1 A Priori and A Posteriori Probabilities

Model Scenario

Consider

- a finite set $M_{0} \subseteq M$ of possible plaintexts-for example all plaintexts of length r or of length $\leq r$,
- a finite set K of keys,
- a cipher $F=\left(f_{k}\right)_{k \in K}$ with $f_{k}: M \longrightarrow \Sigma^{*}$.

The restriction to a finite set M_{0} allows us to handle probabilities in the naive way. It is no real restriction since plaintexts of lengths $>10^{100}$ are extremely unlikely in this universe that has at most 10^{80} elementary particles.

Motivating Example

For English plaintexts of length 5 we potentially know exact a priori probabilities, say from a lot of countings. A small excerpt from the list is

Plaintext	Probability
hello	$p>0$
fruit	$q>0$
xykph	0
\ldots	\ldots

Now assume we see a monoalphabetically encrypted English text XTJJA. Without knowing the key-that is in a situation where all keys have the same probability - and without further context information we nevertheless assign to the single plaintexts different "a posteriori probabilities":

Plaintext	Probability
hello	$p_{1} \gg p$
fruit	0
xykph	0
\ldots	\ldots

Thus knowledge of the ciphertext alone (and knowledge of the encryption method) changed our information on the plaintext.

A "BAYESian" approach gives a general model of this observation.

Model

The probability of plaintexts is given as a function

$$
\begin{gathered}
P: M_{0} \longrightarrow[0,1] \quad \text { where } \quad P(a)>0 \quad \text { for all } a \in M_{0} \\
\text { and } \quad \sum_{a \in M_{0}} P(a)=1 .
\end{gathered}
$$

(This is the a priori probability of plaintexts.)
The probability of keys is likewise given as a function

$$
P: K \longrightarrow[0,1] \quad \text { such that } \quad \sum_{k \in K} P(k)=1
$$

(By abuse of notation denoted by the same letter P.) In general we assume a uniform distribution $P(k)=1 / \# K$ for all $k \in K$.

The probability of ciphertexts derives from the probabilities of plaintexts and keys, implicitly assumed as independently chosen:

$$
P: \Sigma^{*} \longrightarrow[0,1], \quad P(c):=\sum_{a \in M_{0}} \sum_{k \in K_{a c}} P(a) \cdot P(k)
$$

where $K_{a c}:=\left\{k \in K \mid f_{k}(a)=c\right\}$ is the set of all keys that transform a to c.

Remark 1 Only finitely many $c \in \Sigma^{*}$ have $P(c) \neq 0$. These form the set

$$
C_{0}:=\left\{c \in \Sigma^{*} \mid P(c)>0\right\}
$$

of "possible ciphertexts".
Remark 2 We have

$$
\begin{aligned}
\sum_{c \in \Sigma^{*}} P(c) & =\sum_{c \in \Sigma^{*}} \sum_{a \in M_{0}} \sum_{k \in K_{a c}} P(a) \cdot P(k) \\
& =\sum_{a \in M_{0}} \sum_{k \in K} P(a) \cdot P(k) \\
& =\sum_{a \in M_{0}} P(a) \cdot \sum_{k \in K} P(k) \\
& =1 .
\end{aligned}
$$

The conditional probability for a ciphertext to stem from a given plaintext $a \in M_{0}$ is modeled by the function

$$
P(\bullet \mid a): \Sigma^{*} \longrightarrow[0,1], \quad P(c \mid a):=\sum_{k \in K_{a c}} P(k)
$$

Remark $3 \sum_{c \in \Sigma^{*}} P(c \mid a)=\sum_{k \in K} P(k)=1$.
Remark $4 P(c)=\sum_{a \in M_{0}} P(a) \cdot P(c \mid a)$.

A Posteriori Probabilities of Plaintexts

The cryptanalyst is interested in the converse, the conditional probability $P(a \mid c)$ of a plaintext $a \in M_{0}$ if the ciphertext $c \in \Sigma^{*}$ is given.

First we describe the probability of the simultaneous occurrence of a and c as

$$
P: M_{0} \times \Sigma^{*} \longrightarrow[0,1], \quad P(a, c):=P(a) \cdot P(c \mid a)
$$

Remark 5 Then

$$
\sum_{a \in M_{0}} P(a, c)=\sum_{a \in M_{0}} P(a) \cdot P(c \mid a)=P(c)
$$

The conditional probability of a plaintext is given by a function $P(\bullet \mid c)$ with $P(a, c)=P(c) \cdot P(a \mid c)$ by the BAYESian formula

$$
P(a \mid c):= \begin{cases}\frac{P(a) \cdot P(c \mid a)}{P(c)} & \text { if } P(c) \neq 0 \\ 0 & \text { if } P(c)=0\end{cases}
$$

Remark $6 \sum_{c \in \Sigma^{*}} P(c) \cdot P(a \mid c)=\sum_{c \in \Sigma^{*}} P(a) \cdot P(c \mid a)=P(a)$ by Remark 3.

