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2 Elimination over the Integers

How to solve systems of linear equations over the ring Z of integers? How
to calculate determinants efficiently? How to find an inverse matrix? Like
in linear algebra over fields also in the more general situation over rings the
triangularization of matrices is crucial for finding efficient algorithms.

For a sufficiently general framework we consider three classes of rings
(commutative, with 1, without zero divisors):

• Factorial rings (or UFD domains): All elements have a decomposi-
tion into primes, in particular any two elements have a greatest com-
mon divisor gcd (in general not unique).

• Principal ideal domains: Each ideal is a principal ideal. Principal
ideal domains are factorial, and the gcd of any two elements is a linear
combination of these two.

• Euclidean rings: They have a division with remainder. Euclidean
rings are principal ideal domains. The gcd of two elements as well as
its linear represenation can be efficiently calculated by the extended
Euclidean algorithm.

The set of invertible matrices with determinant 1 over a ring is called the
“special linear group” SLn(R) ⊆ GLn(R). It is the kernel of the determinant
homomorphism on GLn(R).

Lemma 1 Let R be a principal ideal domain, a1, . . . , an ∈ R, and d a

gcd(a1, . . . , an). Then there is an invertible matrix U ∈ SLn(R) such that

U





a1

a2
.
.
.

an




=





d

0
.
.
.

0





Proof. Since the case n = 1 is trivial we may assume n ≥ 2.
If all ai = 0, then the assertion is trivial. Otherwise we may assume

without restriction that a1 �= 0 (after a permutation that is merged into U as
permutation matrix—if necessary replace a 1 by −1 to make the determinant
= 1).

Let d2 := gcd(a1, a2) (any gcd because in general this is not unique).
Then d2 �= 0 and d2 = c1a1 + c2a2 is a linear combination. From this we get
the equation

�
c1 c2

−a2
d2

a1
d2

��
a1

a2

�
=

�
c1a1 + c2a2

−a2a1
d2

+ a1a2
d2

�
=

�
d2

0

�
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where the matrix of coefficients

C =

�
c1 c2

−a2
d2

a1
d2

�
has DetC =

c1a1

d2
+

c2a2

d2
= 1

and therefore is invertible.
We proceed be induction: Assume for the general step that for some

i ≥ 2

U
�




a1
...
an



 =





d
�

0
...
0
ai
...
an





where ai �= 0

Then as before we change two coordinates:
�
d
�

ai

�
❀

�
d
��

0

�
.

In this way we successively build the matrix U . ✸

Remark The inverse of the matrix C in the proof is

C
−1 =

�a1
d2

−c2
a2
d2

c1

�

From this formula we see that U and U
−1 together can be calculated

by at most n − 1 executions of the Euclidean algorithm, plus n − 1
multiplications of n×n-matrices plus at most n− 1 multiplications of
permutation matrices.

With the help of this lemma we can triangularise matrices. (A more
refined analysis would lead to the Hermitean normal form.)

Theorem 1 (i) Let R be a principal ideal domain, and A ∈ Mpq(R). Then
there exists an invertible matrix U ∈ SLp(R) such that H = UA has the

form





∗ . . . ∗
. . .

.

.

.

∗
0




für p ≥ q,




∗ . . . . . . ∗

. . . . . .

0 ∗



 für p < q.

(ii) If R is Euclidean, then U and U
−1

together can be calculated by at

most
p(p−1)

2 executions of the extended Euclidean algorithm.
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Special case Let A ∈ Mpp(R) be a square matrix, and determine H = UA

as in the Theorem. Then

DetA = DetH = h11 · · ·hpp.

If A is invertible, then A
−1 = (U−1

H)−1 = H
−1

U . The calculation of
the inverse H

−1 of the triangular matrix H is easy. Thus calculation
of determinant and inverse are reduced to triangularisation.

Proof. We prove this by describing an algorithm. Let r := min{p, q}.
Initialize the algorithm by

H := A, U := 1p, V := 1p.

Then loop over j = 1, . . . r. The relations UA = H, UV = 1p are loop
invariants.

• Assume that at the beginning of the j-th step H has the form:




∗
. . . ∗

∗
hjj

0
...

hpj





If hjj = . . . = hpj = 0 we finish step j. Otherwise we use the lemma
and find a matrix U

� ∈ SLp−j+1(R) together with its inverse (U �)−1

such that

U
�




hjj

. . .

hpj



 =





dj

0
. . .

0





We have
�
1 0
0 U �

�
∈ SLp(R). At the end of the loop we replace

U :=

�
1 0
0 U

�

�
U, H :=

�
1 0
0 U

�

�
H, V := V

�
1 0
0 (U �)−1

�
.

After finishing the last loop U and H have the desired form. ✸

Summarizing the expenses we have to add p(p−1)
2 matrix multiplications

and the same number of multiplications by permutation matrices. However
the total expenses are not yet covered because bounds for the intermediate
results are yet missing. More exact considerations give expenses of the order
O(m2

n
5) where m is an upper bound for the number of digits of the entries

of A and n = max(p, q). For further optimizations of this bound search the
literature on algebraic algorithms.
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Elimination in Residue Class Rings

Now how to invert a matrix A ∈ GLq(Z/nZ)? First interpret A as an integer
matrix and determine U ∈ SLq(Z) such that H = UA is an integer upper
triangular matrix as in Theorem 1. Reduction mod n conserves the equation
H = UA as well as A

−1 = H
−1

U . Since A mod n is invertible all diagonal
elements of H are invertible mod n.


