8 The Similarity of Columnar and Block Transpositions

See the web page http://www.staff.uni-mainz.de/pommeren/Cryptology /Classic/8_Transpos/Similar.html

Permutation Matrices

Let $\sigma \in \mathcal{S}_{p}$ be a permutation of the numbers $1, \ldots, p$.
Let R be a ring (commutative with 1). Then σ acts on R^{p}, the free R-module with basis

$$
e_{1}=\left(\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right), \quad \ldots, \quad e_{p}=\left(\begin{array}{c}
0 \\
\vdots \\
0 \\
1
\end{array}\right)
$$

as the linear automorphism

$$
\rho(\sigma) \text { defined by } \quad \rho(\sigma) e_{i}=e_{\sigma i}
$$

This gives an injective group homomorphism

$$
\rho: \mathcal{S}_{p} \longrightarrow G L\left(R^{p}\right)
$$

How to express $\rho(\sigma)$ as a matrix? The vector

$$
x=\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{p}
\end{array}\right)=x_{1} e_{1}+\cdots+x_{p} e_{p}
$$

maps to

$$
\rho(\sigma) x=x_{1} e_{\sigma 1}+\cdots+x_{p} e_{\sigma p}=\left(\begin{array}{c}
x_{\sigma^{-1} 1} \\
\vdots \\
x_{\sigma^{-1} p}
\end{array}\right) .
$$

Thus the matrix P_{σ} corresponding to $\rho(\sigma)$ is given by

$$
P_{\sigma}\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{p}
\end{array}\right)=\left(\begin{array}{c}
x_{\sigma^{-1} 1} \\
\vdots \\
x_{\sigma^{-1} p}
\end{array}\right) \quad \text { for all } x \in R^{p}
$$

Therefore

$$
P_{\sigma}=\left(a_{i j}\right)_{1 \leq i, j \leq p} \quad \text { where } \quad a_{i j}= \begin{cases}1, & \text { if } i=\sigma j \\ 0 & \text { otherwise }\end{cases}
$$

Hence the matrix P_{σ} has exactly one 1 in each row and in each column, all other entries being 0 . We call P_{σ} the permutation matrix belonging to σ.

Matrix Description of a Block Transposition

The permutation σ defines a block transposition f_{σ} over the alphabet $\Sigma=$ $\mathbb{Z} / n \mathbb{Z}$: For $\left(a_{1}, \ldots, a_{p}\right) \in \Sigma^{p}$ let

$$
f_{\sigma}\left(a_{1}, \ldots, a_{p}\right)=\left[P_{\sigma}\left(\begin{array}{c}
a_{1} \\
\vdots \\
a_{p}
\end{array}\right)\right]^{T}=\left(a_{\sigma^{-1} 1}, \ldots, a_{\sigma^{-1} p}\right)
$$

This moves the i-th letter a_{i} of the block to position σi.
More generally let $r=p q$ and $a=\left(a_{1}, \ldots, a_{r}\right) \in \Sigma^{r}$. Then

$$
c=f_{\sigma}(a)=\left(a_{\sigma^{-1} 1}, \ldots, a_{\sigma^{-1} p}, a_{p+\sigma^{-1} 1}, \ldots, a_{p+\sigma^{-1} p}, \ldots, a_{(q-1) p+\sigma^{-1} p}\right)
$$

From this we derive the general encryption formula:

$$
c_{i+(j-1) p}=a_{\sigma^{-1} i+(j-1) p} \quad \text { for } 1 \leq i \leq p, 1 \leq j \leq q
$$

We may express this in matrix notation writing the plaintext as a matrix with $a_{i+(j-1) p}$ in row i and column j :

$$
A=\left(\begin{array}{cccc}
a_{1} & a_{p+1} & \ldots & a_{(q-1) p+1} \\
\vdots & \vdots & a_{i+(j-1) p} & \vdots \\
a_{p} & a_{2 p} & \cdots & a_{q p}
\end{array}\right) \in M_{p, q}(\mathbb{Z} / n \mathbb{Z})
$$

Analogously we write the ciphertext as $C \in M_{p, q}(\mathbb{Z} / n \mathbb{Z})$ where $C_{i j}=$ $c_{i+(j-1) p}$ for $1 \leq i \leq p, 1 \leq j \leq q$.

Then the encryption formula simply is the matrix product:

$$
C=P_{\sigma} A
$$

with the permutation matrix P_{σ}.

Matrix Description of a Columnar Transposition

The permutation σ also defines a columnar transposition g_{σ} over the alphabet $\Sigma=\mathbb{Z} / n \mathbb{Z}$: Writing the plaintext row by row in a $q \times p$-matrix gives just the transposed matrix A^{T} (again assume $r=p q$):

\[

\]

and the ciphertext is read off, as the little arrows suggest, column by column in the order given by σ. Thus the encryption function is given by:

$$
\tilde{c}=g_{\sigma}\left(a_{1}, \ldots a_{r}\right)=\left(a_{\sigma^{-1} 1}, a_{p+\sigma^{-1} 1}, \ldots, a_{\sigma^{-1} p}, \ldots, a_{(q-1) p+\sigma^{-1} p}\right)
$$

The encryption formula is:

$$
\begin{aligned}
\tilde{c}_{\mu+(\nu-1) q} & =a_{(\mu-1) p+\sigma^{-1} \nu} \quad \text { for } 1 \leq \mu \leq q, 1 \leq \nu \leq p \\
& =c_{\nu+(\mu-1) p}
\end{aligned}
$$

If we arrange \tilde{c} column by column as a matrix

$$
\tilde{C}=\left(\begin{array}{cccc}
\tilde{c}_{1} & \tilde{c}_{q+1} & \ldots & \tilde{c}_{(p-1) q+1} \\
\vdots & \vdots & \tilde{c}_{\mu+(\nu-1) q} & \vdots \\
\tilde{c}_{q} & \tilde{c}_{2 q} & \cdots & \tilde{c}_{p q}
\end{array}\right) \in M_{q, p}(\mathbb{Z} / n \mathbb{Z})
$$

we see that

$$
\tilde{C}^{T}=C=P_{\sigma} A
$$

This shows:
Proposition 1 The result of the columnar transposition corresponding to $\sigma \in \mathcal{S}_{p}$ on $\Sigma^{p q}$ arises from the result of the block transposition corresponding to σ by writing the latter ciphertext in p rows of width q and transposing the resulting matrix. This produces the former ciphertext in q rows of width p.

In particular columnar transposition and block transposition are similar.
(The proposition describes the required bijection of Σ^{*} for strings of length $p q$.)

For texts of a length not a multiple of p this observation applies after padding up to the next multiple of p. For a columnar transposition with an uncompletely filled last row this does not apply. In spite of this we assess columnar and block transpositions as similar, and conclude: Although a columnar transposition permutes the text over its complete length without period, and therefore seems to be more secure at first sight, it turns out to be an illusory complication.

