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1 A Priori and A Posteriori Probabilities

Model Scenario

Consider

e a finite set My C M of possible plaintexts—for example all plaintexts
of length r or of length < r,

e a finite set K of keys,
e a cipher F = (fx)kex with fr: M — X*.

The restriction to a finite set M allows us to handle probabilities in the naive
way. It is no real restriction since plaintexts of lengths > 10'%° are extremely
unlikely in this universe that has at most 1080 elementary particles.

Motivating Example

For English plaintexts of length 5 we potentially know exact a priori prob-
abilities, say from a lot of countings. A small excerpt from the list is

Plaintext | Probability

hello p>0
fruit q>0
xykph 0

Now assume we see a monoalphabetically encrypted English text XTJJA.
Without knowing the key—that is in a situation where all keys have the
same probability—and without further context information we nevertheless
assign to the single plaintexts different “a posteriori probabilities”:

Plaintext | Probability

hello pL>>0p
fruit 0
xykph 0

Thus knowledge of the ciphertext alone (and knowledge of the encryption
method) changed our information on the plaintext.
A “BAyEgsian” approach gives a general model of this observation.

Model
The probability of plaintexts is given as a function

P: My —[0,1] where P(a)>0 forall ae M
and >  Pa)=1.

a€My
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(This is the a priori probability of plaintexts.)
The probability of keys is likewise given as a function
P:K —[0,1] suchthat Y P(k)=1.
keK

(By abuse of notation denoted by the same letter P.) In general we
assume a uniform distribution P(k) = 1/#K for all k € K.

The probability of ciphertexts derives from the probabilities of plain-
texts and keys, implicitly assumed as independently chosen:

P:3* —[0,1], P(c):= > > P(a)- P(k),
a€Moy k€ Kqe

where K, :={k € K| fr(a) = ¢} is the set of all keys that transform
a to c.

Remark 1 Only finitely many ¢ € ¥* have P(c) # 0. These form the set
Co:={ce x| P(c) >0}
of “possible ciphertexts”.

Remark 2 We have

> Ple) Y>> Pla)- P(k)

cEX* ceX* aeMp k€K qe

= Y > Pla)-P(k)

acEMpy ke K

= > Pla)-)_ P(k)

aeMy keK
= 1.

The conditional probability for a ciphertext to stem from a given
plaintext a € My is modeled by the function

P(e|a): * — [0,1], P(cla):= Y P(k).
keKac

Remark 3 ) . P(cla) =) . x P(k) = 1.

Remark 4 P(c) =) P(a) - P(c|a).

a€ My
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A Posteriori Probabilities of Plaintexts

The cryptanalyst is interested in the converse, the conditional probability
P(a|c) of a plaintext a € My if the ciphertext ¢ € ¥* is given.
First we describe the probability of the simultaneous occurrence of a and
c as
P: MyxX¥X*—1[0,1], P(a,c):= P(a)- P(cl|a).

Remark 5 Then

> Pla,c)= Y P(a): P(cla) = P(c).

a€ My a€My

The conditional probability of a plaintext is given by a function
P(e|c) with P(a,c) = P(c) - P(a|c) by the BAYESian formula

P(a)-P(cla) .
Plae) =1 Po TP A0,
0 if P(c) = 0.

Remark 6 ) v. P(c)-P(alc) = > c5- P(a)-P(cla) = P(a) by Remark 3.



