5 The Cipher Disk Algorithm

Mathematical Notation

Take the alphabet $\Sigma=\left\{s_{0}, \ldots, s_{n-1}\right\}$, and interpret (or code) it as the additive group of the ring $\mathbb{Z} / n \mathbb{Z}$. The key $(\sigma, k) \in \mathcal{S}(\Sigma) \times \Sigma^{l}$ of a disk cipher consists of a primary alphabet (represented by the permutation σ) and a keyword $k=\left(k_{0}, \ldots, k_{l-1}\right) \in \Sigma^{l}$. Our notation for the corresponding encryption function is

$$
f_{\sigma, k}: \Sigma^{*} \longrightarrow \Sigma^{*}
$$

Special case: The Bellaso cipher with keyword k is $f_{\varepsilon, k}$ where $\varepsilon \in \mathcal{S}(\Sigma)$ denotes the identity permutation.

The Alphabet Table

We arrange the alphabets for the polyalphabetic substitution in form of the usual table:

s_{0}	s_{1}	s_{2}	\ldots	s_{n-1}
t_{0}	t_{1}	t_{2}	\ldots	t_{n-1}
t_{1}	t_{2}	t_{3}	\ldots	t_{0}
\ldots	\ldots	\ldots	\ldots	\ldots
t_{n-1}	t_{0}	t_{1}	\ldots	t_{n-2}

where $t_{i}=\sigma s_{i}$ for $0 \leq i \leq n-1$.
Note that whenever we refer to an alphabet table we implicitely use an order on the alphabet Σ. This order manifests itself by indexing the letters as s_{0}, \ldots, s_{n-1}.

The Encryption Function

Now we encrypt a text $a=\left(a_{0}, a_{1}, a_{2}, \ldots\right) \in \Sigma^{r}$ using this notation. Let $a_{i}=s_{q}$ and $k_{i}=t_{p}$ as letters of the alphabet. Then we read the ciphertext letter c_{i} off from row p and column q of the table:

$$
c_{i}=t_{p+q}=\sigma s_{p+q}=\sigma\left(s_{p}+s_{q}\right) \quad[\text { sums in } \mathbb{Z} / n \mathbb{Z}] .
$$

We have

$$
k_{i}=t_{p}=\sigma\left(s_{p}\right), \quad s_{p}=\sigma^{-1}\left(k_{i}\right), \quad \text { hence } c_{i}=\sigma\left(a_{i}+\sigma^{-1}\left(k_{i}\right)\right) .
$$

If we denote by f_{σ} the monoalphabetic substitution corresponding to σ, then this derivation proves:

Theorem 1 The disk cipher $f_{\sigma, k}$ is the composition (or "superencryption") of the BELLASO encryption $f_{\varepsilon, k^{\prime}}$, where $k^{\prime}=f_{\sigma}^{-1}(k)$, with the monoalphabetic substitution f_{σ},

$$
f_{\sigma, k}=f_{\sigma} \circ f_{\varepsilon, k^{\prime}}
$$

Algorithm

The naive straightforward algorithm for the disk cipher is

- Take the next plaintext letter.
- Take the next alphabet.
- Get the next ciphertext letter.

From Theorem 1 we derive an algorithm that is a bit more efficient:

1. Take $k^{\prime}=f_{\sigma}^{-1}(k)$, in coordinates $k_{i}^{\prime}=\sigma^{-1}\left(k_{i}\right)$ for $0 \leq i<l$.
2. Add a and (the periodically extended) k^{\prime} over $\mathbb{Z} / n \mathbb{Z}$, and get b, in coordinates $b_{j}=a_{j}+k_{j \bmod l}^{\prime}$
3. Take $c=f_{\sigma}(b) \in \Sigma^{r}$, in coordinates $c_{j}=\sigma\left(b_{j}\right)$.

A Perl program implementing this algorithm is on the web page http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/Perl/ porta.pl the corresponding program for decryption on http:// WWW.staff.uni-mainz.de/pommeren/Cryptology/Classic/Perl/ portadec.pl. They can be called online from the pages http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/ 2_Polyalph/portaenc.html and http://www.staff.uni-mainz.de/ pommeren/Cryptology/Classic/2_Polyalph/portadec.html

