## 8 Similarity of Ciphers

Let $\Sigma$ be an alphabet, $M \subseteq \Sigma^{*}$ a language, and $K$ a finite set (to be used as keyspace).

Definition [Shannon 1949]. Let $F=\left(f_{k}\right)_{k \in K}$ and $F^{\prime}=\left(f_{k}^{\prime}\right)_{k \in K}$ be ciphers on $M$ with encryption functions

$$
f_{k}, f_{k}^{\prime}: M \longrightarrow \Sigma^{*} \quad \text { for all } k \in K
$$

Let $\tilde{F}$ and $\tilde{F}^{\prime}$ be the corresponding sets of encryption functions. Then $F$ is called reducible to $F^{\prime}$ if there is a bijection $A: \Sigma^{*} \longrightarrow \Sigma^{*}$ such that

$$
A \circ f \in \tilde{F}^{\prime} \quad \text { for all } f \in \tilde{F} .
$$

That is, for each $k \in K$ there is a $k^{\prime} \in K$ with $A \circ f_{k}=f_{k^{\prime}}^{\prime}$, see the diagram below.
$F$ and $F^{\prime}$ are called similar if $F$ is reducible to $F^{\prime}$, and $F^{\prime}$ is reducible to $F$.


Application. Similar ciphers $F$ and $F^{\prime}$ are cryptanalytically equivalentprovided that the transformation $f \mapsto f^{\prime}$ is efficiently computable. That means an attacker can break $F$ if and only if she can break $F^{\prime}$.

## Examples

1. Reverse CaEsAR. This is a monoalphabetic substitution with a cyclically shifted exemplar of the reverse alphabet Z Y ... B A, for example
```
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
W V U T S R Q P O N M L K J I H G F E D C B A Z Y X
```

We have $K=\Sigma=\mathbb{Z} / n \mathbb{Z}$. Let $\rho(s):=n-s$ the reversion of the alphabet. Then encryption is defined by

$$
f_{k}(s):=k-s \quad \text { for all } k \in K
$$

This encryption function is involutory: $f_{k} \circ f_{k}(s)=k-(k-s)=s$. The ordinary CaEsar encryption is

$$
f_{k}^{\prime}(s):=k+s \quad \text { for all } k \in K
$$

Then

$$
\rho \circ f_{k}(s)=\rho(k-s)=n+s-k=(n-k)+s=f_{n-k}^{\prime}(s)
$$

whence $\rho \circ f_{k}=f_{\rho(k)}^{\prime}$. Because also the corresponding converse equation holds Caesar and Reverse Caesar are similar.
2. The Beaufort cipher [Sestri 1710]. This is a periodic polyalphabetic substitution with a key $k=\left(k_{0}, \ldots, k_{l-1}\right) \in \Sigma^{l}$ (periodically continued):

$$
f_{k}\left(a_{0}, \ldots, a_{r-1}\right):=\left(k_{0}-a_{0}, k_{1}-a_{1}, \ldots, k_{r-1}-a_{r-1}\right) .
$$

Like Reverse CaEsAR it is involutory. The alphabet table over the alphabet $\Sigma=\{\mathrm{A}, \ldots, \mathrm{Z}\}$ is in Figure1. Compare this with TrithemiusBellaso encryption:

$$
f_{k}^{\prime}\left(a_{0}, \ldots, a_{r-1}\right):=\left(k_{0}+a_{0}, k_{1}+a_{1}, \ldots, k_{r-1}+a_{r-1}\right)
$$

Then as with Reverse CAESAR we have $\rho \circ f_{k}=f_{\rho(k)}^{\prime}$, and in the same way we conclude: The BEAUFORT sipher is similar with the Trithemius-Bellaso cipher.
3. The Autokey cipher. As alphabet we take $\Sigma=\mathbb{Z} / n \mathbb{Z}$. We write the encryption scheme as:

$$
\begin{array}{ccc|}
c_{0} & =a_{0}+k_{0} \\
c_{1} & = & a_{1}+k_{1} \\
\vdots & & \\
c_{l} & = & a_{l}+a_{0} \\
\vdots \\
c_{2 l} & = & a_{2 l}+a_{l} \\
\vdots & & c_{l}-c_{0}=a_{l}-k_{0} \\
c_{2 l}-c_{l}=a_{2 l}-a_{0} \mid & \\
c_{2 l}-c_{l}+c_{0}=a_{2 l}+k_{0}
\end{array}
$$

Let

$$
A\left(c_{0}, \ldots, c_{i}, \ldots, c_{r-1}\right)=\left(\ldots, c_{i}-c_{i-l}+c_{i-2 l}-\ldots, \ldots\right)
$$

In explicit form the $i$-th component of the image vector looks like:

$$
\sum_{j=0}^{\lfloor i\rfloor}(-1)^{j} \cdot c_{i-j l}
$$

and as a matrix $A$ looks like

$$
\left(\begin{array}{cccccc}
1 & & -1 & & 1 & \\
& \ddots & & \ddots & & \ddots \\
& & 1 & & -1 & \\
& & & \ddots & & \ddots \\
& & & & 1 & \\
& & & & & \ddots
\end{array}\right)
$$

Then

$$
A \circ f_{k}(a)=f_{(k,-k)}^{\prime}(a),
$$

where $f_{(k,-k)}^{\prime}$ is the Trithemius-Bellaso cipher with key $\left(k_{0}, \ldots, k_{l-1},-k_{0}, \ldots,-k_{l-1}\right) \in \Sigma^{2 l}$. Hence the Autokey cipher is reducible to the Trithemius-Belaso cipher with period twice the key length. [Friedman und Shannon] The converse is not true, the ciphers are not similar: This follows from the special form of the BelLASO key of an autokey cipher.

Note that $A$ depends only on $l$. The reduction of the autokey cipher to the Trithemius-Belaso cipher is noteworthy but practically useless: The encryption algorithm and the cryptanalysis are both more complicated when using this reduction. And the reduction is possible only after the keylength $l$ is known.

