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5 Random Keys

All cryptanalytic methods collapse when the key is a random letter sequence,
chosen in an independent way for each plaintext, and never repeated. In
particular all the letters in the ciphertexts occur with the same probability.
Or in other words, the distribution of the ciphertext letters is completely
flat.

This encryption method is called One-Time Pad (OTP). Usually
Gilbert Vernam (1890–1960) is considered as the inventor in the World
War II year 1917. But the idea of a random key is due to Mauborgne

who improved Vernam’s periodic XOR cipher in this way. The German
cryptologists Kunze, Schauffler, and Langlotz in 1921—presumably
independently from Mauborgne—proposed the “individuellen Schlüssel”
(“individual key”) for running-text encryption of texts over the alphabet
{A, . . . , Z}.

In other words: The idea “was in the air”. In 2011 Steve Bellovin discov-
ered a much earlier proposal of the method by one Frank MILLER in 1882
who however was completely unknown as a crypologist and didn’t have any
influence on the history of cryptography.

Steven M. Bellovin. Frank Miller: Inventor of the One-Time Pad.

Cryptologia 35 (2011), 203–222.

Uniformly Distributed Random Variables in Groups

This subsection contains evidence for the security of using random keys. The
general idea is:

“Something + Random = Random” or “Chaos Beats Order”
(the Cildren’s Room Theorem)

We use the language of Measure Theory.

Theorem 1 Let G be a group with a finite, translation invariant measure

µ and Ω, a probability space. Let X,Y : Ω −→ G be random variables, X
uniformly distributed, and X, Y independent. Let Z = X ∗ Y (where ∗ is

the group law of composition). Then:

(i) Z is uniformly distributed.

(ii) Y and Z are independent.

Comment The independency of X and Y means that

P (X−1A∩Y −1B) = P (X−1A)·P (Y −1B) for all measurable A,B ⊆ G.
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The uniform distribution of X means that

P (X−1A) =
µ(A)

µ(G)
for all measurable A ⊆ G.

In particular the measure PX on G defined by PX(A) = P (X−1A) is
translation invariant, if µ is so.

Remark Z is a random variable because Z = m−1◦(X,Y ) with m = ∗, the
group law of composition. This is measurable because its g-sections,

(m−1A)g = {h ∈ G | gh ∈ A}

are all measurable, and the function

g �→ µ(m−1A)g = µ(g−1A) = µ(A)

is also measurable. A weak form of Fubini’s theorem gives that
m−1A ⊆ G×G is measurable, and

(µ⊗ µ)(m−1A) =

�

G
(m−1A)g dg = µ(A)

�

G
dg = µ(A)µ(G).

Counterexamples We analyze whether the conditions of the theorem can
be weakened.

1. What if we don’t assume X is uniformly distributed? As an ex-
ample take X = 1 (unity element of group) constant and Y ar-
bitrary; then X and Y are independent, but Z = Y in general is
not uniformly distributed nor independent from Y .

2. What if we don’t assume X and Y are independent? As an ex-
ample take Y = X−1 (the group inverse); the product Z = 1
in general is not uniformly distributed. Choosing Y = X we get
Z = X2 that in general is not uniformly distributed nor inde-
pendent from Y . (More concrete example: Ω = G = Z/4Z, X =
identity map, Z = squaring map.)

General proof of the Theorem

(For an elementary proof of a practically relevant special case see below.)
Consider the product map

(X,Y ) : Ω −→ G×G

and the extended composition

σ : G×G −→ G×G, (g, h) �→ (g ∗ h, h).
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For A,B ⊆ G we have (by definition of the product probability)

(PX ⊗ PY )(A×B) = PX(A) · PY (B) = P (X−1A) · P (Y −1B);

because X and Y are independent we may continue this equation:

= P (X−1A ∩ Y −1B) = P{ω |Xω ∈ A, Y ω ∈ B}
= P ((X,Y )−1(A×B)) = P(X,Y )(A×B).

Therefore P(X,Y ) = PX⊗PY , and for S ⊆ G×G we apply Fubini’s theorem:

P(X,Y )(S) =

�

h∈G
PX(Sh) · PY (dh).

Especially for S = σ−1(A×B) we get

Sh = {g ∈ G | (g ∗ h, h) ∈ A×B} =

�
A ∗ h−1, if h ∈ B,

∅ else,

PX(Sh) =

�
PX(A ∗ h−1) = µ(A)

µ(G) , if h ∈ B,

0 else.

Therefore

P (Z−1A ∩ Y −1B) = P{ω ∈ Ω |X(ω) ∗ Y (ω) ∈ A, Y (ω) ∈ B}
= P ((X,Y )−1S) = P(X,Y )(S)

=

�

h∈B

µ(A)

µ(G)
· PY (dh) =

µ(A)

µ(G)
· P (Y −1B).

Setting B = G we conclude P (Z−1A) = µ(A)
µ(G) , which gives (i), and from this

we immediately conclude

P (Z−1A ∩ Y −1B) = P (Z−1A) · P (Y −1B)

which proves also (ii). ✸

Proof for countable groups

In the above proof we used general measure theory, but the idea was fairly
simple. Therefore we repeat the proof for the countable case, where integrals
become sums and the argumentation is elementary. For the cryptographic
application the measure spaces are even finite, so this elementary proof is
completely adequate.
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Lemma 1 Let G, Ω, X, Y , and Z be as in the theorem. Then

Z−1(A) ∩ Y −1(B) =
�

h∈B
[X−1(A ∗ h−1) ∩ Y −1h]

for all measurable A,B ⊆ G.

The proof follows from the equations

Z−1A = (X,Y )−1{(g, h) ∈ G×G | g ∗ h ∈ A}

= (X,Y )−1

�
�

h∈G
A ∗ h−1 × {h}

�

=
�

h∈G
(X,Y )−1(A ∗ h−1 × {h})

=
�

h∈G
[X−1(A ∗ h−1) ∩ Y −1h],

Z−1A ∩ Y −1B =
�

h∈G
[X−1(A ∗ h−1) ∩ Y −1h ∩ Y −1B]

=
�

h∈B
[X−1(A ∗ h−1) ∩ Y −1h].

Now let G be countable. Then

P (Z−1A ∩ Y −1B) =
�

h∈B
P [X−1(A ∗ h−1) ∩ Y −1h]

=
�

h∈B
P [X−1(A ∗ h−1)] · P [Y −1h] (because X, Y are independent)

=
�

h∈B

µ(A ∗ h−1)

µ(G)
· P [Y −1h] (because X is uniformly distributed)

=
µ(A)

µ(G)
·
�

h∈B
P [Y −1h]

=
µ(A)

µ(G)
· P

�
�

h∈B
Y −1h

�

=
µ(A)

µ(G)
· P (Y −1B).

Setting B = G we get P (Z−1A) = µ(A)
µ(G) , which gives (i), and immediately

conclude
P (Z−1A ∩ Y −1B) = P (Z−1A) · P (Y −1B),

which proves (ii). ✸
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Discussion

The theorem says that a One-Time Pad encryption results in a ciphertext
that “has nothing to do” with the plaintext, in particular doesn’t offer any
lever for the cryptanalyst.

Why then isn’t the One-Time Pad the universally accepted standard
method of encryption?

• Agreeing upon a key is a major problem—if we can securely transmit
a key of this length, why not immediately transmit the message over
the same secure message channel? Or if the key is agreed upon some
time in advance—how to remember it?

• The method is suited at best for a two-party communication. For a
multiparty communication the complexity of key distribution becomes
prohibitive.

• When the attacker has known plaintext she is not able to draw any
conclusions about other parts of the text. But she can exchange the
known plaintext with another text she likes more: The integrity of the

message is at risk.


