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17 Stochastic Languages

The stochastic model of language as a stationary Markov process easily led
to useful theoretic results that fit well with empirical observations. On the
other hand it is far from the computer scientific model that regards a lan-
guage as a fixed set of strings with certain properties and that is intuitively
much closer to reality. In fact the Markov model may produce every string
in Σ∗ with a non-zero probability! (We assume that each letter s ∈ Σ has a
non-zero probability—otherwise we would throw it away.) Experience tells
us that only a very small portion of all character strings represent mean-
ingful texts in any natural language. Here we consider an alternative model
that respects this facet of reality, but otherwise is somewhat cumbersome.

Recall from Chapter 1 that a language is a subset M ⊆ Σ∗.

A Computer Theoretic Model

The statistical cryptanalysis of the monoalphabetic substitution relied on
the hypothesis—supported by empirical evidence—that the average relative
frequencies of the letters s ∈ Σ in texts of sufficient length from this language
approximate typical values ps. This is even true when we consider only fixed
positions j in the texts, at least for almost all j—the first letters of texts for
example usually have different frequencies.

Now we try to build a mathematical model of language that reflects this
behaviour. Let M ⊆ Σ∗ a language, and Mr := M ∩ Σr for r ∈ N the set of
texts of length r. The average frequency of the letter s ∈ Σ at the position
j ∈ [0 . . . r − 1] of texts in Mr is

µ(r)
sj :=

1

#Mr
·
�

a∈Mr

δsaj

(This sum counts the texts a ∈ Mr with the letter s at position j.)

Example Let M = Σ∗ Then

µ(r)
sj :=

1

nr
·
�

a∈Σr

δsaj =
1

n
for all s ∈ Σ, j = 1, . . . , r − 1,

because there are exactly nr−1 possible texts with fixed aj = s.

Definition

The language M ⊆ Σ∗ is called stochastic if there is at most a finite
exceptional set J ⊆ N of positions such that

ps := lim
r→∞

µ(r)
sj
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exists uniformly in j and is independent from j for all j ∈ N − J and all
s ∈ Σ.

The ps are called the letter frequencies of M and obviously coincide
with the limit values for the frequencies of the letters over the complete
texts.

Examples and Remarks

1. The exceptional set J for natural languages usually consists only
of the start position 0 and the end position. That is, the first and
last letters of texts may have different frequencies. For example
in English the letter “t” is the most frequent first letter instead
of “e”, followed by “a” and “o”. In German this is “d”, followed
by “w”, whereas “t” almost never occurs as first letter.

2. The language M = Σ∗ is stochastic.

3. Because always
�

s∈Σ µ(r)
sj = 1, also

�
s∈Σ ps = 1.

Note that this notation is not standard in the literature.

Also note that we consider a theoretical model. For a natural language it
may not be well-defined whether a given text is meaningful or not, not even
if it is taken from a newspaper.

The Mean Coincidence Between Two Languages

Let L,M ⊆ Σ∗ two stochastic languages with letter frequencies qs and ps
for s ∈ Σ. We consider the mean value of the coincidences of texts of length
r:

κ(r)LM :=
1

#Lr
· 1

#Mr
·
�

a∈Lr

�

b∈Mr

κ(a, b)

Theorem 5 The mean coincidence of the stochastic languages L and M is
asymptotically

lim
r→∞

κ(r)LM =
�

s∈Σ
psqs

The proof follows.
Interpretation: The coincidence of sufficiently long texts of the same

length is approximately

κ(a, b) ≈
�

s∈Σ
psqs
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An Auxiliary Result

Lemma 5 Let M be a stochastic language. Then the average deviation for
all letters s ∈ Σ

1

r
·
r−1�

j=0

�
µ(r)
sj − ps

�
→ 0 for r → ∞

Proof. Fix ε > 0, and let r large enough that

1. r ≥ 4 · #J
ε ,

2. |µ(r)
sj − ps| < ε

2 for all j ∈ [0 . . . r]− J .

For j ∈ J we have |µ(r)
sj − ps| ≤ |µ(r)

sj |+ |ps| ≤ 2. Therefore

1

r
·
r−1�

j=0

|µ(r)
sj − ps| <

1

r
· 2 ·#J +

r −#J

r
· ε
2
≤ ε

2
+

ε

2
= ε.

✸

Remark The mean frequency of s in texts of length r is

µ(r)
s =

1

r
·
r−1�

j=0

µ(r)
sj =

1

r
· 1

#Mr
·
�

a∈Mr

δsaj

For this we get the limit

Corollary 5 limr→∞ µ(r)
s = ps

Proof of the Theorem

κ(r)LM =
1

#Lr ·#Mr
·
�

a∈Lr

�

b∈Mr



1

r
·
r−1�

j=0

�

s∈Σ
δsajδsbj





=
�

s∈Σ

1

r
·
r−1�

j=0

�
1

#Lr

�

a∈Lr

δsaj

�
·



 1

#Mr

�

b∈Mr

δsbj





=
�

s∈Σ

1

r
·
r−1�

j=0

[qs + εsj ] · [ps + ηsj ]

=
�

s∈Σ



psqs +
ps
r

·
r−1�

j=0

εsj +
qs
r
·
r−1�

j=0

ηsj +
1

r
·
r−1�

j=0

εsjηsj





The second and third summands converge to 0 by the lemma. The fourth
converges to 0 because |εsjηsj | ≤ 1. Therefore the sum converges to�

s∈Σ psqs. ✸


