8 The Similarity of Columnar and Block Transpositions

See the web page http://www.staff.uni-mainz.de/pommeren/Cryptology /Classic/8_Transpos/Similar.html

Permutation Matrices

Let $\sigma \in S_p$ be a permutation of the numbers $1, \ldots, p$.

Let R be a ring (commutative with 1). Then σ acts on \mathbb{R}^p , the free R-module with basis

$$e_1 = \begin{pmatrix} 1\\0\\\vdots\\0 \end{pmatrix}, \quad \dots, \quad e_p = \begin{pmatrix} 0\\\vdots\\0\\1 \end{pmatrix},$$

as the linear automorphism

 $\rho(\sigma)$ defined by $\rho(\sigma)e_i = e_{\sigma i}$.

This gives an injective group homomorphism

$$\rho: \mathcal{S}_p \longrightarrow GL(\mathbb{R}^p).$$

How to express $\rho(\sigma)$ as a matrix? The vector

$$x = \begin{pmatrix} x_1 \\ \vdots \\ x_p \end{pmatrix} = x_1 e_1 + \dots + x_p e_p$$

maps to

$$\rho(\sigma)x = x_1e_{\sigma 1} + \dots + x_pe_{\sigma p} = \begin{pmatrix} x_{\sigma^{-1}1} \\ \vdots \\ x_{\sigma^{-1}p} \end{pmatrix}.$$

Thus the matrix P_{σ} corresponding to $\rho(\sigma)$ is given by

$$P_{\sigma}\begin{pmatrix}x_{1}\\\vdots\\x_{p}\end{pmatrix} = \begin{pmatrix}x_{\sigma^{-1}1}\\\vdots\\x_{\sigma^{-1}p}\end{pmatrix} \quad \text{for all } x \in R^{p}.$$

Therefore

$$P_{\sigma} = (a_{ij})_{1 \le i,j \le p} \quad \text{where} \quad a_{ij} = \begin{cases} 1, & \text{if } i = \sigma j, \\ 0 & \text{otherwise} \end{cases}$$

Hence the matrix P_{σ} has exactly one 1 in each row and in each column, all other entries being 0. We call P_{σ} the **permutation matrix** belonging to σ .

Matrix Description of a Block Transposition

The permutation σ defines a block transposition f_{σ} over the alphabet $\Sigma = \mathbb{Z}/n\mathbb{Z}$: For $(a_1, \ldots, a_p) \in \Sigma^p$ let

$$f_{\sigma}(a_1,\ldots,a_p) = \left[P_{\sigma}\begin{pmatrix}a_1\\\vdots\\a_p\end{pmatrix}\right]^T = (a_{\sigma^{-1}1},\ldots,a_{\sigma^{-1}p}).$$

This moves the *i*-th letter a_i of the block to position σi .

More generally let r = pq and $a = (a_1, \ldots, a_r) \in \Sigma^r$. Then

$$c = f_{\sigma}(a) = (a_{\sigma^{-1}1}, \dots, a_{\sigma^{-1}p}, a_{p+\sigma^{-1}1}, \dots, a_{p+\sigma^{-1}p}, \dots, a_{(q-1)p+\sigma^{-1}p}).$$

From this we derive the general encryption formula:

$$c_{i+(j-1)p} = a_{\sigma^{-1}i+(j-1)p}$$
 for $1 \le i \le p, 1 \le j \le q$.

We may express this in matrix notation writing the plaintext as a matrix with $a_{i+(j-1)p}$ in row *i* and column *j*:

$$A = \begin{pmatrix} a_1 & a_{p+1} & \dots & a_{(q-1)p+1} \\ \vdots & \vdots & a_{i+(j-1)p} & \vdots \\ a_p & a_{2p} & \dots & a_{qp} \end{pmatrix} \in M_{p,q}(\mathbb{Z}/n\mathbb{Z}).$$

Analogously we write the ciphertext as $C \in M_{p,q}(\mathbb{Z}/n\mathbb{Z})$ where $C_{ij} = c_{i+(j-1)p}$ for $1 \leq i \leq p, 1 \leq j \leq q$.

Then the encryption formula simply is the matrix product:

$$C = P_{\sigma}A$$

with the permutation matrix P_{σ} .

Matrix Description of a Columnar Transposition

The permutation σ also defines a columnar transposition g_{σ} over the alphabet $\Sigma = \mathbb{Z}/n\mathbb{Z}$: Writing the plaintext row by row in a $q \times p$ -matrix gives just the transposed matrix A^T (again assume r = pq):

				\downarrow		\downarrow
\rightarrow	a_1		a_p	$a_{\sigma^{-1}1}$		$a_{\sigma^{-1}p}$
\rightarrow	a_{p+1}		$a_{2p} \mapsto$	$a_{p+\sigma^{-1}1}$		$a_{p+\sigma^{-1}p}$
	÷	$a_{(\mu-1)p+\nu}$	÷	÷	$a_{(\mu-1)p+\sigma^{-1}\nu}$:
\rightarrow	$a_{(q-1)p+1}$		a_{qp}	$a_{(q-1)p+\sigma^{-1}1}$		$a_{(q-1)p+\sigma^{-1}p}$

and the ciphertext is read off, as the little arrows suggest, column by column in the order given by σ . Thus the encryption function is given by:

$$\tilde{c} = g_{\sigma}(a_1, \dots, a_r) = (a_{\sigma^{-1}1}, a_{p+\sigma^{-1}1}, \dots, a_{\sigma^{-1}p}, \dots, a_{(q-1)p+\sigma^{-1}p}).$$

The encryption formula is:

$$\tilde{c}_{\mu+(\nu-1)q} = a_{(\mu-1)p+\sigma^{-1}\nu} \text{ for } 1 \le \mu \le q, 1 \le \nu \le p$$

$$= c_{\nu+(\mu-1)p}.$$

If we arrange \tilde{c} column by column as a matrix

$$\tilde{C} = \begin{pmatrix} \tilde{c}_1 & \tilde{c}_{q+1} & \dots & \tilde{c}_{(p-1)q+1} \\ \vdots & \vdots & \tilde{c}_{\mu+(\nu-1)q} & \vdots \\ \tilde{c}_q & \tilde{c}_{2q} & \dots & \tilde{c}_{pq} \end{pmatrix} \in M_{q,p}(\mathbb{Z}/n\mathbb{Z}),$$

we see that

$$\tilde{C}^T = C = P_\sigma A.$$

This shows:

Proposition 1 The result of the columnar transposition corresponding to $\sigma \in S_p$ on Σ^{pq} arises from the result of the block transposition corresponding to σ by writing the latter ciphertext in p rows of width q and transposing the resulting matrix. This produces the former ciphertext in q rows of width p.

In particular columnar transposition and block transposition are similar.

(The proposition describes the required bijection of Σ^* for strings of length pq.)

For texts of a length not a multiple of p this observation applies after padding up to the next multiple of p. For a columnar transposition with an uncompletely filled last row this does not apply. In spite of this we assess columnar and block transpositions as similar, and conclude: Although a columnar transposition permutes the text over its complete length without period, and therefore seems to be more secure at first sight, it turns out to be an *illusory complication*.