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16 Modeling a Language by a Markov Process

For deriving theoretical results a common model of language is the interpre-
tation of texts as results of Markov processes. This model was introduced
by Shannon in his fundamental papers published after World War II.

If we look at letter frequencies only, we define aMarkov process of order
0. If we also incorporate bigram frequencies into our model, it becomes a
Markov process of order 1, if we include trigram frequencies, of order 2,
and so on.

In this section we want to derive theoretical expectation values for κ, ϕ,
and χ. For this the order of the Markov model is irrelevant.

Message Sources

Let the alphabet Σ be equipped with a probability distribution, assigning
the probability ps to the letter s ∈ Σ. In particular

�
s∈Σ ps = 1. We call

(Σ, p) a message source and consider random variables X in Σ, that is
mappings X: Ω −→ Σ where Ω is a finite probability space with probability
measure P , such that P (X−1s) = ps for all s ∈ Σ.

Picking a letter of Σ at random from the message source is modeled as
evaluating X(ω) for some ω ∈ Ω. We calculate the expectation values of the
Kronecker symbols for random variables X,Y: Ω −→ Σ and letters s ∈ Σ
where Y may belong to a message source (Σ, q) with a possibly different
probability distribution q = (qs)s∈Σ:

δsX(ω) =

�
1 if X(ω) = s

0 otherwise
δXY (ω) =

�
1 if X(ω) = Y (ω)

0 otherwise

Lemma 4 (i) E(δsX) = ps for all s ∈ Σ.
(ii) If X and Y are independent, then E(δXY ) =

�
s∈Σ psqs.

(ii) If X and Y are independent, then δsX and δsY are independent.

Proof. (i) Since δ takes only the values 0 and 1, we have

E(δsX) = 1 · P (X−1s) + 0 · P (Ω−X−1s) = P (X−1s) = ps.

(ii) In the same way, using the independence of X and Y ,

E(δX,Y ) = 1 · P (ω |X(ω) = Y (ω)) + 0 · P (ω |X(ω) �= Y (ω))

= P (X = Y ) =
�

s∈Σ
P (X−1s ∩ Y −1s)

=
�

s∈Σ
P (X−1s) · P (Y −1s) =

�

s∈Σ
psqs
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(iii) δ−1
sX(1) = {ω |X(ω) = s} = X−1s, and δ−1

sX(0) = Ω−X−1s. The same
for Y . The assertion follows because P (X−1s∩Y −1s) = P (X−1s) ·P (Y −1s).
✸

Picking a random text of length r is modeled by evaluating an r-tuple
of random variables at some ω. This leads to the following definition:

Definition. A message of length r from the message source (Σ, p) is a
sequence X = (X1, . . . , Xr) of random variables X1, . . . , Xr: Ω −→ Σ
such that P (X−1

i s) = ps for all i = 1, . . . , r and all s ∈ Σ.

Note. In particular the Xi are identically distributed. They are not neces-
sarily independent.

The Coincidence Index of Message Sources

Definition. Let Y = (Y1, . . . , Yr) be another message of length r from a
possibly different message source (Σ, q). Then the coincidence index
of X and Y is the random variable

KXY : Ω −→ R

defined by

KXY (ω) :=
1

r
·#{i = 1, . . . , r |Xi(ω) = Yi(ω)} =

1

r
·

r�

i=1

δXi(ω),Yi(ω)

We calculate its expectation under the assumption that each pair of Xi

and Yi is independent. From Lemma 4, using the additivity of E, we get

E(KXY ) =
1

r
·

r�

i=1

E(δXi,Yi) =
1

r
· r ·

�

s∈Σ
psqs =

�

s∈Σ
psqs

independently of the length r. Therefore it is adequate to call this expecta-
tion the coincidence index κLM of the two message sources L,M . We
have proven:

Theorem 2 The coincidence index of two message sources L = (Σ, p) and
M = (Σ, q) is

κLM =
�

s∈Σ
psqs

Now we are ready to calculate theoretical values for the “typical” coin-
cidence indices of languages under the assumption that the model “message
source” fits their real behaviour:



K. Pommerening, Language Statistics 82

Example 1, random texts versus any language M : Here all ps =
1/n, therefore κΣ∗ = n ·

�
s∈Σ 1/n · qs = 1/n.

Example 2, English texts versus English: From Table 39 we get the
value 0.0653.

Example 3, German texts versus German: The table gives 0.0758.

Example 4, English versus German: The table gives 0.0664.

Note that these theoretical values for the real languages differ slightly
from the former empirical values. This is due to two facts:

• The model—as every mathematical model—is an approximation to
the truth.

• The empirical values underly statistical variations and depend on the
kind of texts that were evaluated.

The Cross-Product Sum of Message Sources

For a message X = (X1, . . . , Xr) from a message source (Σ, p) we define the
(relative) letter frequencies as random variables

MsX: Ω −→ R, MsX =
1

r
·

r�

i=1

δsXi ,

or more explicitly,

MsX(ω) =
1

r
·#{i |Xi(ω) = s} for all ω ∈ Ω.

We immediately get the expectation

E(MsX) =
1

r
·

r�

i=1

E(δsXi) = ps.

Definition. Let X = (X1, . . . , Xr) be a message from the source (Σ, p), and
Y = (Y1, . . . , Yt), a message from the source (Σ, q). Then the cross-
product sum of X and Y is the random variable

XXY : Ω −→ R, XXY :=
1

rt
·
�

s∈Σ
MsXMsY .
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Table 39: Calculating theoretical values for coincidence indices

Letter s English German Square Square Product
ps qs p2s q2s psqs

A 0.082 0.064 0.006724 0.004096 0.005248
B 0.015 0.019 0.000225 0.000361 0.000285
C 0.028 0.027 0.000784 0.000729 0.000756
D 0.043 0.048 0.001849 0.002304 0.002064
E 0.126 0.175 0.015876 0.030625 0.022050
F 0.022 0.017 0.000484 0.000289 0.000374
G 0.020 0.031 0.000400 0.000961 0.000620
H 0.061 0.042 0.003721 0.001764 0.002562
I 0.070 0.077 0.004900 0.005929 0.005390
J 0.002 0.003 0.000004 0.000009 0.000006
K 0.008 0.015 0.000064 0.000225 0.000120
L 0.040 0.035 0.001600 0.001225 0.001400
M 0.024 0.026 0.000576 0.000676 0.000624
N 0.067 0.098 0.004489 0.009604 0.006566
O 0.075 0.030 0.005625 0.000900 0.002250
P 0.019 0.010 0.000361 0.000100 0.000190
Q 0.001 0.001 0.000001 0.000001 0.000001
R 0.060 0.075 0.003600 0.005625 0.004500
S 0.063 0.068 0.003969 0.004624 0.004284
T 0.091 0.060 0.008281 0.003600 0.005460
U 0.028 0.042 0.000784 0.001764 0.001176
V 0.010 0.009 0.000100 0.000081 0.000090
W 0.023 0.015 0.000529 0.000225 0.000345
X 0.001 0.001 0.000001 0.000001 0.000001
Y 0.020 0.001 0.000400 0.000001 0.000020
Z 0.001 0.011 0.000001 0.000121 0.000011

Sum 1.000 1.000 0.0653 0.0758 0.0664
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To calculate its expectation we assume that each Xi is independent of all
Yj , and each Yj is independent of all Xi. Under this assumption let us call
the messages X and Y independent. Then from Lemma 4 and the formula

XXY :=
1

rt
·
�

s∈Σ

r�

i=1

t�

j=1

δsXiδsYj

we get

E(XXY ) =
1

rt
·
�

s∈Σ

r�

i=1

t�

j=1

E(δsXi)E(δsYj ) =
�

s∈Σ
psqs

again independently of the length r. Therefore we call this expectation the
cross-product sum χLM of the two message sources L,M . We have
proven:

Theorem 3 The cross-product sum of two message sources L = (Σ, p) and
M = (Σ, q) is

χLM =
�

s∈Σ
psqs.

The Inner Coincidence Index of a Message Source

Let X = (X1, . . . , Xr) be a message from a source (Σ, p). In analogy with
Sections 10 and 14 we define the random variables

ΨX ,ΦX: Ω −→ R

by the formulas

ΨX :=
�

s∈Σ
M2

sX , ΦX :=
r

r − 1
·Ψx −

1

r − 1
.

We try to calculate the expectation of ΨX first:

ΨX =
1

r2
·
�

s∈Σ

�
r�

i=1

δsXi

�2

=
1

r2
·
�

s∈Σ




r�

i=1

δsXi +
r�

i=1

�

j �=i

δsXiδsXj





since δ2sXi
= δsXi . Taking the expectation value we observe that for a sensible

result we need the assumption that Xi and Xj are independent for i �= j.

In the language of Markov chains this means that we assume
a Markov chain of order 0: The single letters of the messages
from the source are independent from each other.
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Under this assumption we get

E(ΨX) =
1

r2
·
�

s∈Σ




r�

i=1

ps +
r�

i=1

�

j �=i

E(δsXi)E(δsXj )





=
1

r2
·





r�

i=1

�

s∈Σ
ps

� �� �
1

+
�

s∈Σ
p2s ·

r�

i=1

�

j �=i

1

� �� �
r·(r−1)





=
1

r
+

r − 1

r
·
�

s∈Σ
p2s.

For ΦX the formula becomes a bit more elegant:

E(ΦX) =
r

r − 1
·
�
r − 1

r
·
�

s∈Σ
p2s +

1

r

�
− 1

r − 1
=

�

s∈Σ
p2s.

Let us call this expectation E(ΦX) the (inner) coincidence index of the
message source (Σ, p), and let us call (by abuse of language) the message
source of order 0 if its output messages are Markov chains of order 0 only.
(Note that for a mathematically correct definition we should have included
the “transition probabilities” into our definition of message source.) Then
we have proved

Theorem 4 The coincidence index of a message source L = (Σ, p) of order
0 is

ϕL =
�

s∈Σ
p2s.

The assumption of order 0 is relevant for small text lengths and neglige-
able for large texts, because for “natural” languages dependencies between
letters affect small distances only. Reconsidering the tables in Section 11
we note in fact that the values for texts of lengths 100 correspond to the
theoretical values, whereas for texts of lengths 26 the values are suspiciously
smaller. An explanation could be that repeated letters, such as ee, oo, rr,
are relatively rare and contribute poorly to the number of coincidences. This
affects the power of the ϕ-test in an unfriendly way.

On the other hand considering Sinkov’s test for the period in Section 13
we note that the columns of a polyalphabetic ciphertext are decimated ex-
cerpts from natural texts where the dependencies between letters are irrel-
evant: The assumption of order 0 is justified for Sinkov’s test.


