3 Mathematical Description of Cylinder Ciphers

This section assumes knowledge of the mathematical excursion to permutations in the Appendix to the Chapter on monoalphabetic ciphers.

Parameters

A cylinder cipher depends on the following parameters:

- The number $n=\# \Sigma$ of letters in the alphabet Σ
- The number q of disks, where $q \geq 1$. If all disks are different, then $q \leq(n-1)$!. [See below for an explanation why we don't need to take n ! for the upper bound.]
- Each disk is characterized by a permutation $\tau \in \mathcal{S}(\Sigma)$.
- Therefore the collection of disks can be described as a q-tuple $\left(T_{1}, \ldots, T_{q}\right) \in \mathcal{S}(\Sigma)^{q}$.

Assume the disks are numbered from 1 to q.

- The number l of selected disks, where $1 \leq l \leq q$
- The key is a sequence $\left(\tau_{0}, \ldots, \tau_{l-1}\right)$ consisting of different members of the q-tuple $\left(T_{1}, \ldots, T_{q}\right)$, and described by the corresponding sequence of numbers in $[1 \ldots q]$.
- The number of choices for the key is

$$
\# K=q \cdot(q-1) \cdots(q-l+1)=\frac{q!}{(q-l)!}
$$

some of which could coincide if some of the disks have identical alphabets.

Examples

Jefferson cylinder: $l=q=36, \# K=36$!, effective key length ≈ 138.
BAZERIES cylinder: $l=q=20, \# K=20$!, effective key length ≈ 61.
M-94: $l=q=25, \# K=25$!, effective key length ≈ 84.
M-138-A: $l=30, q=100, \# K=100!/ 70!$, effective key length ≈ 190.

Encryption and Decryption

The cylinder cipher is polyalphabetic with period l, the number of disks on the cylinder.

Attention: Don't confuse the permutation $\tau \in \mathcal{S}(\Sigma)$ written on the circumference of the disk with the permutation $\sigma \in \mathcal{S}(\Sigma)$ that defines the substitution alphabet realized by the disk. We subsequently examine the relationship between these two permutations.

As usual identify the alphabet Σ (in a fixed order) with $\mathbb{Z} / n \mathbb{Z}$, the integers $\bmod n$. Then, using the first generatrix, encrypting a plaintext block $\left(a_{0}, \ldots, a_{l-1}\right)$ looks like this:

a_{0}	a_{i}	\ldots	a_{l-1}
	$\tau_{i}(0)$		
Search entry x such that	\vdots		
	$\tau_{i}(x)$	$=a_{i}$	
	$\tau_{i}(x+1)$	$=c_{i}$	corresponding cipher letter
	\vdots		
	$\tau_{i}(n-1)$		

where the center column $\tau_{i}(0), \ldots, \tau_{i}(n-1)$ represents the marking of the i-th disk. Therefore

$$
c_{i}=\tau_{i}(x+1)=\tau_{i}\left(\tau_{i}^{-1} a_{i}+1\right)
$$

The corresponding decryption function is

$$
a_{i}=\tau_{i}\left(\tau_{i}^{-1} c_{i}-1\right)
$$

This derivation proves:
Theorem 1 (Cylinder Cipher Theorem) The relation between the permutation $\tau \in \mathcal{S}(\Sigma)$ written on the circumference of the disk and the permutation $\sigma \in \mathcal{S}(\Sigma)$ that defines the substitution alphabet realized by the disk using the first generatrix is given by the formulas

$$
\begin{aligned}
\sigma(a) & =\tau\left(\tau^{-1} a+1\right) \\
\sigma^{-1}(c) & =\tau\left(\tau^{-1} c-1\right)
\end{aligned}
$$

Or in other words: σ is a cyclic permutation and τ is the cycle representation of σ.

There are $(n-1)$! different cycles of length n. As n different disk definitions τ result in the same cyclic permutation σ we could make the restriction $q \leq(n-1)$! for the number of possible different disks.

Corollary 1 Using the j-th generatrix the formulas become

$$
\begin{aligned}
\sigma_{j}(a) & =\tau\left(\tau^{-1} a+j\right) \\
\sigma_{j}^{-1}(c) & =\tau\left(\tau^{-1} c-j\right)
\end{aligned}
$$

if we denote by σ_{j} the substitution by the j-th generatrix.
Example: Let $\Sigma=\{\mathrm{A}, \ldots, \mathrm{Z}\}$, and let the disk inscription be $\tau=$ QWERTZUIOPASDFGHJKLYXCVBNM

Then σ is the permutation
a b c defghijklmnopqretuvixyz
SNVFRGH OKLYQMPAWTDZIBECXU

