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1 A Priori and A Posteriori Probabilities

Model Scenario

Consider

• a finite set M0 ⊆ M of possible plaintexts—for example all plaintexts
of length r or of length ≤ r,

• a finite set K of keys,

• a cipher F = (fk)k∈K with fk : M −→ Σ∗.

The restriction to a finite setM0 allows us to handle probabilities in the naive
way. It is no real restriction since plaintexts of lengths > 10100 are extremely
unlikely in this universe that has at most 1080 elementary particles.

Motivating Example

For English plaintexts of length 5 we potentially know exact a priori prob-
abilities, say from a lot of countings. A small excerpt from the list is

Plaintext Probability
hello p > 0
fruit q > 0
xykph 0
. . . . . .

Now assume we see a monoalphabetically encrypted English text XTJJA.
Without knowing the key—that is in a situation where all keys have the
same probability—and without further context information we nevertheless
assign to the single plaintexts different “a posteriori probabilities”:

Plaintext Probability
hello p1 >> p
fruit 0
xykph 0
. . . . . .

Thus knowledge of the ciphertext alone (and knowledge of the encryption
method) changed our information on the plaintext.

A “Bayesian” approach gives a general model of this observation.

Model

The probability of plaintexts is given as a function

P : M0 −→ [0, 1] where P (a) > 0 for all a ∈ M0

and
�

a∈M0

P (a) = 1.
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(This is the a priori probability of plaintexts.)

The probability of keys is likewise given as a function

P : K −→ [0, 1] such that
�

k∈K
P (k) = 1.

(By abuse of notation denoted by the same letter P .) In general we
assume a uniform distribution P (k) = 1/#K for all k ∈ K.

The probability of ciphertexts derives from the probabilities of plain-
texts and keys, implicitly assumed as independently chosen:

P : Σ∗ −→ [0, 1], P (c) :=
�

a∈M0

�

k∈Kac

P (a) · P (k),

where Kac := {k ∈ K | fk(a) = c} is the set of all keys that transform
a to c.

Remark 1 Only finitely many c ∈ Σ∗ have P (c) �= 0. These form the set

C0 := {c ∈ Σ∗ | P (c) > 0}

of “possible ciphertexts”.

Remark 2 We have
�

c∈Σ∗

P (c) =
�

c∈Σ∗

�

a∈M0

�

k∈Kac

P (a) · P (k)

=
�

a∈M0

�

k∈K
P (a) · P (k)

=
�

a∈M0

P (a) ·
�

k∈K
P (k)

= 1.

The conditional probability for a ciphertext to stem from a given
plaintext a ∈ M0 is modeled by the function

P (•|a) : Σ∗ −→ [0, 1], P (c|a) :=
�

k∈Kac

P (k).

Remark 3
�

c∈Σ∗ P (c|a) =
�

k∈K P (k) = 1.

Remark 4 P (c) =
�

a∈M0
P (a) · P (c|a).
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A Posteriori Probabilities of Plaintexts

The cryptanalyst is interested in the converse, the conditional probability
P (a|c) of a plaintext a ∈ M0 if the ciphertext c ∈ Σ∗ is given.

First we describe the probability of the simultaneous occurrence of a and
c as

P : M0 × Σ∗ −→ [0, 1], P (a, c) := P (a) · P (c|a).

Remark 5 Then
�

a∈M0

P (a, c) =
�

a∈M0

P (a) · P (c|a) = P (c).

The conditional probability of a plaintext is given by a function
P (•|c) with P (a, c) = P (c) · P (a|c) by the Bayesian formula

P (a|c) :=
�

P (a)·P (c|a)
P (c) if P (c) �= 0,

0 if P (c) = 0.

Remark 6
�

c∈Σ∗ P (c)·P (a|c) =
�

c∈Σ∗ P (a)·P (c|a) = P (a) by Remark 3.


