fp is a field the first
column is an arbitrary vector 6= 0. This makes pl − 1 choices.

Assume we have already chosen i columns. These must be linearly in-
dependent hence span a linear subspace of Flp. This subspace consists of pi

elements. The (i + 1)-th column then is an arbitrary vector outside of this
subspace for which we have pl − pi choices. Summing up this yields

l−1∏
i=0

(pl − pi) =

l−1∏
i=0

pl(1− pi−l) = pl
2

l∏
j=1

(
1− 1

pj

)
choices. 3

Lemma 3 Let n = pe with p prime and e ≥ 1.

(i) Let A ∈Mll(Z). Then A mod n is invertible in Mll(Z/nZ) if and only
if A mod p is invertible in Mll(Fp).

(ii) The number of invertible matrices in Mll(Z/nZ) is

νln = nl
2 · ρlp.

(iii) The relative frequency of invertible matrices in Mll(Z/peZ) is ρlp, in-
dependent of the exponent e.

Proof. (i) Since gcd(p,DetA) = 1 ⇐⇒ gcd(n,DetA) = 1, both statements
are equivalent with p - DetA.

(ii) Without restriction we may assume that A has all its entries in
[0 . . . n − 1]. Then we write A = pQ + R where all entries of R are in
[0 . . . p− 1] and all entries of Q are in [0 . . . pe−1 − 1]. The matrix A mod n
is invertible if and only if R mod p is invertible. For R we have νlp choices

by Lemma 2, and for Q we have p(e−1)l
2

choices. Taken together this proves
the claim.

(iii) is a direct consequence of (ii). 3

Lemma 4 For m and n coprime νl,mn = νlmνln.

Proof. The Chinese Remainder Theorem gives a ring isomorphism

Z/mnZ −→ Z/mZ× Z/nZ

and extends to an isomorphism of the (non-commutative) rings

Mll(Z/mnZ) −→Mll(Z/mZ)×Mll(Z/nZ).
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The assertion follows from the equality of the numbers of invertible elements.
3

Induction immediately yields:

Theorem 2 For n ∈ N

νln = nl
2 ·

∏
p prime
p|n

ρlp.

In particular the relative frequency of invertible matrices ρln = νln/n
l2 is in-

dependent from the exponents of the prime factors of n. The explicit formula
is

ρln =
∏

p prime
p|n

ρlp =
∏

p prime
p|n

l∏
i=1

(
1− 1

pi

)
.

Example For n = 26 the explicit formula is

νl,26 = 26l
2 ·

l∏
i=1

(
1− 1

2i

)(
1− 1

13i

)
This evaluates as ν1,26 = 12, ν2,26 = 157, 248, ν3,26 =
1, 634, 038, 189, 056 ≈ 1.5 · 240. Comparing this value of ν3,26 with the
lower bound 233 from above shows how coarse this bound is. For l = 4
we even get ν4,26 ≈ 1.3 · 273, almost secure from exhaustion.

Exercise Let p1 = 2, p2 = 3, p3 = 5, . . . the increasing sequence of the
primes. Let nr = p1 · · · pr for r ≥ 1. Show that for fixed l

lim
r→∞

ρlnr = 0.

This means that the relative frequency of invertible matrices is de-
creasing for this sequence of moduli. Hint : Let ζ be the Riemann
ζ-function. Which values has ζ at the natural numbers i ≥ 1?
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5 Cryptanalysis of the Linear Cipher

Block Length

The block length l leaves its trace as a divisor of the ciphertext length. If
however the sender conceals the procedure by padding with meaningless text
the cryptanalyst has no choice than to try all possible lengths by brute force.

Known Plaintext

Cryptanalyzing the linear cipher needs known plaintext—or some probable
plaintext and a bit of trial and error to find the correct position. If the crypt-
analyst knows the block length l and has l blocks of known plaintext she
only has to solve a system of linear equations. This amounts to known plain-
text of l2 letters, corresponding to the length of the key. In a few degenerate
cases she needs some additional known plaintext.

Let (a11, . . . , al1), . . . , (a1l, . . . , all) be the blocks of known plaintext, not
necessarily contiguous, and (c11, . . . , cl1), . . . , (c1l, . . . , cll), the corresponding
ciphertext blocks.

This yields the matrix equationk11 . . . k1l
...

. . .
...

kl1 . . . kll


a11 . . . a1l

...
. . .

...
al1 . . . all

 =

c11 . . . c1l
...

. . .
...

cl1 . . . cll

 ,

in short: kA = C in Mll(Z/nZ). Note that the lowercase letter k also denotes
an l × l-matrix. In the lucky (but common) case where A is invertible we
immediately solve for k and get the key

k = CA−1.

Inverting a matrix is efficient by Section 2. Furthermore with high proba-
bility A is invertible, see Section 4. Otherwise the cryptanalyst needs some
more plaintext. Instead of explicating the solution in detail we consider an
example.

Example

Imagine the example of Section 3 is part of a longer text, and the plaintext
Herr is known as well as its location. It consists of two blocks and defines
the matrix

A =

(
7 17
4 17

)
.

The determinant is DetA = 17 · (7 · 1 − 4 · 1) = 17 · 3 = 51 ≡ −1 mod 26.
The cryptanalyst has luck. She immediately calculates the inverse:

A−1 =

(
9 17
4 19

)
.
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From this she gets the key matrix:

k =

(
5 11
23 14

)(
9 17
4 19

)
=

(
11 8
3 7

)
.

Solving the Affine Cipher

For solving the affine cipher c = ka + b the cryptanalyst in general needs
l + 1 blocks of known plaintext a0, . . . , al. By forming differences she gets

cl − c0 = k · (al − a0),
. . .

cl − cl−1 = k · (al − al−1).

This reduces the cryptanalysis to that of the linear cipher with l known
plaintext blocks.

Summary

Linearity makes a cipher extremely vulnerable for a known plaintext attack.
The reason is that systems of linear equations are easily solved, at least over
rings that allow practical calculations. (This however is a basic prerequisite
for a ring to be useful for cryptography.)

In constructing secure ciphers on wants to prevent known plaintext at-
tacks. Therefore one has to bring in nonlinearity: Solving algebraic equation
of higher degree is much more complex. Hence the memento:

Known plaintext is adversary to linearity.

Exercise. Hill’s proposal comprised a permutation of the alphabet be-
fore applying the linear map. That means executing a monoalphabetic
substitution first. Explore the effect on cryptanalysis.
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