3 Mathematical Description of Cylinder Ciphers

This section assumes knowledge of the mathematical excursion to permutations in the Appendix to the Chapter on monoalphabetic ciphers.

Parameters

A cylinder cipher depends on the following parameters:

- The number $n = \#\Sigma$ of letters in the alphabet Σ
- The number q of disks, where $q \ge 1$. If all disks are different, then $q \le (n-1)!$. [See below for an explanation why we don't need to take n! for the upper bound.]
 - Each disk is characterized by a permutation $\tau \in \mathcal{S}(\Sigma)$.
 - Therefore the collection of disks can be described as a q-tuple $(T_1, \ldots, T_q) \in \mathcal{S}(\Sigma)^q$.

Assume the disks are numbered from 1 to q.

- The number l of selected disks, where $1 \le l \le q$
 - The key is a sequence $(\tau_0, \ldots, \tau_{l-1})$ consisting of different members of the *q*-tuple (T_1, \ldots, T_q) , and described by the corresponding sequence of numbers in $[1 \ldots q]$.
 - The number of choices for the key is

$$\#K = q \cdot (q-1) \cdots (q-l+1) = \frac{q!}{(q-l)!}$$

some of which could coincide if some of the disks have identical alphabets.

Examples

JEFFERSON cylinder: l = q = 36, #K = 36!, effective key length ≈ 138 .

BAZERIES cylinder: l = q = 20, # K = 20!, effective key length ≈ 61 .

M-94: l = q = 25, #K = 25!, effective key length ≈ 84 .

M-138-A: l = 30, q = 100, #K = 100!/70!, effective key length ≈ 190 .

Encryption and Decryption

The cylinder cipher is polyalphabetic with period l, the number of disks on the cylinder.

Attention: Don't confuse the permutation $\tau \in \mathcal{S}(\Sigma)$ written on the circumference of the disk with the permutation $\sigma \in \mathcal{S}(\Sigma)$ that defines the substitution alphabet realized by the disk. We subsequently examine the relationship between these two permutations.

As usual identify the alphabet Σ (in a fixed order) with $\mathbb{Z}/n\mathbb{Z}$, the integers mod n. Then, using the first generatrix, encrypting a plaintext block (a_0, \ldots, a_{l-1}) looks like this:

where the center column $\tau_i(0), \ldots, \tau_i(n-1)$ represents the marking of the *i*-th disk. Therefore

$$c_i = \tau_i(x+1) = \tau_i(\tau_i^{-1}a_i+1)$$

The corresponding decryption function is

$$a_i = \tau_i(\tau_i^{-1}c_i - 1)$$

This derivation proves:

Theorem 1 (Cylinder Cipher Theorem) The relation between the permutation $\tau \in \mathcal{S}(\Sigma)$ written on the circumference of the disk and the permutation $\sigma \in \mathcal{S}(\Sigma)$ that defines the substitution alphabet realized by the disk using the first generatrix is given by the formulas

$$\sigma(a) = \tau(\tau^{-1}a + 1) \sigma^{-1}(c) = \tau(\tau^{-1}c - 1)$$

Or in other words: σ is a cyclic permutation and τ is the cycle representation of σ .

There are (n-1)! different cycles of length n. As n different disk definitions τ result in the same cyclic permutation σ we could make the restriction $q \leq (n-1)!$ for the number of possible different disks.

K. Pommerening, Cylinder Ciphers

Corollary 1 Using the *j*-th generatrix the formulas become

$$\sigma_j(a) = \tau(\tau^{-1}a+j)$$

$$\sigma_j^{-1}(c) = \tau(\tau^{-1}c-j)$$

if we denote by σ_j the substitution by the *j*-th generatrix.

Example: Let $\Sigma = \{A, \dots, Z\}$, and let the disk inscription be

 $\tau = \text{QWERTZUIOPASDFGHJKLYXCVBNM}$

Then σ is the permutation

a b c d e f g h i j k l m n o p q r s t u v w x y z S N V F R G H J O K L Y Q M P A W T D Z I B E C X U