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A bitstream cipher sequentially encrypts each single bit of a bitstring
by an individual rule. The two possibilities are: leave the bit unchanged, or
negate it. Leaving the bit unchanged is equivalent with (binary) adding 0,
negating the bit is equivalent with adding 1. Thus every bitstream cipher
may be interpreted as an XOR encryption, the key being the “difference”
between ciphertext and plaintext. We distinguish between

synchronous bitstream ciphers where the key stream is generated inde-
pendently of the plaintext,

asynchronous bitstream ciphers where the key stream depends on the
plaintext or other context parameters.

In this part of the lecture notes we treat synchronous bitstream ciphers
in a systematic way. We disregard asynchronous bitstream ciphers, and also
stream ciphers over other alphabets than F2 = {0, 1}.

Key streams are usually provided by random generators, more exactly in
most cases by pseudorandom generators—the main basic techniques being:

• feedback shift registers and combinations of them (as application of
Boolean algebra),

• number theoretic pseudorandom generators (as application of hard
number theoretic problems).



Chapter 1

Classic Pseudorandom
Generators: Congruential
Generators and Feedback
Shift Registers

“Classic” (pseudo-) random generators are algorithms that generate “pseu-
dorandom” numbers or bits for use in statistical applications or simulations
instead of “true” random numbers or bits. For this kind of applications their
statistical properties are excellent. The standard references are [2] and [3].

However the requirements of cryptology are much stronger. The methods
of cryptanalysis mercilessly reveal the weaknesses of classic pseudorandom
generators, and make them useless for naive direct cryptographic applica-
tion.

This chapter introduces the best known classic pseudorandom generators
and derives their most important properties.
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Figure 1.1: A simple model of pseudorandom generation. The state is an
element of a setM, changing after each step according to the state transition
algorithm M−→M. The output (of each step) is an element of an output
alphabet Σ.
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1.1 General Discussion of Bitstream Ciphers

As a first example of a bitstream cipher we encountered XOR in Part I of
these lectures. SageMath code is in Appendix E.1 of Part II.

plaintext bits

a1a2a3 . . .

k1k2k3 . . .

key bits

c1c2c3 . . .

ciphertext bits

ci = ai + ki
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Figure 1.2: The principle of XOR encryption

In the twenties of the 20th century XOR ciphers were invented to encrypt
teleprinter messages. These messages were written on five-hole punched
tapes as in Figure 1.3, each column representing a five-bit-block. Another
punched tape provided the key stream. Vernam filed this procedure as a
U. S. patent in 1918. He used a key tape whose ends were glued together, re-
sulting in a periodic key stream. Mauborgne immediately recognized that
a nonperiodic key is obligatory for security.

�
@
�
@

@
�
@
�

tdt
dt
ddd
td
ttt
td
ddd
td
ttt
tt
ttd
dt
ddd
tt
ttd
tt
tdt
dt
ddd
td
ttd
dt

Figure 1.3: Punched tape—each column represents a five-bit character

In its strongest form, the one-time pad, XOR encryption is an example of
perfect security in the sense of Shannon, see Part I, Section 10. As algorithm
A5 or E0 XOR helps to secure mobile phones or the Bluetooth protocol for
wireless data transmission. As RC4 it is part of the SSL protocol that (often)
encrypts client-server communication in the World Wide Web, and of the
PKZIP compression software. There are many other current applications,
not all of them satisfying the expected security requirements.

The scope of XOR encryption ranges from simple ciphers that
are trivially broken to unbreakable ciphers.

http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/1_Monoalph/xor.html
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Advantages of XOR ciphers

• Encryption and decryption are done by the same algorithm: Since
ci = ai + ki also ai = ci + ki. Thus decryption consists of adding
key stream and ciphertext (elementwise binary).

• The method is extremely simple to understand and to implement

• . . . and very fast—provided that the key stream is available. For
high transfer rates one may precompute the key stream at both
ends of the line.

• If the key stream is properly chosen the security is high.

Pitfalls

• XOR ciphers are vulnerable under known plaintext attacks: each
correctly guessed plaintext bit reveals a key bit.

• If the attacker knows a piece of plaintext she also knows the cor-
responding piece of the key stream, and then is able to exchange
this plaintext at will. For example she might replace “I love you”
by “I hate you”, or replace an amout of 1000$ by 9999$. In other
words the integrity of the message is poorly protected. (To pro-
tect message integrity the sender has to implement an extended
procedure.)

• XOR ciphers provide no diffusion in the sense of Shannon’s crite-
ria since each plaintext bit affects the one corresponding plaintext
bit only.

• Each reuse of a part of the key sequence (also in form of a periodic
repetition) opens the door for an attack. The historical successes
in breaking stream ciphers almost always used this effect, for
example the attacks on encrypted teleprinters in World War II,
or the project VENONA during the Cold War.

A remark on the first item, the vulnerability for attacks with known
plaintext: The common ISO character set for texts has a systematic weak-
ness. The 8-bit codes of the lower-case letters a..z all start with 011, of the
upper-case letters A..Z, with 010. A supposed sequence of six lower-case
letters (no matter which) reveals 6 · 3 = 18 key bits.

By the way the appearance of many zeroes in the leading bits
of the bytes is an important identifying feature of texts in many
European languages.

In other words: We cannot prevent the attacker from getting or guessing
a good portion of the plaintext. Thus the security against an attack with
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known plaintext is a fundamental requirement for an XOR cipher, even more
than for any other cryptographic procedure.

This being said the crucial question for a pseudorandom sequence, or for
the pseudorandom generator producing it, is:

Is it possible to determine some more bits from a (maybe frag-
mented) chunk of the sequence?

The answer for the “classic” pseudorandom generators will be YES. But we’ll
also learn about pseudorandom generators that—supposedly—are crypto-
graphically secure in this sense.
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1.2 Methods for Generating a Key Stream

The main naive methods for generating the key stream are:

• periodic bit sequence,

• running-text,

• “true” random sequence.

A better method uses a

• pseudorandom sequence

and leads to really useful procedures. The essential criterion is the quality
of the random generator.

Note We sometimes use the term “random generator” for an algorithm
that produces pseudorandom sequences (of bits or numbers). The more
correct denomination is “pseudorandom generator”.

Periodic Bit Sequence

A periodically repeated (longer or shorter) bit sequence serves as key. Tech-
nically this is a Bellaso cipher over the alphabet F2. The classical crypt-
analytic methods for periodic polyalphabetic ciphers apply, such as period
analysis or probable word.

For an example see XOR in Part I.

Known or probable plaintext easily breaks periodic XOR encryp-
tion.

MS Word and Periodic XOR

The following table (generated ad hoc by simple character counts) shows
the frequencies of the most frequent bytes in MS Word files.

byte (hexadecimal) bits frequency

00 00000000 7–70%
01 00000001 0.8–17%
20 (space) 00100000 0.8–12%
65 (e) 01100101 1–10%
FF 11111111 1–10%

Note that these frequencies relate to the binary files, heavily depend on
the type of the document, and may change with every software version. The
variation is large, we often find unexpected peaks, and all bytes 00–FF occur.
But all this doesn’t matter here since we observe long chains of 00 bytes.

http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/2_Polyalph/AnaPer.html
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/2_Polyalph/AnaPer.html
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/1_Monoalph/knownplain.html
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/1_Monoalph/xor.html
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For an MS Word file that is XOR encrypted with a periodically repeated
key the ubiquity of zero bits suggests an efficient attack: Split the stream
of ciphertext bits into blocks corresponding to the length of the period and
add the blocks pairwise. If one of the plaintext blocks essentially consists of
0’s, then the sum is readable plaintext. Why? Consider the situation

. . . block 1 . . . block 2 . . .

plaintext: . . . a1 . . . as . . . 0 . . . 0 . . .
key: . . . k1 . . . ks . . . k1 . . . ks . . .

ciphertext: . . . c1 . . . cs . . . c′1 . . . c′s . . .

where ci = ai + ki and c′i = 0 + ki = ki for i = 1, . . . , s. Thus the key
reveals itself in block 2, however the attacker doesn’t recognize this yet. But
tentatively paarwise adding all blocks she gets (amongst other things)

ci + c′i = ai + ki + ki = ai for i = 1, . . . , s,

that is, a plaintext block. If she realizes this (for example recognizing typical
structures), then she recognizes the key k1, . . . , ks.

Should it happen that the sum of two ciphertext blocks is zero then the
ciphertext blocks are equal, and so are the corresponding plaintext blocks.
The probability is high that both of them are zero. Thus the key could
immediately show through. To summarize:

XOR encryption with a periodic key stream is quite easily broken
for messages with a known structure.

This is true also for a large period, say 512 bytes = 4096 bits, in spite of the
hyperastronomically huge key space of 24096 different possible keys.

Running-Text Encryption

A classical approach to generating an aperiodic key is taking an existing
data stream, or file, or text, that has at least the length of the plaintext. In
classical cryptography this method was called running-text encryption. We
won’t repeat the cryptanalytic techniques but summarize:

XOR encryption with running-text keys is fairly easily broken.

True Random Sequence

The extreme choice for a key is a true random sequence of bits as key stream.
Then the cipher is called (binary) one-time pad (OTP). In particular no
part of the key stream must be repeated at any time. The notation “pad”
comes from the idea of a tear-off calendar—each sheet is destroyed after use.
This cipher is unbreakable, or “perfectly secure”. Shannon gave a formal
proof of this, see Part I, Section 10.

http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/7_Aperiodic/Runtext.html
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/7_Aperiodic/Analysis.html
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/10_Perfect/Perf.pdf
http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/10_Perfect/Perf.pdf
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Without mathematical formalism the argument is as follows: The ci-
phertext divulges no information about the plaintext (except the length). It
could result from any plaintext of the same length: simply take the (binary)
difference of ciphertext and alleged plaintext as key. Consider the ciphertext
c = a + k with plaintext a and key k, all represented by bitstreams and
added bit by bit as in Figure 1.2. For an arbitrary different plaintext b the
formula c = b+ k′ likewise shows a valid encryption using k′ = b+ c as key.

This property of the OTP could be used in a scenario of forced decryp-
tion (also known as “rubber hose cryptanalysis”) to produce an innocuous
plaintext, as exemplified in Figure 1.4.

If the one-time pad is perfect—why don’t we use it in any case and forget
of all other ciphers?

• The key management is unwieldy: Key agreement becomes a severe
problem since the key is as long as the plaintext and awkwardly to
memorize. Thus the communication partners have to agree on the key
stream prior to transmitting the message, and store it. Agreeing on a
key only just in time needs a secure communication channel—but if
there was one why not use it to transmit the plaintext in clear?

• The key management is inappropriate for mass application or multi-
party communication because of its complexity that grows with each
additional participant.

• The problem of message integrity requires an extended solution for
OTP like for any XOR cipher.

There is another, practical, problem when encrypting on a computer:
How to get random sequences? “True random” bits arise from physical events
like radioactive decay, or thermal noise on an optical sensor. The apparently
deterministic machine “computer” can also generate true random bits, for
instance by special chips that produce usable noise. Moreover many events
are unpredictable, such as the exact mouse movements of the user, or arriv-
ing network packets that, although not completey random, contain random
ingredients that may be extracted. On Unix systems these random bits are
provided by /dev/random.

However these random bits, no matter how “true”, are not that useful for
encryption by OTP. The problem is on the side of the receiver who cannot
reproduce the key. Thus the key stream must be transmitted independently.

There are other, useful, cryptographic applications of “true” random
bits: Generating keys for arbitrary encryption algorithms that are unpre-
dictable for the attacker. Many cryptographic protocols rely on “nonces”
that have no meaning except for being random, for example the initializa-
tion vectors of the block cipher modes of operation, or the “challenge” for
strong authentication (“challenge-response protocol”).

http://de.wikipedia.org/wiki//dev/random
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Plain bits and text:

01010100 01101000 01101001 01110011 00100000 01101101 This m

01100101 01110011 01110011 01100001 01100111 01100101 essage

00100000 01101001 01110011 00100000 01101000 01100001 is ha

01111010 01100001 01110010 01100100 01101111 01110101 zardou

01110011 00101110 s.

Key bits:

11001000 11010110 00110011 11000000 00111011 10001110

00001000 11101111 01001001 11100101 10111100 10111001

00010010 11000110 01110011 11010111 11000100 01100000

11100110 00010111 01101010 10111011 00010101 11011000

11110000 01000010

Cipher bits:

10011100 10111110 01011010 10110011 00011011 11100011

01101101 10011100 00111010 10000100 11011011 11011100

00110010 10101111 00000000 11110111 10101100 00000001

10011100 01110110 00011000 11011111 01111010 10101101

10000011 01101100

Pseudokey bits:

11001000 11010110 00110011 11000000 00111011 10001110

00001000 11101111 01001001 11100101 10111100 10111001

00010010 11000110 01110011 11010111 11000101 01101111

11110010 00011001 01111011 10101010 00010101 11011000

11110000 01000010

Pseudodecrypted bits and text:

01010100 01101000 01101001 01110011 00100000 01101101 This m

01100101 01110011 01110011 01100001 01100111 01100101 essage

00100000 01101001 01110011 00100000 01101001 01101110 is in

01101110 01101111 01100011 01110101 01101111 01110101 nocuou

01110011 00101110 s.

Figure 1.4: XOR encryption of a hazardous message, and an alleged alter-
native plaintext
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Pseudorandom Sequence

For XOR encryption—as approximation to the OTP—algorithmically gen-
erated bit sequences are much more practicable. But the attacker should
have no means to distinguish them from true random sequences. This is the
essence of the concept of pseudorandomness, and generating pseudorandom
sequences is of fundamental cryptologic relevance.

XOR encryption with a pseudorandom key stream spoils the
perfect security of the one-time pad. But if the pseudorandom
sequence is cryptographically strong (Chapter 4) the attacker
has no chance to exploit this fact.

To be useful for cryptographic purposes the pseudorandom key stream
must depend on parameters the attacker has no access to and that represent
(parts of) the cryptographic key. Such parameters might be, see Figure 1.5
that extends the basic model of a pseudorandom generator:

• the initial value of the state,

• parameters the transition algorithm depends on.

Figure 1.5: Secret parameters for a pseudorandom generator
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1.3 Linear Congruential Generators

As a first important class of elementary—“classical”—pseudorandom num-
ber generators we consider one-step recursive formulas that use linear con-
gruences. They are very fast, have long periods, and their quality is easily
analyzed due to their plain structure.

This simple formula generates a sequence of pseudorandom numbers:

(1) xn = axn−1 + b mod m.

The recursive sequence (xn)n∈N depends on four integer parameters:

• the module m where m ≥ 2,

• the multiplier a ∈ [0 . . .m− 1],

• the increment b ∈ [0 . . .m− 1],

• the initial value x0 ∈ [0 . . .m− 1].

We call this recursive formula a linear congruential generator, in the
case b = 0 also a multiplicative generator, in the case b 6= 0, a mixed
congruential generator. Furthermore we call

s :Z/mZ −→ Z/mZ, s(x) = ax+ b mod m.

the generating function of the generator. Formula (1) then becomes

xn = s(xn−1).

Programming a linear congruential pseudorandom generator is extremely
easy, even in assembler languages; for Sage see Sage sample 1.1. The algo-
rithm works very fast. Moreover the pseudorandom numbers are statistically
good if the parameters m, a, b are suitably chosen. In contrast the choice of
the initial value is unrestricted. This freedom allows a reasonable variation
of the generated pseudorandom numbers.

Use of the pseudorandom sequence as a bitstream for XOR encryption
requires at least that we consider the initial value x0, or the complete pa-
rameter set (m, a, b, x0), as effective key, and keep it secret, cf. Figure 1.5.

Remarks and Examples

1. Since xn may assume only m different values the sequence is periodic
with a period length ≤ m; including a possible preperiod.

2. Choosing a = 0 obviously doesn’t make sense. Also for a = 1 we get
a useless sequence, namely x0, x0 + b, x0 + 2b, x0 + 3b, . . ., that also
modm contains several regular subsequences.
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Sage Example 1.1 Generating pseudorandom numbers by a linear congru-
ential random generator

def lcg(m,a,b,s,n):

x = s

outlist = []

for i in range (0,n):

y = (a*x + b) % m

outlist.append(y)

x = y

return outlist

3. For m = 13, a = 6, b = 0, x0 = 1 we get the sequence

6, 10, 8, 9, 2, 12, 7, 3, 5, 4, 11, 1

of period length 12 that looks like a fairly random permutation of the
integers 1 to 12, despite the small module.

4. Choosing the multiplier a = 7 instead of 6 we get a much less sympa-
thic sequence:

7, 10, 5, 9, 11, 12, 6, 3, 8, 4, 2, 1.

5. If a and m are coprime, then the sequence is purely periodic (no prepe-
riod). For a mod m is invertible, hence ac ≡ 1 (mod m) for some c.
Thus always xn−1 = cxn − cb mod m. If xµ+λ = xµ with µ ≥ 1, then
also xµ+λ−1 = xµ−1 etc., finally xλ = x0.

6. By induction we immediately get

(2) xk = akx0 + (1 + a+ · · ·+ ak−1) · b mod m

for all k—a definite warning about the poor randomness of the se-
quence: Formula (2) allows direct access to any element of the se-
quence. Note that the coefficient of b is (ak − 1)/(a − 1) where the
division is modm.

7. Let m = 2e and a be even. Then

xk = (1 + a+ · · ·+ ae−1) · b mod m

for all k ≥ e, hence, after a certain preperiod, the period has length
1. More generally common divisors of a and m reduce the period. We
want to avoid this effect.
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8. Let d be a divisor of m. Then the sequence yn = xn mod d is the
analogous congruential sequence for the module d, generated by the
formula yn = ayn−1 + b mod d. Hence the sequence (xn), if considered
mod d, has a period ≤ d that might be very short.

9. This effect is especially inconvenient in the case of a power m = 2e:
Then the least significant bit of xn has a period of length at most
2, hence alternates between 0 and 1, or is constant. And the k least
significant bits together have a period of at most 2k.

10. The innocuously looking example m = 232, a = 4095 = 212 − 1,
b = 12794 exhibits an extremely bad choice of parameters: From
x0 = 253 we get x1 = 1048829 and x2 = 253 = x0.

Preferred modules are

• m = 232 that exhausts the 32 bit range and moreover is computation-
ally efficient,

• m = 231− 1 that is the maximum 32 bit integer, and computationally
almost as efficient as a power of 2. Another advantage: This number is
prime (claimed by Mersenne in 1644, proved by Euler in 1772), and
this enhances the quality of the pseudorandom sequence. More gener-
ally these arguments apply to Fermat primes 2k + 1 and Mersenne
primes 2k − 1. The next prime of this kind is 261 − 1.

Table 1.1 shows the first 100 members of a sequence that is generated
with the module m = 231 − 1 = 2147483647, the multiplier a = 397204094,
the increment b = 0, and the initial value x0 = 58854338, Sage code sam-
ple 1.2. Figure 1.6 gives a visual impression of this information. We see that
the sequence doesn’t follow any obvious rules. However it is clear that such
a visual impression is not a sufficient criterion for the quality of a pseudo-
random sequence.

Sage Example 1.2 Using a linear congruential random generator

sage: mm = 2**31 - 1

sage: aa = 397204094

sage: bb = 0

sage: seed = 58854338

sage: seq = lcg(mm,aa,bb,seed,100); seq
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Table 1.1: 100 members of a linear congruential sequence

1292048469 319941267 173739233 1992841820
345565651 2011011872 31344917 592918912

1827933824 1691830787 857231706 1416540893
1184833417 145217588 589958351 1776690121
1330128247 558009026 1479515830 1197548384
1627901332 929586843 19840670 1268974074
1682548197 760357405 666131673 1642023821
787305132 1314353697 167412640 1377012759
963849348 971229179 247170576 1250747100
703109068 1791051358 1978610456 1746992541
177131972 1844679385 1328403386 1811091691

1586500120 1175539757 74957396 753264023
468643347 821920620 1269873360 963348259

1698955999 139484430 30476960 1327705603
1266305157 1337811914 1808105128 640050202

37935526 1185470453 2111728842 380228478
808553600 934194915 824017077 881361640

1492263703 414709486 298916786 1883338449
771128019 558671080 1935988732 798347213
120356246 1378842534 37149011 272238278

1190345324 1006355270 1161592162 1079789655
220609946 1918105148 791775291 979447727

1160648370 779600833 1170336930 1271974642
375813045 1089009771 280197098 1144249742

1236647368 1729816359 650188387 1714906064
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Figure 1.6: A linear congruential sequence. Horizontal axis: counter from 0
to 100, vertical axis: size of the integer from 0 to 231 − 1.
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1.4 The Maximum Period Length

Under what conditions does the period of a linear congruential genera-
tor with module m attain the theoretic maximum length m? A multi-
plicative generator will never attain this period since the output 0 repro-
duces itself forever. Thus for this question we consider mixed generators
with nonzero increment. As the trivial generator with generating function
s(x) = x+ 1 mod m shows the period length m really occurs; on the other
hand this example also shows that a period of maximum length is insuffi-
cient as a proof of quality for a random generator. Nevertheless maximum
period is an important criterion, and the general result is easily stated:

Proposition 1 (Hull/Dobell 1962, Knuth) The linear congruential
generator with generating function s(x) = ax + b mod m has period m if
and only if the following three conditions hold:

(i) b and m are coprime.

(ii) Each prime divisor p of m divides a− 1.

(iii) If 4 divides m, then 4 divides a− 1.

From the first condition we conclude b 6= 0, hence the generator is mixed.
Before giving the proof of the proposition we state and prove a lemma.
(We’ll use two more lemmas from Part III, Appendix A.1, that we state
here without proofs.)

Lemma 1 Let m = m1m2 with coprime natural numbers m1 and
m2. Let λ, λ1, and λ2 be the periods of the congruential generators
xn = s(xn−1) mod m, modm1, modm2 with initial value x0 in each case.
Then λ is the least common multiple of λ1 and λ2.

Proof. Let x
(1)
n and x

(2)
n be the corresponding outputs for m1 and m2. Then

x
(i)
n = xn mod mi. Since xn+λ = xn for all sufficiently large n we imme-

diately see that λ is a multiple of λ1 and λ2. On the other hand from
m | t⇐⇒ m1,m2 | t we get

xn = xk ⇐⇒ x(i)
n = x

(i)
k for i = 1 and 2.

Hence λ is not larger than the least common multiple of λ1 and λ2. 3

The two lemmas without proofs:

Lemma 2 Let n = 2e with e ≥ 2.

(i) If a is odd, then

a2s ≡ 1 (mod 2s+2) for all s ≥ 1.
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(ii) If a ≡ 3 (mod 4), then n | 1 + a+ · · ·+ an/2−1.

Lemma 3 Let p be prime, and e, a natural number with pe ≥ 3. Assume pe

is the largest power of p that divides x − 1. Then pe+1 is the largest power
of p that divides xp − 1.

Proof of the proposition For both directions we may assume m = pe

where p is prime by Lemma 1.
“=⇒”: Each residue class in [0 . . .m − 1] occurs exactly once during a

full period. Hence we may assume x0 = 0. Then

xn = (1 + a+ · · ·+ an−1) · b mod m for all n.

Since xn assumes the value 1 for some n we conclude that b is invertible
modm, or that b and m are coprime.

Let p |m. From xm = 0 we now get m | 1 + a+ · · ·+ am−1, hence

p |m | am − 1 = (a− 1)(1 + a+ · · ·+ am−1).

Fermat’s little theorem gives ap ≡ a (mod p), hence

am = ap
e ≡ ape−1 ≡ . . . ≡ a (mod p),

hence p | a− 1. This proves (ii).
Statement (iii) corresponds to the case p = 2 with e ≥ 2. From (ii)

we get that a is even. The assumption a ≡ 3 (mod 4) would result in the
contradiction xm/2 = 0 by Lemma 2. Hence a ≡ 1 (mod 4).

“⇐=”: Again we may assume x0 = 0. Then

xn = 0⇐⇒ m | 1 + a+ · · ·+ an−1.

In particular the case a = 1 is trivial. Hence assume a ≥ 2. Then

xn = 0⇐⇒ m | a
n − 1

a− 1
.

We have to show:

• m | am−1
a−1 —then λ|m;

• m doesn’t divide am/p−1
a−1 —then λ ≥ m since m is a power of p.

Let ph be the maximum power that divides a− 1. By Lemma 3 we conclude

ap ≡ 1 (mod ph+1), ap 6≡ 1 (mod ph+2)

and successively

ap
k ≡ 1 (mod ph+k), ap

k 6≡ 1 (mod ph+k+1)
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for all k. In particular ph+e | am − 1. Since no larger power than ph divides

a − 1 we conclude that m = pe | am−1
a−1 . The assumption pe | am/p−1

a−1 leads to

the contradiction pe+h | ape−1 − 1. ♦

The main application of Proposition 1 is for modules that are powers of
2:

Corollary 1 (Greenberger 1961) For the module m = 2e with e ≥ 2
the period m is attained if and only if:

(i) b is odd.

(ii) a ≡ 1 (mod 4).

For prime modules Proposition 1 is useless, as the following corollary
shows.

Corollary 2 For a prime module m the period m is attained if and only if
b is coprime with m and a = 1.

This (lousy) result admits an immediate generalization to squarefree
modules m:

Corollary 3 For a squarefree module m the period m is attained if and only
if b is coprime with m and a = 1.

In summary Proposition 1 shows how to get the maximum possible pe-
riod, and Corollary 1 provides a class of half-decent useful examples.
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1.5 The Maximum Period of a Multiplicative Gen-
erator

A multiplicative generator xn = axn−1 mod m never has period m since the
output 0 reproduces itself. So what is the largest possible period? In the
following proposition λ is the Carmichael function, and this is exactly the
context where it occurred for the first time.

Proposition 2 (Carmichael 1910) The maximum period of a multi-
plicative generator with generating function s(x) = ax mod m is λ(m). A
sufficient condition for the period λ(m) is:

(i) a is primitive modm.

(ii) x0 is relatively prime to m.

Proof. We have xn = anx0 mod m. If k = ordm a is the order of a in the
multiplicative group of Z/mZ, then xk = x0. Thus the period is ≤ k ≤ λ(m).
Now assume a is primitive mod m, hence 1, a, . . . , aλ(m)−1 mod m are dis-
tinct, and let x0 be relatively prime to m. Then the xn are distinct for
n = 0, . . . , λ(m)− 1, and the period is λ(m). 3

Corollary 1 Let m = p prime. Then the generator has the maximum period
λ(p) = p− 1 if and only if:

(i) a is primitive mod p.
(ii) x0 6= 0.

Thus for prime modules we are in a comfortable situation: The period
misses the maximum value for one-step recursive generators only by 1, and
any initial value is good except 0.

Section 1.9 will broadly generalize this result.
How to find a primitive element is comprehensively discussed in Ap-

pendix A of Part III.
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1.6 Feedback Shift Registers

Feedback shift registers (FSR) are a classical and popular method of gener-
ating pseudorandom sequences. The method goes back to Golomb in 1955
[2], but is often named after Tausworthe who picked up the idea in a 1965
paper. FSRs are especially convenient for hardware implementation.

An FSR of length l is specified by a Boolean function f: Fl2 −→ F2, the
“feedback function”. Figure 1.7 shows the mode of operation—representing
f by a Boolean circuit yields an explicit construction plan. The output
consists of the rightmost bit u0, all the other bits are shifted to the right by
one position, and the leftmost cell is filled by the bit ul = f(ul−1, . . . , u0).
Thus the recursive formula

(3) un = f(un−1, . . . , un−l) for n ≥ l

represents the complete sequence.

ul−1 . . . . . . u2 u1 u0
-

ul

- u0

�� ��f

6 66 6

. . . . . .

- ---

Figure 1.7: A feedback shift register (FSR)

The bits u0, . . . , ul−1 form the start value. The “key expansion” trans-
forms the short sequence u = (u0, . . . , ul−1) (the effective key) of length l
into a key stream u0, u1, . . . of arbitrary length. In a cryptographic context
the bits u0, u1, . . . form the key stream. In other contexts it might be un-
necessary to conceal the output bits, but even then hiding the initial state
might make sense, starting the output sequence at ul. Additionally in a
cryptographic context treating the internal parameters, that is the feedback
function f or some of its coefficients, as components of the key makes sense.
Then the effective key length is larger than l.

In this respect the realization in hardware differs from a software imple-
mentation: Hardware allows using an adjustable feedback function only by
complex additional circuits. Thus in the hardware case we usually assume
an unchangeable feedback function, and (at least in the long run) we cannot
prevent the attacker from figuring it out. In contrast a software implementa-
tion allows a comfortable change of the feedback function at any time such
that it may serve as part of the key.



K. Pommerening, Bitstream Ciphers 21

. . . . . .

tapsL99

- -

Figure 1.8: Simple graphical representation of an LFSR

For a Sage example we use the procedure fsr from Appendix C.1 and the
construction of a Boolean function from Appendix E.3 of Part II. (Attach
the modules Bitblock.sage, boolF.sage, FSR.sage.)

Sage Example 1.3 Generating a bitsequence by a nonlinear FSR

sage: f2 = BoolF([1,1,1,0,1,1,0,0,0,1,0,0,0,1,1,0])

sage: start = [0,1,1,1]

sage: seq = fsr(f2,start,20); seq

[1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0]

The simplest and best understood instances of FSRs are the linear feed-
back shift registers (LFSR). Their feedback functions f are linear. From
Part II we know that a linear function

f : Fl2 −→ F2

is simply a partial sum from an l-bit block:

(4) f(un−1, . . . , un−l) =

l∑
j=1

ajun−j ,

where the coefficients aj are 0 or 1. If I is the subset of indices j with aj = 1,
then the iteration (3) takes the form

(5) un =
∑
j∈I

un−j .

A simple graphical representation of an LFSR is shown in Figure 1.8. Here
the subset I defines the contacts (“taps”) that feed the respective cell con-
tents into the feedback sum.

In SageMath we implement a special class LFSR, see Appendix C.1 whose
use is demonstrated in the code sample 1.4.

For a good choice of the parameters, see Section 1.9, the sequence has a
period of about 2l, the number of possible different states of the register, and
statistical tests are hardly able to distinguish it from a uniformly distributed
true random sequence, see Section 1.10. It is remarkable that such a simple
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Sage Example 1.4 Generating a bitsequence by a linear FSR

sage: coeff = [0,1,1,0,1,0,0,0,0,0,0,0,0,0,0,1]

sage: reg = LFSR(coeff)

sage: start = [0,1,1,0,1,0,1,1,0,0,0,1,0,0,1,1]

sage: reg.setState(start)

sage: bitlist = reg.nextBits(20); bitlist

[1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1]

approach generates pseudorandom sequences of fairly high quality! Of course
the initial state u = (0, . . . , 0) is inappropriate. For an initial state 6= 0 the
maximum possible period is 2l − 1, see Section 1.9.

For using an LFSR for bitstream encryption the secret inner
parameters—the coefficients a1, . . . , al—as well as the initial state
u0, . . . , ul−1 together constitute the key. In contrast the length l of the reg-
ister is assumed as known to the attacker. Beware of Section 2.3!
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1.7 Multistep generators

Multistep (linear recursive) generators are a common generalization
of linear congruential generators and LFSRs. A convenient framework for
their treatment is a finite ring R (commutative with 1); this comprises not
only the residue class rings Z/mZ but also the finite fields including the
prime fields Fp.

An r-step linear recursive generator outputs a sequence (xn) in R by the
rule

xn = a1xn−1 + · · ·+ arxn−r + b.

The parameters of this procedure are

• the recursion depth r (assume ar 6= 0),

• the coefficient tuple a = (a1, . . . , ar) ∈ Rr,

• the increment b ∈ R,

• a start vector (x0, . . . , xr−1) ∈ Rr.

The linear recursive generator is called homogeneous if the increment
b = 0, inhomogeneous otherwise.

Figure 1.9 visualizes the operation of a linear recursive generator in anal-
ogy with an LFSR.

xn+r−1 xn+r−2 . . . . . . xn+1 xn -
output

xn−1 . . . x0

linear feedback function

-

n+ � n+ � . . . n� +� n+� b
6

×a1

6

×a2

6

×ar−1

6

×ar

Figure 1.9: A linear recursive generator

Inhomogeneous linear recursive generators easily reduce to homogeneous
ones, but only with an additional recursion step: Subtracting the two equa-
tions

xn+1 = a1xn + · · ·+ arxn−r+1 + b,

xn = a1xn−1 + · · ·+ arxn−r + b,

we get
xn+1 = (a1 + 1)xn + (a2 − a1)xn−1 · · ·+ (−ar)xn−r.
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Example In the case r = 1, xn = axn−1 + b, this formula becomes

xn = (a+ 1)xn−1 − axn−2.

In the following we often neglect the inhomogeneous case.
In the homogeneous case we introduce the state vectors

x(n) = (xn, . . . , xn+r−1)t and write

x(n) = Ax(n−1) for n ≥ 1,

using the companion matrix

A =


0 1 . . . 0

. . .
. . .

1
ar ar−1 . . . a1

 .

This suggests the next step of generalization: the matrix generator
with parameters:

• an r × r-matrix A ∈Mr(R),

• a start vector x0 ∈ Rr.

The output sequence is generated by the formula

xn = Axn−1 ∈ Rr.
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1.8 General linear generators

Even more general (and conceptually simpler) is the abstract algebraic ver-
sion, the general linear generator. This is the setting:

• a ring R (commutative with 1),

• an R-module M ,

• an R-linear map A : M −→M ,

• a start value x0 ∈M .

From this we generate a sequence (xn)n∈N by the formula

(6) xn = Axn−1 for n ≥ 1.

Examples

1. For a homogeneous linear congruential generator we have

R = Z/mZ, M = R (r = 1), A = (a).

2. For an inhomogeneous linear congruential generator we have

R = Z/mZ, M = R2 (r = 2), A =

(
0 1
−a a+ 1

)
.

3. For an LFSR we have

R = F2, M = Fl2 (r = l), A = the companion matrix,

that contains only 0’s and 1’s.

In the case of a finite M the recursion (6) can assume only finitely
many different values, therefore (after a potential preperiod) must become
periodic.

Proposition 3 Let M be a finite R-module and A : M −→ M be linear.
Then the following statements are equivalent:

(i) All sequences generated by the corresponding general linear generator
(6) are purely periodic.

(ii) A is bijective.
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Proof. “(i) =⇒ (ii)”: Assume that A is not bijective. Since M is finite A is
not surjective. Hence there is an x0 ∈M −A(M). Then x0 = Axt can never
occur, hence the sequence is not purely periodic.

“(ii) =⇒ (i)”: Let A be bijective and x0, an arbitrary start vector. Let t
be the first index such that xt assumes a value that occured before, and let
s be the smallest index with xt = xs. Since xs = Axs−1 and xt = Axt−1 the
assumption s ≥ 1 leads to

xt−1 = A−1xt = A−1xs = xs−1,

contradicting the minimality of t. 3

Looking at the companion matrix we immediately apply this result to
homogeneous multistep congruential generators, and in particular to LFSRs:

Corollary 1 A homogeneous linear congruential generator of recursion
depth r always generates purely periodic sequences if the coefficient ar is
invertible in Z/mZ.

This is true also in the inhomogeneous case since the formula

xn−r = a−1
r (xn − a1xn−1 − · · · − ar−1xn−r+1 − b)

reproduces the sequence in the reverse direction.

Corollary 2 An LFSR of length l generates only purely periodic sequences
if the rightmost tap is set (that is, al 6= 0).
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1.9 Matrix generators over finite fields

A matrix generator over a field K is completely specified by an r× r matrix

A ∈Mr(K)

(except for the choice of the start vector x0 ∈ Kr). The objective of the
present section is the characterization of the sequences with maximum period
length.

In the polynomial ring K[T ] in one indeterminate T the set

{ρ ∈ K[T ] | ρ(A) = 0}

is an ideal. Since K[T ] is a principal ring (even Euclidean) this ideal is
generated by a unique monic polynomial µ. This polynomial is called the
minimal polynomial of A. Since the matrix A is a zero of its own charac-
teristic polynomial χ we have µ|χ. If A is invertible, then the absolute term
of µ is 6= 0; otherwise µ would have the root 0, and A, the eigenvalue 0.

Lemma 4 Let K be a field, A ∈ GLr(K), a matrix of finite order t, µ, the
minimal polynomial of A, s = degµ, R := K[T ]/µK[T ], and a ∈ R, the
residue class of T . Then:

ak = 1⇐⇒ µ|T k − 1⇐⇒ Ak = 1.

In particular a ∈ R×, t is also the order of a, and µ|T t − 1.

Proof. R is a K-algebra of dimension s. If µ = bsT
s+ · · ·+b0 (where bs = 1),

then
µ− b0 = T · (bsT s−1 + · · ·+ b1).

Since b0 6= 0, the residue class T mod µ is invertible, hence a ∈ R×. Since
ak is the residue class of T k all the equivalences follow. 3

Corollary 1 If K is a finite field with q elements, then

t ≤ #R× ≤ qs − 1 ≤ qr − 1.

From now on let K be a finite field with q elements. Then also the group
GLr(K) of invertible r×r-matrices is finite. The vector space Kr consists of
qr vectors. We know already that every sequence from the matrix generator
corresponding to A ∈ GLr(K) is purely periodic. One full cycle consists of
the null vector 0 ∈ Kr alone. The remaining vectors in general distribute over
several cycles. If s is the length of such a cycle, and x0, the corresponding
start vector, then x0 = xs = Asx0. Hence As has the eigenvalue 1, and
consequently, A has as eigenvalue an s-th root of unity.
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Maybe all vectors 6= 0 are in a single cycle of the maximum possible
period length qr−1. In this case Asx = x for all vectors x ∈ Kr if s = qr−1,
but not for a smaller exponent > 0. Hence t = qr − 1 is the order of A. This
shows:

Corollary 2 Let K be finite with q elements. Then:

(i) If the matrix generator for A and a start vector 6= 0 outputs a sequence
of period s, then A has as eigenvalue an s-th root of unity.

(ii) If there is an output sequence of period length qr − 1, then t = qr − 1
is the order of A.

Lemma 5 Let K be a finite field with q elements, and ϕ ∈ K[T ] be an

irreducible polynomial of degree d. Then ϕ|T qd−1 − 1.

Proof. The residue class ring R = k[T ]/ϕK[T ] is an extension field of degree
d = dimKR, hence has h := qd elements, and R contains at least one zero a
of ϕ, namely the residue class of T . Since each x ∈ R× satisfies the equation
xh−1 = 1 we conclude that a is also a zero of T h−1−1. Hence ggT(ϕ, T h−1−1)
is not a constant. Since ϕ is irreducible ϕ|T h−1 − 1. 3

Definition Let K be a finite field with q elements. A polynomial ϕ ∈ K[T ]
of degree d is called primitive if ϕ is irreducible and is not a divisor
of T k − 1 for 1 ≤ k < qd − 1.

Theorem 1 Let K be a finite field with q elements and A ∈ GLr(K). Then
the following statements are equivalent:

(i) The matrix generator for A generates a sequence of period qr − 1.

(ii) The order of A is qr − 1.

(iii) The characteristic polynomial χ of A is primitive.

Proof. “(i) =⇒ (ii)”: See Corollary 2 (ii).
“(ii) =⇒ (iii)”: In Corollary 1 we now have t = qr − 1. Hence #R× =

qs − 1, hence R is a field, and thus µ is irreducible. Moreover s = r, hence
µ = χ, and µ is not a divisor of T k − 1 for 1 ≤ k < qr − 1 by Lemma 4.
Therefore µ is primitive.

“(iii) =⇒ (i)”: Since χ is irreducible, χ = µ. The residue class a of T is a
zero of µ and has multiplicative order qr−1 by the definition of “primitive”.
Since taking the q-th power is an automorphism of the field R that fixes K
elementwise all the r powers aq

k
for 0 ≤ k < r are zeroes of µ, and they are

all different. Therefore they must represent all the zeroes, and they all have
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multiplicative order qr − 1. Hence A has no eigenvalue of lower order. By
Corollary 2 (i) there is no shorter period. 3

For an LFSR take A as the companion matrix as in Section 1.7. Hence
the characteric polynomial is T l − a1T

l−1 − · · · − al.

Corollary 1 An LFSR of length l generates a sequence of the maximum
possible period length 2l − 1 if and only if its characteristic polynomial is
primitive, and the start vector is 6= 0.

This result reduces the construction of LFSRs that generate maximum
period sequences to the construction of primitive polynomials over the field
F2.

The special case of dimension r = 1 describes a multiplicative generator
xn = axn−1 over the finite field K with q elements. The corresponding 1× 1
matrix A = (a) is the multiplication by a. Thus a is the only eigenvalue,
and χ = T − a ∈ K[T ] is the characteristic polynomial. It is linear, hence
irreducible. Since

χ|T k − 1⇐⇒ a is a zero of T k − 1⇐⇒ ak = 1,

χ is primitive if and only if a is a generating element of the multiplica-
tive group K×, hence a primitive element. This proves the following slight
generalization of the corollary of Proposition 2:

Corollary 2 The multiplicative generator over K with multiplier a gener-
ates a sequence of period q − 1 if and only if a is primitive and the start
value is x0 6= 0.
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1.10 Statistical properties of LFSRs

The study of the statistical properties of LFSR sequences of maximum pe-
riod 2l − 1, where l is the length of the LFSR, goes back to Golomb [2].

Here are some results:

1. Each full period contains exactly 2l−1 ones and 2l−1 − 1 zeroes.

Proof Each of the 2l state vectors ∈ Fl2 (except 0) occurs exactly once,
corresponding to the integers in the interval [1 . . . 2l − 1]. Of these
integers 2l−1 are odd, the remaining ones are even, and their parities
yield the exact output sequence of the LFSR.

2. A run in a sequence is a constant subsequence of maximum length.

Example: . . . 0111110 . . . is a run of ones of length 5.

Noting that the pieces of length l of the LFSR sequence are exactly
the different state vectors 6= 0 we immediately see that a full period
contains:

• no run of length > l,

• exactly one run of 1’s and no run of 0’s of length l—otherwise
the zero state vector would occur, or the all-1 state would occur
more often than once,

• exactly one run of 1’s and exactly one run of 0’s of length l − 1,

• more generally exactly 2k−1 runs of 1’s or 0’s each of length l− k
for 1 ≤ k ≤ l − 1,

• in particular exactly 2l−1 runs of length 1, exactly half of them
consisting of 0’s or 1’s.

3. For a periodic sequence x = (xn)n∈N in F2 of period s the auto-
correlation w. r. t. the shift t is defined as

κx(t) =
1

s
· [#{n | xn+t = xn} −#{n | xn+t 6= xn}]

=
1

s
·
s−1∑
n=0

(−1)xn+t+xn

(as in Part II for Boolean functions). Consider a sequence x generated
by an LFSR of length l,

xn = a1xn−1 + · · ·+ alxn−l for n ≥ l,

and the sequence yn = xn+t − xn of its differences. This sequence is
obviously generated by the same LFSR. If the start values y0, . . . ,
yl−1 are all 0, then the y sequence is constant = 0, the t-th state
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vector x(t) = x(0), hence t is a multiple of the period, and κx(t) = 1.

Otherwise—and if x has the maximum possible period s = 2l − 1—a
full period of y consists of exactly 2l−1 ones and 2l−1 − 1 zeroes by
Remark 1. Thus

κx(t) =

{
1, if s|t,
−1
s , else.

Hence the auto-correlation is uniformly small, except for shifts by a
multiple of the period.

Golomb called these statements the three randomness postulates. They
tell us that the sequence is very uniformly distributed. Therefore electrical
engineers are fond of LFSR sequences of maximum period, and call them
PN sequences (= pseudo-noise sequences).

Executing the Sage code sample 1.4 with the parameter 1024 instead of
20 yields the output (without parentheses and commas):

11001000110101100011001111000000 00111011100011100000100011101111

01001001111001011011110010111001 00010010110001100111001111010111

11000100011000001110011000010111 01101010101110110001010111011000

11110000010000100010111100011110 10100111000001111000100001011000

01010101000101111110110011011101 11001001110111110001011000100010

11100100101111110011011001010011 00001100100001100110100011100100

11101000100101110110011011001010 11011100100110111001011100000011

00100010111101111000110000010001 01110100001110011111101000100101

00111010001111000100000000110110 10000101110101110001100000010001

11011011011110111001000110101001 10001111110110101010011111100001

11101110111101011001010110001010 00000100001001100110001110100110

00010100101110100000010101100100 10010110101011111110111111011101

11001010010100010010110111111110 10100101001111110110100100010001

10111100011001111001011111010110 01110111010100100010100101101111

01100111011000000111011111010000 11011101111111110000010001000100

10010111111110101011101110111111 01110010110000010001111001100111

The visualization in Figure 1.10 shows that the output looks quite random,
at least at first sight.

By the way the LFSR of this example generates a sequence of maximum
period 216 − 1 = 65535 since its characteristic polynomial

T 16 + T 14 + T 13 + T 11 + 1 ∈ F2

is primitive.
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Figure 1.10: An LFSR sequence



Chapter 2

Cryptanalysis of
Pseudorandom Generators

We slightly enlarge the black box model of a pseudorandom generator, cf.
Figure 1.5, to distinguish between secret and public parameters:

Figure 2.1: Pseudorandom generator (one element per state to be used as
pseudorandom sequence

The black box hides an inner state that changes with each step by a given
algorithm. This algorithm is controlled by parameters some of which are
“public”, but some of which are secret and serve as components of the key.
The initial state (= start value) is a true random value and likewise secret.
With each step the pseudorandom generator outputs a value, depending on
its current inner state, until an exterior intervention stops it.

Cryptanalysis of pseudorandom generators assumes a known-plaintext
attack. Thus the attacker is supposed to observe (or correctly guess) some
elements of the output sequence. Her potential targets are the following

33
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data:

• the secret internal parameters,

• the initial state,

• further elements of the output (“prediction problem”).
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2.1 The General Linear Generator

Remember that a general linear generator is characterized by

• a ring R and an R-module M as external parameters,

• a linear map A : M −→M as internal parameter,

• a sequence of vectors xn ∈M as states and output elements,

• a vector x0 ∈M as initial state,

• a recursive formula xn = Axn−1 for n ≥ 1 as state transition.

Remark (the trivial case): If A is known, then from each member xr of the
output sequence we may predict all of the following members (xn)n>r.
Therefore this case lacks cryptological relevance. Note that calculating
the sequence backwards, that is xn for 0 ≤ n < r, is uniquely possible
only if A is injective. But this effect doesn’t rescue the cryptologic
value of the generator. For simplicity in the following we usually treat
forwards prediction only, assuming that an initial chunk x0, . . . , xk−1

of the output sequence is known. However we should bear in mind that
also backwards “prediction” might be an issue.

Assumption for the following considerations: R and M are known, A is
unknown, and an initial segment x0, . . . , xk−1 is given. To avoid triv-
ialities we assume x0 6= 0. The prediction problem for this scenario is:
Can the attacker determine xk, xk+1, . . .?

Yes she can, provided she somehow finds a linear combination

xk = c1xk−1 + · · ·+ ckx0

with known coefficients c1, . . . , ck. For then

xk+1 = Axk = c1Axk−1 + · · ·+ ckAx0

= c1xk + · · ·+ ckx1

...

xn = c1xn−1 + · · ·+ ckxn−k for all n ≥ k,

and by this formula she gets the complete remaining sequence—without
determining A (!). But how to find such a linear combination?

A simple example is periodicity: xn = xn−k for all n ≥ k. Linear algebra
provides a more general solution. In the present abstract framework it is
natural to assume M as Noetherian (usually the “proper” generalization of
a finite-dimensional vector space). Then the ascending chain of submodules

Rx0 ⊆ Rx0 +Rx1 ⊆ . . . ⊆M
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is stationary: there is an r with xr ∈ Rx0 + · · · + Rxr−1. And this yields
the linear relation we need; of course it is useful only when we succeed with
explicitly determining the involved coefficients. Note that a finite module
M—that we usually consider for random generation—is trivially Noetherian.

By this consideration we have shown:

Proposition 4 (Noetherian principle for linear generators) Let R be a ring,
M , an R-module, A : M −→ M linear, and (xn)n∈N a sequence in M with
xn = Axn−1 for n ≥ 1. Then for r ≥ 1 the following statements are equiva-
lent:

(i) xr ∈ Rx0 + · · ·+Rxr−1.

(ii) There exist c1, . . . , ck ∈ R such that xn = c1xn−1 + · · ·+ crxn−k for all
r ≥ k.

If M is Noetherian, then an r with (i) and (ii) exists.

But how to explicitly determine the index k and the coefficients
c1, . . . , ck? Of course this can work only for rings R and modules M that
admit explicit arithmetic operations.

In the following our main examples are: R = K a finite field, or
R = Z/mZ a residue class ring of integers. In both cases we have a-priori
knowledge on the number of true increments in the chain of submodules;
that is, an explicit bound for r. If for example R is a field, then the number
of proper steps is bounded by the vector space dimension dimM . In the
general case we have:

Proposition 5 (Krawczyk) Let M be an R-module, and 0 ⊂M1 ⊂ . . . ⊂
Ml ⊆M be a properly increasing chain of submodules. Then 2l ≤ #M .

This result is useful only for a finite module M . However this is the case
we are mainly interested in when treating congruential generators. Then we
may express it also as l ≤ log2(#M). This is not too bad compared with the
case field/vector space, both finite: l ≤ Dim(M) ≤ log2(#M)/ log2(#R).

Proof. Let bi ∈ Mi −Mi−1 for i = 1, . . . , l (where M0 = 0). Then the
subset

U = {c1b1 + · · ·+ clbl | all ci = 0 or 1} ⊆M

consists of 2l distinct elements. For if two of these expressions would repre-
sent the same element, their difference would have the form

e1b1 + · · ·+ etbt = 0 with ei ∈ {0,±1}, et 6= 0,

for some t with 1 ≤ t ≤ l. From et = ±1 ∈ R× we would derive the con-
tradiction bt = −e−1

t (e1b1 + · · ·+ et−1bt−1) ∈Mt−1. Hence #M ≥ #U = 2l.
3
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2.2 Linear Generators over Fields

In this section we consider the special case where R = K is a field and M a
finite dimensional vector space over K (hence a Noetherian K-module).

Then we have to find the minimal k with

dim(Kx0 + · · ·+Kxk) = dim(Kx0 + · · ·+Kxk−1)

and then to find the linear combination

xk = c1xk−1 + · · ·+ ckx0.

This is a standard exercise in linear algebra.
For a concrete calculation we chose a fixed basis (e1, . . . , em) of M . Let

xn =
m∑
i=1

xinei

denote the corresponding basis representation. Since rank(x0, . . . , xk−1) = k,
there is a set I = {i1, . . . , ik} ⊆ {1, . . . ,m} of indices with #I = k such that
the matrix

X = (xij)i∈I,0≤j<k =

xi10 . . . xi1k−1
...

...
xik0 . . . xikk−1


is invertible. The coefficients cj in the relation

xk =
k−1∑
j=0

cjxj ,

are not yet known, we get them by substituting

m∑
i=1

xikei =

k−1∑
j=0

m∑
i=1

cjxijei,

hence by the uniqueness of basis coefficients

xik =

k−1∑
j=0

xijcj for all i ∈ I,

or, in matrix notation,
x̄ = (xik)i∈I = X · c.

The solution for the coefficients cj is

c = X−1 · x̄.

This proves the first two statements of the following proposition that extends
Proposition 4:
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Proposition 6 Under the assumptions of Proposition 4 let R = K be a
field and M be finite dimensional of dimension m. Then:

(i) The minimal k that fulfils the statements on r in Proposition 4 is the
smallest index with dim(Kx0 + · · ·+Kxk) = k, and k ≤ m.

(ii) The coefficients c1, . . . , ck are determined by a system of linear equa-
tions with an invertible square coefficient matrix whose entries consist
of basis coefficients of x0, . . . , xk−1.

(iii) If k = m, then A is uniquely determined by the basis coefficients of
x0, . . . , xk.

Proof. (iii) Let

X1 = (xm, . . . , x1), X0 = (xm−1, . . . , x0) ∈Mm(K).

Then X1 = AX0 in matrix representation for the basis (e1, . . . , em) of M .
Since rankX0 = m the matrix X0 is invertible, and

A = X1X
−1
0 ,

as claimed. 3

If A is invertible, then we can determine the sequence (xn) also in back-
wards direction as soon as we have a subsequence xt, . . . , xt+m of length
m+ 1 with rank(xt, . . . , xt+m−1) = m at our disposition.

Example

For the special case of an r-step homogeneous linear congruential generator
xn = a1xn−1 + · · · + arxn−r over Fp = Z/pZ where p is prime we use the
companion matrix

A =


0 1

. . .
. . .

0 1
ar . . . a2 a1

 , DetA = (−1)rar.

In this case A is invertible if and only if ar 6= 0, a condition we may assume
without loss of generality—otherwise the recursion depth would be < r.

For predicting the sequence we need at most r + 1 state vectors, or 2r
elements of the sequence:

Corollary 1 An r-step homogeneous linear congruential generator with
known prime module is predictable given the 2r elements x0, . . . , x2r−1 of
the output sequence.
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Corollary 2 An LFSR of length l is predictable from the first 2l output bits.

Corollary 3 A homogeneous linear congruential generator with known
prime module is predictable from x0, x1, an inhomogeneous one, from
x0, x1, x2, x3.

In the Section 2.4 we’ll see that even x0, x1, x2 suffice.
These results knock off LFSRs as sources of key bits for cryptological

applications. Keeping the length secret is useless since the attacker may
easily determine it by trial and error, putting up with a slight complication
of the attack.

For linear congruential generators we might hope that keeping the mod-
ulem secret (and maybe not choosing a prime) might erect a serious obstacle.
However we’ll also put this hope at rest in Section 2.5.
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2.3 Cracking an LFSR Stream XOR Encryption

Let us break down the abstract setting of Section 2.2 to an explicit procedure
for cracking an XOR cipher that uses an LFSR sequence as keystream. (This
section is inspired by the abstract scenario of 2.1 or 2.2 however doesn’t
depend on this but follows a direct approach.)

Consider a key bitstream u0, u1, . . . generated by an LFSR by the formula
un = s1un−1+· · ·+slun−l. Assume a plaintext a is XOR encrypted using this
key stream, resulting in the ciphertext c, where ci = ai + ui for i = 0, 1, . . .
What are the prospects of an attacker who knows a chunk of the plaintext?

Well, assume she knows the first l+1 bits a0, . . . , al of the plaintext. She
immediately derives the corresponding bits u0, . . . , ul of the key stream, in
particular the initial state of the LFSR. For the yet unknown coefficients si
she knows a linear relation:

s1ul−1 + · · ·+ slu0 = ul.

Each additional known plaintext bit yields one more relation, and having l
relations, from 2l bits of known plaintext, the easy linear algebra over the
field F2 finds a unique solution (in non-degenerate cases).

So assume we know the first 2l bits u0, . . . , u2l−1 from an LFSR of length
l. The state vector

u(i) = (ui, . . . , ui+l−1) for i = 0, 1, . . .

is the register content for step i (in reversed order compared with Figure 1.7).
Thus the analysis focusses on the states, not directly on the output. The
recursion in matrix form (for n ≥ l) is

un−l+1
...

un−1

un

 =


0 1 . . . 0
...

...
. . .

...
0 0 . . . 1
sl sl−1 . . . s1



un−l

...
un−2

un−1


or more parsimoniously (the indices being substituted by m = n− l + 1)

u(m) = S · u(m−1) for m ≥ 1

where S is the companion matrix. As a further step we collect l consecutive
state vectors u(i), . . . , u(i+l−1) in a state matrix

U(i) =


ui ui+1 . . . ui+l−1

ui+1 ui+2 . . . ui+l
...

...
. . .

...
ui+l−1 ui+l . . . u2l−2


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and set U = U(0), V = U(1). This yields the formula

V = S · U

that expresses the unknown coefficients s1, . . . , sl by the known plaintext
bits u0, . . . , u2l−1. Most notably it allows us to write down the solution
immediately—provided that the matrix U is invertible:

S = V · U−1.

The matrix S explicitly displays the coefficients s1, . . . , sl. We’ll discuss the
invertibility later on.

Example

Assume we are given a ciphertext:

10011100 10100100 01010110 10100110 01011101 10101110

01100101 10000000 00111011 10000010 11011001 11010111

00110010 11111110 01010011 10000010 10101100 00010010

11000110 01010101 00001011 11010011 01111011 10110000

10011111 00100100 00001111 01010011 11111101

We suspect that the cipher is XOR with a key stream from an LFSR of
length l = 16. The context suggest that the text is in German and begins
with the word “Treffpunkt” (meeting point). To solve the cryptogram we
need 32 bits of plaintext, that is the first four letters only, presupposed that
the theory applies. This gives 32 bits of the key stream:

01010100 01110010 01100101 01100110 = T r e f

10011100 10100100 01010110 10100110 cipher bits

-------- -------- -------- --------

11001000 11010110 00110011 11000000 key bits

Sage sample 2.1 determines the coefficient matrix. Its last row tells us that
all si = 0 except s16 = s5 = s3 = s2 = 1.

Now we know the LFSR and the initial state, and can reconstruct the
complete key stream—yes, it is the same as in Section 1.10—and write down
the plaintext (that by the way begins a bit differently from our guess).

We have shown that the cofficients are uniquely determined assuming
the state matrix U = U(0) is invertible. As a consequence in this case the
LFSR is completely known, and all output bits are predictable. We have yet
to discuss the case where the matrix U is singular.

If one of the first l state vectors (= rows of the matrix U) is zero, then
all following state vectors are zero too, and prediction is trivial.

Thus we may assume that none of these vectors are zero, but that they
are linearly dependent (reinventing the Noetherian principle for this special
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Sage Example 2.1 Determining a coefficient matrix

sage: l = 16

sage: kbits =

[1,1,0,0,1,0,0,0,1,1,0,1,0,1,1,0,0,0,1,1,0,0,1,1,1,1,0,0,0,0,0,0]

sage: ulist = []

sage: for i in range(0,l):

state = kbits[i:(l+i)]

ulist.append(state)

sage: U = matrix(GF(2),ulist)

sage: det(U)

1

sage: W = U.inverse()

sage: vlist = []

sage: for i in range(1,l+1):

state = kbits[i:(l+i)]

vlist.append(state)

sage: V = matrix(GF(2),vlist)

sage: S = V*W

sage: S

[0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0]

[0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0]

[0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0]

[0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0]

[0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0]

[0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0]

[0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0]

[0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0]

[0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0]

[0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0]

[0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0]

[0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0]

[0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0]

[0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0]

[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1]

[1 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0]

scenario). Then there is a smallest index k ≥ 1 such that u(k) is contained in
the subspace spanned by u(0), . . . , u(k−1), and we find coefficients t1, . . . , tk ∈
F2 such that

u(k) = t1u(k−1) + · · ·+ tku(0).

Then also u(k+1) = S ·u(k) = t1S ·u(k−1)+· · ·+tkS ·u(0) = t1u(k)+· · ·+tku(1),
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and by induction we get

u(n) = t1u(n−1) + · · ·+ tku(n−k) for all n ≥ k.

This formula predicts all the following bits.

Discussion

• For a singular state matrix this consideration yields a shorter LFSR
(of length k < l) that generates exactly the same sequence. Then our
method doesn’t determine the coefficients of the original register but
nevertheless correctly predicts the sequence.

• If the bits the attacker knows aren’t just the first ones but 2l contiguous
ones at a later position, then the theorem yields only the prediction
of the following bits. In the main case of an invertible state matrix U
the LFSR is completely known and may be run backwards to get the
previous bits. For a singular state matrix we achieve the same effect
using the shorter LFSR constructed above.

• The situation where 2l bits of the key stream are known but at non-
contiguous positions is slightly more involved. We get linear relations
that contain additional (unknown) intermediate bits. If m is the num-
ber of these then we get l + m linear equations for l + m unknown
bits.

• What if the length l of the LFSR is unknown? Exhaustively trying
all values l = 1, 2, 3, . . . is nasty but feasible. A better approach is
provided by the Berlekamp-Massey algorithm, see Section 3.3 that
is efficient also without knowledge of l. The ciphertext of the present
section will be attacked again in Section 3.4.
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2.4 Linear Congruential Generators with Known
Module

This section uses elementary methods only and is independent of the general
theory from the preceding sections of Chapter 2.

Assume the parameters a and b of the linear congruential generator
xn = axn−1 + b mod m are unknown, whereas the module m is known.

We’ll show that for predicting the complete output sequence we only
need 3 successive elements x0, x1, x2 of the sequence, even for a composite
module m. Starting with the relation

x2 − x1 ≡ a(x1 − x0) (mod m)

we immediately get (assuming for the moment that x1 − x0 and m are
coprime)

a =
x2 − x1

x1 − x0
mod m,

where the division is mod m (using the extended Euclidean algorithm). The
increment b is given by

b = x1 − ax0 mod m.

So we found the defining formula and may predict the complete sequence.
A typical tool for this simple case was the sequence of differences

yi = xi − xi−1 for i ≥ 1.

It follows the rule
yi+1 ≡ ayi (mod m).

Note that the yi may be negative lying between the bounds −m < yi < m.
Sincem is known we might replace them by yi mod m, but this was irrelevant
in the example, and for an unknown m—to be considered later on—it is not
an option.

Lemma 6 (on the sequence of differences) Assume the sequence (xi) is gen-
erated by the linear congruential generator with module m, multiplier a, and
increment b. Let (yi) be the sequence of differences, c = gcd(m, a), and
d = gcd(m, y1). Then:

(i) The following statements are equivalent:
(a) The sequence (xi) is constant.
(b) y1 = 0.
(c) yi = 0 for all i.

(ii) gcd(m, yi)| gcd(m, yi+1) for all i.
(iii) d|yi for all i.
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(iv) If gcd(y1, . . . , yt) = 1 for some t ≥ 1, then d = 1.
(v) c|yi for all i ≥ 2.
(vi) If gcd(y2, . . . , yt) = 1 for some t ≥ 2, then c = 1.
(vii) m|yiyi+2 − y2

i+1 for all i.
(viii) If ã, m̃ are integers, m̃ ≥ 1, with yi ≡ ãyi−1 (mod m̃)

for i = 2, . . . , r, then xi = ãxi−1 + b̃ mod m̃ for all

i = 1, . . . , r with b̃ = x1 − ãx0 mod m̃.

Proof. (i) Note that yi = 0 implies that all following elements are 0.
(ii) If e divides yi and m, then it also divides yi+1 = ayi + kim.
(iii) is a special case of (ii).
(iv) follows from d| gcd(y1, . . . , yt), and this, from (iii).
(v) Let m = cm̃ and a = cã. Then yi+1 = cãyi + kicm̃, hence c|yi+1 for

i ≥ 1.
(vi) follows from c| gcd(y2, . . . , yt) and this, from (v).
(vii) yiyi+2 − y2

i+1 ≡ a2yi − a2yi (mod m).

(viii) by induction: For i = 1 the assertion is the definition of b̃. For i ≥ 2
we have

xi − ãxi−1 − b̃ ≡ xi − ãxi−1 − xi−1 + ãxi−2 ≡ yi − ãyi−1 ≡ 0 (mod m̃),

as claimed. 3

The trivial case of a constant sequence merits no further care. However it
shows that in general the parameters of a linear congruential generator are
not uniquely determined by the output sequence. For the constant sequence
may be generated with an arbitrary module m and an arbitrary multiplier
a if only the increment is set to b = −(a − 1)x0 mod m. Even if m is fixed
a is not uniquely determined, not even a mod m.

Previously we considered the case where y1 and m are coprime, yielding
a = y2/y1 mod m. In the general case it might happen that division mod m
is not unique. This happens if and only if m and y1 have a non-trivial
common divisor, hence d = gcd(m, y1) > 1. The sequence of reduced
differences ȳi = yi/d (see (iii) in Lemma 6) then follows the recursive
formula

ȳi+1 ≡ āȳi (mod m̄)

with the reduced module m̄ = m/d and reduced multiplier ā = a mod m̄,
from which we get a unique ā = ȳ2/ȳ1. Setting ã = ā + km̄ with an arbi-
trary integer k and b̃ = x1 − ãx0 mod m, from Lemma 6 (viii) we also get
xi = ãxi−1 + b̃ mod m for all i ≥ 1. This proves:

Proposition 7 Assume the sequence (xi) is generated by a linear congru-
ential generator with known module m, but unknown multiplier a and incre-
ment b. Then the complete output sequence is predictable from its first three
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elements x0, x1, x2. If the sequence (xi) is not constant, then the multiplier
a is uniquely determined up to a multiple of the reduced module m̄.

Thus also in this situation we sometimes have to content ourselves with
predicting the sequence without revealing the parameters used for its gen-
eration. Here is a simple concrete example: For m = 24, a = 2k + 1 with
k ∈ [0 . . . 11], b = 12−2k mod 24, and initial value x0 = 1 we always get the
sequence (1, 13, 1, 13, . . .).
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2.5 Linear Congruential Generators with Un-
known Module

The attack on linear congruential generators surely becomes harder if the
module m is kept secret and cannot be guessed in an obvious way. We assume
that the attacker has a (short) subsequence x0, x1, . . . of the output sequence
at her disposal.

Surprisingly it is easier to attack the multiplier first. The following propo-
sition yields a “surrogate” value a′ in a few steps. Note the Noetherian ap-
proach via the (implicit) formula yt+1 ∈ Zy1 + · · ·+ Zyt, the principal ideal
generated by the integer gcd(y1, . . . , yt).

Proposition 8 (Plumstead-Boyar) Let (yi) be the sequence of dif-
ferences of the linear congruential generator with generating function
s(x) = ax+ b mod m, m ≥ 2, and initial value x0. Let y1 6= 0 and t be
the smallest index such that e = gcd(y1, . . . , yt) | yt+1. Then:

(i) t < 1 + log2m.

(ii) If e = c1y1 + · · · + ctyt with ci ∈ Z and a′ = (c1y2 + · · · + ctyt+1)/e,
then a′ ∈ Z and

yi+1 ≡ a′yi (mod m) for all i.

(iii) If b′ = x1 − a′x0, then

xi = a′xi−1 + b′ mod m for all i.

Proof. (i) If ej = gcd(y1, . . . , yj) doesn’t divide yj+1, then ej+1 ≤ ej/2. Since
e1 = |y1| < m we conclude e = et < m/2t−1, hence t− 1 < log2m.

(ii) We have

ae = c1ay1 + · · ·+ ctayt ≡ c1y2 + · · ·+ ctyt+1 = a′e (mod m).

The greatest common divisor d of m and y1 divides e by Lemma 6, hence
also d = gcd(m, e). We divide the congruence first by d:

a
e

d
≡ a′ e

d
(mod m̄)

with the reduced module m̄ = m/d. Since e/d and m̄ are coprime we may
divide by e/d:

a ≡ a′ (mod m̄), a = a′ + km̄.

Hence yi+1 ≡ ayi = a′yi+kyim̄ (mod m). From d | yi follows yim̄ ≡ 0, hence
yi+1 ≡ a′yi (mod m).

(iii) is an immediate consequence of Lemma 6 (viii). 3
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Examples

1. Let m = 8397, a = 4381, b = 7364 [Reeds 1977]. Generate

x0 = 2134
x1 = 2160 y1 = 26 e1 = 26
x2 = 6905 y2 = 4745 e2 = 13
x3 = 3778 y3 = −3127 e3 = 1
x4 = 8295 y4 = 4517

We get c1 = 87542, c2 = −481, c3 = −1, and a′ = 416881843.

2. Let m = 2q + 1, a = 2q−1, b = 2q, and x0 = 0. By the corollary of the
following Lemma 7 we have yi = (−1)i−1 · 2q−i+1 for i = 1, . . . , q + 1,
and thus ei = 2q−i+1. Hence t = q + 1. Thus the upper bound for t in
Proposition 8 is sharp, and indeed we need the q + 3 elements x0 to
xq+2 of the output sequence to determine the surrogate multiplier a′.

Lemma 7 Let the sequence (ci) in Z be defined by c0 = 0, ci = 2i−1 − ci−1

for i ≥ 1. Then

(i) ci = 1
3 · [2

i − (−1)i] for all i,

(ii) ci − 2ci−1 = (−1)i−1 for all i ≥ 1.

Proof. (i) follows by induction, (ii) by a direct calculation. 3

Corollary 1 Let (xi) be the output sequence of the linear congruential gen-
erator with module m = 2q + 1, multiplier a = 2q−1, increment b = 2q, and
initial value x0 = 0. Let (yi) be the sequence of differences. Then

(i) xi = ci · 2q−i+1 for i = 0, . . . , q + 1,

(ii) yi = (−1)i−1 · 2q−i+1 for i = 1, . . . , q + 1.

Proposition 8 provides a surrogate multiplier in an efficient way. Now
we need a procedure for determining the module m. We close in on it by
“successive correcting”. In step j we determine a new surrogate module mj

and a new surrogate multiplier aj as follows:

• In the first step set m1 =∞ and a1 = a′. [Calculating mod∞ simply
means calculating with integers, and gcd(c,∞) = c for c 6= 0, but =∞
for c = 0.]

• In step j, j ≥ 2, let y′j := aj−1yj−1 mod mj−1. Then set mj =
gcd(mj−1, y

′
j − yj) and aj = aj−1 mod mj .
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Thus in iteration step j we use the current surrogate values mj−1 and aj−1

for m and a and predict a value y′j for yj that we compare with the real
(known) value yj . If these two numbers differ, then their difference is a
multiple of m. In this case we correct the surrogate values. We always have
m |mj . The corrected values don’t invalidate the former calculations since
yi ≡ ajyi−1 (mod mj) for i = 2, . . . , j, and also yi ≡ ajyi−1 (mod m) for all
i ≥ 2. Also the true sequence (xi) always fulfils xi ≡ ajxi−1 + bj (mod mj)
for i = 1, . . . , j with bj = x1 − ajx0 by Lemma 6 (viii).

In Example 1 above we have

m1 =∞ a1 = 416881843
y′2 = 10838927918 m2 = 10838923173 a2 = 416881843
y′3 = 5420327549 m3 = 8397 a3 = 4381

The calculation for m3 is

gcd(10838923173, 5420330676) = 8397.

Since m3 ≤ 2x2 we conclude that necessarily m = m3, a = a3, and
b = x1 − ax0 mod m = 7364. Thus we found the true values after two correc-
tion steps, and we didn’t need any further elements of the output sequence
than the five we used for determining a′. Note the large intermediate results
that suggest that in general the procedure relies on multi-precision integer
arithmetic.

Does the procedure always terminate? At the latest when we reach the
period of the sequence, that is after at most m steps, the complete sequence
is predictable. However this bound is practically useless. Unfortunately it is
tight: For arbitrary m let a = 1, b = 1, and x0 = 0. Then xi = i and yi = 1
for i = 0, . . . ,m− 1. The initial value for the surrogate multiplier is a′ = 1.
The first false prediction is y′m = 1 instead of the correct value ym = 1−m.
The end is reached only after evaluating xm. Although this worst case is
easily recognized and might be treated separately it nevertheless hints at
the difficulty of finding good general results. And indeed we don’t know of
any.

From a slightly different point of view we count the number of necessary
correction steps where the surrogate module changes. For if mj 6= mj−1,
then mj ≤ mj−1/2. Let m(0) = ∞ > m(1) > . . . be the sequence of distinct
surrogate modules. Then

m(1) = mj1 = |y′j1 − yj1 | < a′|yj1−1|+m < m(a′ + 1),

m ≤ m(j) <
m(a′ + 1)

2j−1
,

hence always j < 1+ log2(a′+1). This gives an upper bound for the number
of necessary corrections. Joan Plumstead-Boyar described a variant of the
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algorithm that results in a potentially smaller value of a′, and eventually in
the upper bound 2 + log2m for the number of correction steps. However
in general the algorithm doesn’t involve that many corrections making this
bound obsolete as a terminating criterion.

It seems that the search for theoretical results is a worthwile task. Could
we exclude a (maybe small) class of (maybe bad anyway) linear congruential
generators such that the majority of the remaining (interesting) generators
obey a practically useful terminating criterion? I would expect such a result.
Is there a way to control the distribution of the number of steps? Or at least
the mean value?

Anyway the known results suffice to disqualify linear congruential gen-
erators for direct cryptographic application.

For an implementation of this algorithm in C see
https://www.staff.uni-mainz.de/pommeren/Cryptology/Bitstream

/2 Analysis/LCGcrack.html.

https://www.staff.uni-mainz.de/pommeren/Cryptology/Bitstream/2_Analysis/LCGcrack.html
https://www.staff.uni-mainz.de/pommeren/Cryptology/Bitstream/2_Analysis/LCGcrack.html
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2.6 A General Prediction Method

The method of Boyar (née Plumstead) admits a broad generalization
by the BK algorithm (named after Boyar and Krawczyk): It applies
to recursive formulas that have an expression in terms of (unknown) linear
combinations of known functions. A suitable language for its description is
commutative algebra, that is, rings and modules.

So let R be a commutative ring (with 1 6= 0), and X, Z be R-modules.
Let

Φ(i) : Xi −→ Z for i ≥ h
be a family of maps that we consider as known, and

α : Z −→ X

be a linear map considered as secret. From these data we generate a sequence
(xn)n∈N in X by the following algorithm, see Figure 2.2:

• Set x0, . . . , xh−1 ∈ X as initial values.

• After generating x0, . . . , xn−1 for some n ≥ h let

zn := Φ(n)(x0, . . . , xn−1) ∈ Z,
xn := α(zn) ∈ X.

x0 x1 . . . . . . xn−1 xn

zn��
��

Φ(n)

6

-

6 6 6

?

α

-output
sequence

Figure 2.2: A very general generator

Here, in greater generality as before, we allow that each element of the
sequence depends on all of its predecessors, that is, on the complete “past”.
A reasonable use for pseudorandom generation of course supposes that the
Φ(i) are efficiently computable. In the sample case R = Z/mZ, X = Rk, the
cost should grow at most polynomially with log(m), h, and k.

Examples

1. The linear congruential generator: R = Z/mZ = X, Z = R2, h = 1,
xn = axn−1 + b,

Φ(i)(x0, . . . , xi−1) =

(
xi−1

1

)
,
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α

(
s
t

)
= as+ bt.

2. The linear-inversive congruential generator: R, X, Z, h, α as above,
xn = ax−1

n−1 + b,

Φ(i)(x0, . . . , xi−1) =

(
x−1
i−1 mod m

1

)
.

(Set the first component to 0 if xi−1 is not invertible modm.)

3. Congruential generators of higher degree: R = Z/mZ = X, Z = Rd+1,
h = 1, xn = adx

d
n−1 + · · ·+ a0,

Φ(i)(x0, . . . , xi−1) =


xdi−1

...
xi−1

1

 ,

α

 t0
...
td

 = adt0 + · · ·+ a0td.

4. Arbitrary congruential generators: R = Z/mZ, xn = s(xn−1), h = 1.
If m is prime, then each function s: R −→ R has an expression as a
polynomial of degree < m, as in Example 3. For a more general module
m we may use the basis {e0, . . . , em−1} with ei(j) = δij of RR. The
basis representation is s =

∑m−1
i=0 s(i)ei. Thus we set X = R, Z = Rm,

and

Φ(i)(x0, . . . , xi−1) =

 e0(xi−1)
...

em−1(xi−1)

 ,

α

 t0
...

tm−1

 = s(0)t0 + · · ·+ s(m− 1)tm−1.

5. For multistep congruential generators set h equal the recursion depth.

6. For nonlinear feedback shift registers see the next section 2.7.

For cryptanalysis we assume that the Φ(i) are known, but α is unknown.
(Later on, in the case R = Z/mZ, we’ll also treat m as unknown.) The
question is: Given an initial segment x0, . . . , xn−1 (n ≥ h) of the output
sequence, is there a method to predict the next element xn?
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To this end we consider the ascending chain Zh ⊆ Zh+1 ⊆ . . . ⊆ Z of
submodules with

Zn = Rzh + · · ·+Rzn.

If Zn = Zn−1, then zn = thzh + · · · + tn−1zn−1 with th, . . . , tn−1 ∈ R, and
applying α we get the formula

xn = thxh + · · ·+ tn−1xn−1

that predicts xn from x0, . . . , xn−1 without using knowledge of α.
If Z is a Noetherian R-module, then we encounter a stationary situation

after finitely many steps: Zn = Zl for n ≥ l. Beginning with this index the
complete sequence xn is predictable by the following “algorithm”:

1. Calculate zn = Φ(n)(x0, . . . , xn−1).

2. Find a linear combination zn = thzh + · · ·+ tn−1zn−1.

3. Set xn = thxh + · · ·+ tn−1xn−1.

The Noetherian principle allows the prediction by a linear
relation (that however might change from step to step).

To transform the “algorithm” into a true algorithm we need a procedure
that explicitly finds a linear combination in step 2, solving a system of linear
equations in Z.

For our standard example of a congruential generator with module
m = 8397 (here assumed to be known), x0 = 2134, x1 = 2160, x2 = 6905,
we calculate

z1 =

(
2134

1

)
, z2 =

(
2160

1

)
, z3 =

(
6905

1

)
.

Trying to write z3 as a linear combination t1z1 + t2z2 we get the system

2134t1 + 2160t2 = 6905(1)

t1 + t2 = 1

of linear equations in R = Z/mZ. By elimination we find

26t1 = −4745 = 3652.

The inverse of 26 mod 8397 is 323, and thus we get t1 = 4016, t2 = 4382.
This result correctly predicts x3 = 3778.

Proceeding in this way we correctly predict the complete output se-
quence. The reason is that Z2 = Z:

z2 − z1 =

(
26

0

)
, e1 =

(
1

0

)
∈ Z2, e2 =

(
0

1

)
= z1 − 2134 · e1 ∈ Z2.
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This example contains a partial answer to the question of when the chain
of submodules Zn becomes stationary: At least when Zl = Z. But in a more
general case this might never happen. Note also that from Zl = Zl+1 we
can’t conclude that the chain is stationary at Zl—later on it could ascend
again. For a bound on the number of proper increments see Proposition 5.

In each single loop of the prediction algorithm there are two possible
alternative events:

• zn 6∈ Zn−1. Then predicting xn is impossible, and Zn−1 properly ex-
tends to Zn = Zn−1 +Rzn.

• zn ∈ Zn−1. Then the algorithm correctly predicts xn.

By Proposition 5 the first of these two events may happen at most log2(#Z)
times (or DimZ times if R is a field). For each of these events we need ac-
cess to the next element xn of the output sequence to get ahead. On first
sight this looks disappointing, but some thought brings to mind that it is a
realistic situtation for cryptanalysis: In the process of breaking a cipher the
cryptanalyst works with a supposed key until she gets nonsense “plaintext”.
Then she tries to guess the following plaintext characters by context knowl-
edge, corrects the supposed key and goes on with deciphering. Remember
that we already encountered this effect in the last section. And note that the
present algorithm is fairly simple but contents itself with predicting elements
instead of determining the unknown parameters of the random generator.
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2.7 Nonlinear Feedback Shift Registers

As another example of the general prediction method we consider arbitrary,
not necessarily linear, feedback shift registers as illustrated in Figure 2.3.

un+l−1 un+l−2 . . . . . . un+1 un-

un+l

- un−1 . . . u0

output sequence

feedback function
�� ��f

6 6 6 6

- - - -

cell number: l − 1 l − 2 1 0

Figure 2.3: A feedback shift register (FSR) of length l

Here the feedback function is an arbitrary Boolean function f: Fl2 −→ F2

whose algebraic normal form is a polynomial

f(y1, . . . , yl) =
∑

I⊆{1,...,l}

aIy
I with yI =

∏
j∈I

yj .

We want to apply the prediction method with R = X = F2, h = l,
Z = F2l

2 . For i ≥ l
Φ(i) : Fi2 −→ Z

is given by

zi := Φ(i)(x1, . . . , xi) = (yI)I⊆{1,...,l} with y = (xi−l+1, . . . , xi).

And finally we set

α : Z −→ X, α((tI)I⊆{1,...,l}) =
∑

aItI .

First we treat two concrete examples:

Examples

1. l = 2, f = T1T2 + T2. From the initial values u0 = 1, u1 = 0 we
generate the sequence (manually or by Sage example 2.2)

u0 = 1, u1 = 0, u2 = 1, u3 = 0, . . .

(that evidently has period 2). We have

Z = F4
2, zn =


un−1un−2

un−1

un−2

1

 ,
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z2 =


0
0
1
1

 , z3 =


0
1
0
1

 , z4 =


0
0
1
1

 = z2, . . .

From this the cryptanalyst recognizes the linear recursion

zn = zn−2 = 0 · zn−1 + 1 · zn−2 for n ≥ 4.

She even recognizes the period, and correctly predicts

un = 0 · un−1 + 1 · un−2 = un−2 for n ≥ 4.

Note that the very same sequence can be generated by a linear FSR
of length 2. The analysis used the elements u0, u1, u2, u3.

2. l = 3, f = T1T3 + T2. From the initial values u0 = 0, u1 = 1, u2 = 1
we generate the elements (manually or by Sage example 2.3)

u3 = 1, u4 = 0, u5 = 1, u6 = 1, u7 = 1, u8 = 0, u9 = 1, . . .

of the output sequence. We have

Z = F8
2, zn =



un−1un−2un−3

un−1un−2

un−1un−3

un−2un−3

un−1

un−2

un−3

1


,

z3 =



0
1
0
0
1
1
0
1


, z4 =



1
1
1
1
1
1
1
1


, z5 =



0
0
0
1
0
1
1
1


, z6 =



0
0
1
0
1
0
1
1


, z7 =



0
1
0
0
1
1
0
1


= z3,

and so on. Hence the supposed linear recursion is

zn = zn−4 for n ≥ 4,

again it reflects the periodicity. We get the correct prediction formula

un = un−4 for n ≥ 4.

We needed the elements from u0 to u6; and again we found an “equiv-
alent” LFSR, this time of length 4.
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Sage Example 2.2 f1 = T1T2 +T2—monomials with exponent pairs [1,1]
=̂ 3 and [0,1] =̂ 1, hence ANF bitblock [0,1,0,1]

f1 = BoolF([0,1,0,1],method="ANF")

y = f1.getTT(); y

[0, 1, 0, 0]

start = [0,1]

seq = fsr(f1,start,10); seq

[1, 0, 1, 0, 1, 0, 1, 0, 1, 0]

Sage Example 2.3 f2 = T1T3 + T2—monomials with exponent triples
[1,0,1] =̂ 5 and [0,1,0] =̂ 2, hence ANF bitblock [0,0,1,0,0,1,0,0]

f2 = BoolF([0,0,1,0,0,1,0,0],method="ANF")

y = f2.getTT(); y

[0, 1, 0, 0]

start = [1,1,0]

seq = fsr(f2,start,10); seq

[0, 1, 1, 1, 0, 1, 1, 1, 0, 1]

Since the dimension of Z grows exponentially with the register length the
prediction algorithm reaches its limits soon. In the worst case the stationary
state of the ascending chain of subspaces—and the needed linear relation—
occurs only after 2l steps. This observation would make shift registers up to
a length of about 32 predictable with manageable cost using linear algebra
in a binary vector space of dimension 232.

However in the examples we observed that the linear relation we found
is nothing other than the formula for the final periodic repetition. This was
not a fortunate coincidence but is a general phenomen that has an easy
proof. For details see the paper [6]. Hence instead of solving large systems
of linear equations we can apply an algorithm for period search that needs
significantly less resources. This approach enables a realistic attack on shift
registers of lengths up to about 80.

From a general point of view there is another objection against using
arbitrary FSRs: The feedback function f depends on 2l parameters. To have
f efficiently computable and to deal with a manageable key space we have to
restrict the choice of f , say by forcing “almost all” coefficients aI in the ANF
of the “admissible” feedback functions f to 0. Thus we specify a “small” set
M⊆ P({1, . . . l}) a priori, and use only functions f whose ANF

f(x1, . . . , xl) =
∑

I∈P({1,...l})

aIx
I
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has coefficients aI = 0 for I 6∈ M. Then the key space has size 2#M.
However the coice of M is part of the encryption algorithm—in particular
for a hardware FSR—, not a part of the key. Kerckhoffs’ principle warns
us that the enemy will learn about M sooner or later. In the model of
Figure 2.1 we treat the a priori “monomial supply”M as public parameter,
and the concrete “monomial selection” I as secret parameter.

The necessity of choosing an efficiently computable feedback function
and a manageable key space enforces restrictions that make the prediction
method efficient too. Expressed in a somewhat sloppy way:

Proposition 9 Each bit sequence that is generated by an FSR with effi-
ciently computable feedback function is efficiently predictable.

Our treatment of this problem was quite coarse. To derive mathemati-
cally correct statements there are two approaches:

1. Directly estimate the circuit complexity of the prediction algorithm by
the circuit complexity of the feedback function.

2. Consider families of Boolean functions—that define families of FSRs—
whose complexity grows polynomially with the register length, and
show that the costs of the corresponding prediction procedures also
grow at most polynomially.

For a comprehensive treatment see the cited paper [6].
We conclude that FSRs, no matter whether linear or nonlinear, are un-

suited for generating pseudorandom sequences of cryptographic value—at
least if naively applied. The method of Boyar/Krawczyk breaks also
nonlinear FSRs in realistic scenarios. And the result of Beth/Dai in Sec-
tion 3.7 will open another promising way of predicting an FSR using the
Berlekamp/Massey algorithm, see Section 3.3.
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2.8 A General Congruential Generator

The prediction procedure becomes somewhat more involved when the mod-
ule of a congruential generator is unknown. We abandon the general setting
of commutative algebra and use special properties of the rings Z and Z/mZ,
in particular the “canonical” representation of the residue classes of Z/mZ
by the subset {0, . . . ,m− 1} ⊆ Z.

Let X = Zr, X̄ = (Z/mZ)r, Z = Zk, Z̄ = (Z/mZ)k. The generator uses
maps

Φ(i) : Xi −→ Z for i ≥ h,

α : Z̄ −→ X̄ linear,

where α and m are unknown to the cryptanalyst. Identifying the residue
classes with their canonical representants we consider X̄ as the subset
{0, . . . ,m − 1}r of X. Then we generate a sequence by the same algorithm
as in the previous Section 2.6, and call this procedure a general congru-
ential generator, if the evaluation of the maps Φ(i) is efficient with costs
that depend at most polynomially on r, k, and log(m). In particular there
is a bound M for the values of the Φ(i) on {0, . . . ,m− 1}ri that is at most
polynomial in r, k, and log(m).

The cryptanalysis proceeds in two phases. In phase one we work over
the ring Z and its quotient field Q, and we determine a multiple m̂ of the
module m. In phase two we work over the ring Z/m̂Z. Predicting xn in this
situation can trigger three different events:

• zn 6∈ Zn−1. Then the module Zn−1 (over Q or Z/m̂Z) must be enlarged
to Zn, and no prediction is possible for xn. The cryptanalyst needs
some more plaintext.

• The prediction of xn is correct.

• The prediction of xn is false. Then the module m̂ has to be adjusted.

In phase one Zn−1 is the vector space over Q that is spanned by zh, . . . , zn−1

(omitting redundant zi’s).
Case 1: zn 6∈ Zn−1. Then set Zn = Zn−1 + Qzn. This case can occur at

most k times.
Case 2: [Linear relation] zn = thzh + · · · + tn−1zn−1. Then predict

xn = thxh + · · ·+ tn−1xn−1 (as element of Qr).
Case 3: We have an analogous linear relation, but x̂n = thxh + · · · +

tn−1xn−1 differs from xn. Let d ∈ N be the common denominator of
th, . . . , tn−1. Then

dx̂n = α(dthzh + · · ·+ dtn−1zn−1) = α(dzn) = dxn

in X̄, that is modm. This shows:
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Lemma 8 (Boyar) The greatest common divisor m̂ of the components of
dx̂n − dxn in case 3 is a multiple of the module m.

The result of phase one is a multiple m̂ 6= 0 of the true module m. The
expense is:

• at most k+ 1 trials of solving a system of linear equations for up to k
unknowns over Q,

• one determination of the greatest common divisor of r integers.

Along the way the procedure correctly predicts a certain number of elements
xn, each time solving a system of linear equations of the same type.

How large can m̂ be? For an estimate we need an upper bound M for
all components of all Φ(i) on {0, . . . ,m − 1}ri ⊆ Xi. We use Hadamard’s
inequality: For arbitrary vectors x1, . . . , xk ∈ Rk we have

|Det(x1, . . . , xk)| ≤ ‖x1‖2 · · · ‖xk‖2

where ‖ • ‖2 is the Euclidean norm.

Lemma 9 m̂ ≤ (k + 1) ·m ·
√
kk ·Mk. In particular log(m̂) is bounded by

a polynomial in k, log(m), log(M).

Proof. The coefficient vector t is the solution of a system of at most k
linear equations for the same number of unknowns. The coefficients zi of
this system are bounded by M . By Hadamard’s inequality and Cramer’s
rule the numerators dti and denominators d of the solution are bounded by

k∏
i=1

√√√√ k∑
j=1

M2 =
k∏
i=1

√
kM2 =

√
kk ·Mk.

Hence the components of dx̂n are bounded by

‖dx̂n‖∞ = ‖
∑

dtixi‖∞ ≤
√
kk ·Mk ·

∑
‖xi‖∞ ≤ km ·

√
kk ·Mk

because m bounds the components of the xi. We conclude

‖dx̂n − dxn‖∞ ≤ km ·
√
kk ·Mk +

√
kk ·Mk ·m = (k + 1) ·m ·

√
kk ·Mk,

as claimed. 3

How does this procedure look in the example of an ordinary linear con-
gruential generator? Here we have

z1 =

(
x0

1

)
, z2 =

(
x1

1

)
, z3 =

(
x2

1

)
, . . .
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If x1 = x0, then we have the trivial case of a constant sequence. Otherwise
z3 is a rational linear combination t1z1 + t2z2. Solving the system

x0t1 + x1t2 = x2,

t1 + t2 = 1

yields

t =
1

d
·
(
−x2 + x1

x2 − x0

)
with d = x1 − x0.

From this we derive the prediction

x̂3 = t1x1 + t2x2 =
−x2x1 + x2

1 + x2
2 − x2x0

x1 − x0
=

(x2 − x1)2

x1 − x0
+ x2.

Hence d(x̂3 − x3) = (x2 − x1)2 − (x1 − x0)(x3 − x2) = y2
2 − y1y3 where (yi)

is the sequence of differences. If x̂3 = x3, then we must continue this way.
Otherwise we get, see Lemma 6,

m|m̂ = |y1y3 − y2
2|.

For our concrete standard example, where x0 = 2134, x1 = 2160,
x2 = 6905, x3 = 3778, y1 = 26, y2 = 4745, y3 = −3127, this general ap-
proach gives

m̂ = 47452 + 26 · 3127 = 22596327.

A closer look, using Lemma 8 directly, even yields

t1 = −365

2
, t2 =

367

2
, x̂3 =

1745735

2
, m̂ = 2 · (x̂3 − x3) = 1738179.

In phase two of the algorithm we execute the same procedure but over
the ring R̂ = Z/m̂Z. However we can’t simply reduce mod m̂ the rational
numbers from phase one. Hence we restart at zh. Again we distinguish three
cases for each single step:

Case 1: zn 6∈ Ẑn−1 = R̂zh + · · · + R̂zn−1. Then set Ẑn = Ẑn−1 + R̂zn
(and represent this R̂-module by a non-redundant system {zj1 , . . . , zjl} of
generators where zjl = zn). We can’t predict xn (but have to get it from
somewhere else).

Case 2: zn = thzh + · · · + tn−1zn−1. Then predict xn = thxh + · · · +
tn−1xn−1 (as an element of X̂ = (Z/m̂Z)r). The prediction turns out to be
correct.

Case 3: The same, but now the predicted value
x̂n = thxh + · · ·+ tn−1xn−1 differs from xn in X̂. Then considering
x̂n − xn as an element of Zr we show:

Lemma 10 In case 3 the greatest common divisor d of the coefficients of
x̂n − xn is a multiple of m, but not a multiple of m̂.
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Proof. It is a multiple of m since x̂n mod m = xn. It is not a multiple of m̂
since otherwise x̂n = xn in X̂. 3

In case 3 we replace m̂ by the greatest common divisor of d and m̂
and reduce mod m̂ all the former zj . The lemma tells us that the new m̂ is
properly smaller than the old one.

By Lemma 9 case 3 can’t occur too often, the number of occurences is
polynomially in k, log(m), and log(M). If we already hit the true m this
case can’t occur any more. Case 1 may occur at most log2(#(Z/m̂Z)k) =
k · log2(m̂) times in phase 2 by Proposition 5, and this bound is polynomial
in k, log(m), and log(M).

Note. There is a common aspect of phases one and two: In both
cases we use the full quotient ring. The full quotient ring of Z is
the quotient field Q. In a residue class ring Z/mZ the non-zero-
divisors are exactly the elements that are coprime with m, hence
the units. Thus Z/mZ is its own full quotient ring.

For the concrete standard example we had m̂ = 1738179 after phase one,
and now have to solve mod m̂ the system (1) of linear equations. Since the
determinant −26 is coprime with m̂ we already have Z2 = R̂2, and know
that case 1 will never occur. The inverse of −26 is 66853 (in Z/m̂Z), so
from −26 t1 = 4745 we get t1 = 868907. Hence t2 = 1 − t1 = 869273, and
x̂3 = 11x1 + t2x2 = 3778 is a correct prediction.

In the next step we calculate new coefficients t1 and t2 for the linear
combination z4 = t1z1 + t2z2. We solve (in Z/m̂Z)

2134 t1 + 2160 t2 = 3778,

t1 + t2 = 1.

Eliminating t2 yields −26 t1 = 1618, hence t1 = 401056, and thus
t2 = 1337124, as well as x̂4 = 11x1 + t2x2 = 302190. Since x4 = 8295 we are
in case 3 and must adjust m̂:

gcd(x̂4 − x4, m̂) = gcd(293895, 1738179) = 8397.

Now m̂ < 2x2. Thus from now on only case 2 will occur. This means that
we’ll predict all subsequent elements correctly.

A prediction method for a general congruential generator is an algo-
rithm that gets the initial values x0, . . . , xh−1 as input, then successively
produces predictions of xh, xh+1, . . ., and compares them with the true val-
ues; in the case of a mistake it adjusts the parameters using the respective
true value.

A prediction method is efficient if

1. the cost of predicting each single xn is polynomial in r, k, and log(m),
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2. the number of false predictions is bounded by a polynomial in r, k,
and log(m), as is the cost of adjusting the parameters in the case of a
mistake.

The Boyar/Krawczyk algorithm that we considered in this section fulfils
requirement 2. It also fulfils requirement 1 since solving systems of linear
equations over residue class rings Z/mZ is efficient (as shown in Section 9.2
of Part I). Thus we have shown:

Theorem 2 For an arbitrary (efficient) general congruential generator the
Boyar/Krawczyk algorithm is an efficient prediction method.

A simple concrete example shows the application to a non-linear congru-
ential generator. Suppose a quadratic generator of the form

xn = ax2
n−1 + bxn−1 + c mod m

outputs the sequence

x0 = 63, x1 = 96, x2 = 17, x3 = 32, x4 = 37, x5 = 72.

We set X = Z, Z = Z3, h = 1. In phase one the vectors

z1 =

 3969
63
1

 z2 =

 9216
96
1

 z3 =

 289
17
1


span Q3 since the coefficient matrix is the Vandermonde matrix with de-
terminant 119922. Solving

z4 =

 1024
32
1

 = t1z1 + t2z2 + t3z3

yields

t1 =
160

253
, t2 = −155

869
, t3 =

992

1817
,

with common denominator d = 11 · 23 · 79 = 19987. The algorithm predicts

x̂4 =
1502019

19987
6= x4.

Hence the first guessed module is

m̂ = dx̂4 − dx4 = 762500,

and phase one is completed. Now we have to solve the same system of linear
equations over Z/m̂Z. Here the determinant is a zero divisor. We get two
solutions, one of them being

t1 = 156720 , t2 = 719505 , t3 = 648776 .
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Thus we predict the correct value

x̂4 = 156720 · 96 + 719505 · 17 + 648776 · 32 mod 763500 = 37.

We are in case 2, and continue with predicting x5: The system

z5 =

 1369
37
1

 = t1z1 + t2z2 + t3z3

has two solutions, one of them being

t1 = 2010 , t2 = 558640 , t3 = 201851 ,

hence
x̂5 = 136572 , x̂5 − x5 = 136500 .

We are in case 3 and adjust m̂ to

gcd(762500, 136500) = 500.

This exhausts the known values. Because all zi are elements of
Ẑ3 = R̂z1 + R̂z2 + R̂z3 6= R̂3 case 1 remains a possibility for the following
steps. Since x0, . . . , x5 are smaller than half the current module m̂ also case
3 remains possible. In particular maybe we have to adjust the module fur-
thermore.

Trying to predict x6 we get (mod 500)

t1 = 240 , t2 = 285 , t3 = 476 , x6 = 117 .

Exercise. What happens in the concrete standard example if after phase 1
we continue with the value m̂ = 22596327?
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2.9 Analysis of Congruential Generators with
Truncated Output

Cryptanalysis is significantly harder for pseudorandom generators that don’t
output all bits of the generated numbers. Then the sequence of differences
is known at most approximately, greatest common divisors cannot be deter-
mined, and the algorithms of Plumstead-Boyar or Boyar/Krawczyk
break down.

If the parameters of the pseudorandom generator are known, the crypt-
analyst may try an exhaustion. The following consideration lacks mathe-
matical strength. It doesn’t presuppose that the pseudorandom generator is
linear.

Suppose the generator produces n-bit integers but outputs only q bits
(from fixed known positions) and suppresses n− q bits. Then for each q-bit
fragment of the output there exist 2n−q possible complete values. In other
words, a pseudorandom n-bit integer has the given bits at the given positions
with probability 1/2q.

To continue we assume for simplicity that the q output bits are the most
significant bits. So we decompose the integer x into x = x02n−q + x1 where
0 ≤ x1 < 2n−q. The value x0, the first q bits, is known. The cryptanalyst
runs through the 2n−q different possibilities for x1. For each choice of x1 she
forms x = x02n−q + x1 and sets y = s(x) with the generating function s
of the pseudorandom generator. She compares y with the next q bits of the
output that she knows. If the pseudorandom generator is statistically good,
then the probability of a hit is 1/2q. Thus from the 2n−q test values of x0

there survive about 2n−2q ones. In the case q ≥ n
2 she expects exactly one

hit. Otherwise she proceeds. After using k substrings of q bits the expected
number of hits is about 2n−kq. The expected necessary number of q-bit
substrings exceeds k only if kq ≤ n, or q ≥ n

k . For q = 1
4 (as in the example

n = 32, q = 8, that is an output of 8 bits of a 32-bit integer) four q-bit
fragments suffice (where the exhaustion runs through 224 integers). This
trial-and-error procedure is manageable for small modules m. But note that
the expense grows exponentially with m (assume the ratio r = q

n of output
bits is bounded away from 1).

For linear congruential generators with unknown module
Frieze/Kennan/Lagarias, Håstad/Shamir, and J. Stern devel-
oped a better (probabilistic) procedure whose first step—finding the
module—is summarized in the statement: The cryptanalyst finds m with
high probability if the generator outputs more than 2/5 of the leading bits.
(without proof).

In the second step the cryptanalyst finds the multiplier a under the
assumption that the module m is already known. In the third step she
determines the complete integers xi, or the differences yi. Also with these
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tasks she succeeds except for a negligeable subset of multipliers, and for the
“good” multipliers she needs slightly more than one third of the leading
bits of x0, x1, x2, and x3, to derive the complete integers. This enables her
to predict all further output of the generator. A similar, somewhat weaker
result by J. Stern holds for the case where instead of leading bits the
generator outputs “inner bits” of the generated integers.

Thus the cryptanalysis of linear congruential generators reveals funda-
mental weaknesses, independently of the quality of their statistical proper-
ties.

Nevertheless linear congruential generators are useful for statistical ap-
plications. It is extremely unlikely that an application procedure “by ac-
cident” contains the steps that break a linear congruential generator and
reveal its determinism. On the other hand linear congruential generators
are disqualified for cryptographic applications once and for all, even with
truncated output. However it is an open problem whether the objections
also hold for a truncation strategy that outputs “very few” bits, say a quar-
ter (note 1

4 <
2
5), or only log log(m) bits.
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2.10 Summary

In Sections 2.1 to 2.8 we developed a prediction method whose overall work-
flow is depicted in Figure 2.4.

1. Construct

?

2. Predict

?

3. Adjust

�

Figure 2.4: Workflow for prediction

1. By guessing plaintext the cryptanalyst finds subsequences of the key
stream until she succeeds in constructing a linear relation for the state
vectors (Noetherian principle).

2. Using this linear relation she predicts some more key bits.

3. If the predicted key bits are false (the plaintext ceases from making
sense), then the cryptanalyst has to guess some more plaintext and to
use it to adjust the parameters. Then she continues predicting bits.

This procedure is efficient for the “classical” pseudorandom generators,
in particular for congruential generators—even with unknown module—and
for feedback shift registers—even nonlinear ones. “Efficient” means that the
computational cost is low, and also implies that the needed amount of known
or correctly guessed plaintext is small.

One lesson learnt from these results is that for cryptographically se-
cure pseudorandom generation we never should directly use the state of
the generator as output. Rather we should insert a transformation between
state and output that conceals the state—the output function of Figure 2.1.
Section 2.9 illustrates that simply suppressing some bits —“truncating” or
“decimating” the output—might be to weak as an output transformation.
In the following section we’ll learn about better output transformations.

There is a large twilight zone between pseudorandom generators that
promise advantage to the cryptanalyst, and pseudorandom generators that
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put the cipher designer’s mind at ease. In any case we should prefer pseu-
dorandom generators for which both of the procedures

• state transition,

• output function,

are nonlinear. The twilight zone where we don’t know useful results on secu-
rity contains (among others) quadratic congruential generators with slightly
truncated output.

quadratic
output n bits

linear
output c · n bits

quadratic
output c · n bits

linear
output c · log(n) bits

quadratic
output c · log(n) bits

�
�

�
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�
�

�
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@

�
�
�

�
�

�
�predictable

����?
�� ��secure

Figure 2.5: Predictable and secure congruential pseudorandom generators
for n-bit integers (c a constant factor)

The following chapters present two approaches that are believed to lead
to secure pseudorandom generators:

• combinations of LFSRs with a nonlinear output transformation (Chap-
ter 3),

• nonlinear congruential generators with substantially truncated output
(Chapter 4).



Chapter 3

Feedback Shift Registers and
Linear Complexity

As we saw in the last chapter LFSRs are cryptographically weak if naively
used. Also nonlinear FSRs admit an efficient prediction algorithm via the
Noetherian principle undermining their security.

In this chapter we’ll look at LFSRs from the opposite direction: Given
a bit sequence, how to generate it by an LFSR in an optimal way? The
minimal length of such an LFSR will turn out to be a useful measure of
predictability—even a very good measure except for a few outliers.

69
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3.1 The Linear Complexity of a Bit Sequence

We consider bit sequences u = (ui)i∈N ∈ FN
2 —for the moment infinite ones.

We search an LFSR of smallest length that produces the sequence.
If the sequence is generated by an LFSR, it must be periodic. On the

other hand every periodic sequence is generated by an LFSR whose length
is the sum of the lengths of preperiod and period—namely by the circular
LFSR that feeds back the bit where the period begins: If ul+i = uk+i for
i ≥ 0, then the taps are al−k = 1, ai = 0 else, as in Figure 3.1. This
consideration shows:

Lemma 11 A bit sequence u ∈ FN
2 is generated by an LFSR if and only if

it is (eventually) periodic.

cell 1 l − k l

. . . uk . . . u0
- -

Figure 3.1: A circular LFSR

Definition The linear complexity λ(u) of a bit sequence u ∈ FN
2 is the

minimal length of an LFSR that generates u.

For u constant 0 let λ(u) = 0, for a non-periodic u set λ(u) =∞.

This concept of complexity uses the quite special machine model of an
LFSR.

Remarks and examples

1. Let τ(u) be the sum of the lengths of the preperiod and the period of
u. Assume that u is generated by an LFSR of length l. Then

λ(u) ≤ τ(u) ≤ 2l − 1 and λ(u) ≤ l.

2. The periodically repeated sequence 0, . . . , 0, 1 (l−1 zeroes) has period
l and linear complexity l. An LFSR of length < l would start with the
null vector as initial value and thus force the complete output sequence
to zero.

For a finite bit sequence u = (u0, . . . , uN−1) ∈ FN2 the linear complexity is
analogously defined. In particular λ(u) is the minimum integer l for which
there exist a1, . . . , al ∈ F2 with

ui = a1ui−1 + · · ·+ alui−l for i = l, . . . , N − 1.
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3. For u ∈ FN2 we have 0 ≤ λ(u) ≤ N .

4. λ(u) = 0⇐⇒ u0 = · · · = uN−1 = 0.

5. λ(u) = N ⇐⇒ u = (0, . . . , 0, 1). The implication “⇐=” follows as in
remark 2. For the reverse direction assume uN−1 = 0. Then we can
take the LFSR of length N − 1 with feedback constant 0—the two
LFSRs

0|uN−2| . . . |u0
-

0

- uN−2| . . . |u0
-

both generate the same output of length N . This contradiction shows
that uN−1 = 1. Assume there is a 1 at an earlier position. Then we can
take the LFSR of length N − 1 that feeds back exactly this position—
the two LFSRs

1| . . . |1| . . . -

- . . . |1| . . . -

both generate the same output up to length N .

6. From the first 2λ(u) bits of the sequence u all the following bits are
predictable. (Note that the cryptanalyst who knows that many bits of
the sequence, but no further bits, also doesn’t know λ(u). Therefore
she doesn’t know that her predictions will be correct from now on.
This ignorance doesn’t prevent her from correctly predicting bit for
bit!)
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3.2 Synthesis of LFSRs

In this section we treat the problem of how to find an LFSR of shortest
length that generates a given finite bit sequence. In section 2.6 we described a
method of finding linear relations for sequence elements from a quite general
generator. This might result in an LFSR, but anyway the linear relations
might change from step to step and there appears no easy way of getting an
optimal LFSR.

Here we follow another approach that solves our problem in a surprisingly
easy way: the BM-algorithm, named after Berlekamp (1968 in a different
context) and Massey (1969).

We don’t use any special properties of the field F2, so we work over an
arbitrary field K. Our goal is to construct a homogeneous linear generator of
the smallest possible recursion depth l that generates a given finite sequence
u ∈ KN .

We consider a homogeneous linear generator whose recursion formula is

(1) uk = a1uk−1 + · · ·+ aluk−l for k = l, . . . , N − 1.

Its coefficient vector is (a1, . . . , al) ∈ K l. The polynomial

ϕ = 1− a1T − · · · − alT l ∈ K[T ]

is called feedback polynomial.

Note Don’t confuse this polynomial with the feedback function

s(u0, . . . , ul−1) = a1ul−1 + · · ·+ alu0.

The feedback polynomial is the reciprocal polynomial of the characteristic
polynomial

χ = Det(T · 1−A) = T l − a1T
l−1 − · · · − al

of the companion matrix

A =


0 1 . . . 0

. . .
. . .

1
al al−1 . . . a1

 .

These two polynomials are related by the formula

ϕ = T l · χ(
1

T
).

Lemma 12 Let the sequence u = (u0, . . . , un−1) ∈ Kn be a seg-
ment of the output of the linear generator (1), but not the sequence
û = (u0, . . . , un) ∈ Kn+1. Then every homogeneous linear generator of
length m ≥ 1 that generates û has m ≥ n+ 1− l.
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Proof. Case 1: l ≥ n. Then obviously l +m ≥ n+ 1.
Case 2: l ≤ n− 1. Assume m ≤ n− l. We have

uj = a1uj−1 + · · ·+ aluj−l for l ≤ j ≤ n− 1.

Let (b1, . . . , bm) be the coefficient vector of a homogeneous linear generator
that produces û. Then

uj = b1uj−1 + · · ·+ bmuj−m for m ≤ j ≤ n.

We deduce

un 6= a1un−1 + · · ·+ alun−l

=
l∑

i=1

ai ·
m∑
k=1

bkun−i−k︸ ︷︷ ︸
un−i

[since n− l ≥ m]

=

m∑
k=1

bk ·
l∑

i=1

aiun−k−i︸ ︷︷ ︸
un−k

= un,

contradiction. 3

Consider a sequence u ∈ KN . For 0 ≤ n ≤ N let λn(u) = λn be the
smallest recursion depth for which a homogeneous linear generator exists
that produces (u0, . . . , un−1).

Lemma 13 For every sequence u ∈ KN we have:

(i) λn+1 ≥ λn for all n.

(ii) There is a homogeneous linear generator of recursion depth λn that
produces (u0, . . . , un) if and only if λn+1 = λn.

(iii) If there is no such generator, then

λn+1 ≥ n+ 1− λn.

Proof. (i) Every generator that produces (u0, . . . , un) a forteriori produces
(u0, . . . , un−1).

(ii) follows from (i).
(iii) The precondition of Lemma 12 is true for every generator of

(u0, . . . , un−1). 3
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Proposition 10 [Massey] Let u ∈ KN and 0 ≤ n ≤ N − 1. Let
λn+1(u) 6= λn(u). Then

λn(u) ≤ n

2
and λn+1(u) = n+ 1− λn(u).

Thus the linear complexity may jump only if λn (we often omit u in the no-
tation) is “below the diagonal,” and then it jumps to the symmetric position
“above the diagonal.” An illustration is in Figure 3.2.

Proof. First we consider the easy case λn = 0: Here u0 = . . . = un−1 = 0.
If un = 0, then λn+1 = λn = 0, leaving nothing to prove. Otherwise un 6= 0,
and then λn+1 = n+ 1 = n+ 1− λn by remark 5 in 3.1.

In general the first statement follows from the second one: We have
λn < λn+1, hence 2λn < λn + λn+1 = n+ 1.

Now we prove the second statement by induction on n. In the case n = 0
we have λ0 = 0—this case is already settled.

Now let n ≥ 1. We may assume l := λn ≥ 1. Let

uj = a1uj−1 + · · ·+ aluj−l for j = l, . . . , n− 1;

hence the feedback polynomial is

ϕ := 1− a1T − · · · − alT l ∈ K[T ].

Let the “n-th discrepancy” be defined as

dn := un − a1un−1 − · · · − alun−l.

If dn = 0, then the generator outputs un as the next element, and there is
nothing to prove. Otherwise let dn 6= 0. Let r be the length of the segment
before the last increase of linear complexity, thus

t := λr < l, λr+1 = l.

By induction l = r + 1− t. We have a relation

uj = b1uj−1 + · · ·+ btuj−t for j = t, . . . , r − 1,

the corresponding feedback polynomial is

ψ := 1− b1T − · · · − btT t ∈ K[T ],

and the corresponding r-th discrepancy,

dr := ur − b1ur−1 − · · · − btur−t 6= 0.

In the case t = 0 we have ψ = 1 and dr = ur. Now we form the polynomial

η := ϕ− dn
dr
· Tn−r · ψ = 1− c1T − · · · − cmTm ∈ K[T ]
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with m = deg η. What is the output of the corresponding homogeneous
linear generator? We have

uj −
m∑
i=1

ciuj−i = uj −
l∑

i=1

aiuj−i −
dn
dr
·

[
uj−n+r −

t∑
i=1

biuj−n+r−i

]
= 0 for j = m, . . . , n;

for j = m, . . . , n − 1 this follows directly, for j = n via the intermediate
result dn − [dn/dr] · dr. Hence the output is (u0, . . . , un). Now we have

λn+1 ≤ m ≤ max{l, n− r + t} = max{l, n+ 1− l}.

Since linear complexity grows monotonically we conclude m > l, and by
Lemma 12 we get m ≥ n+ 1− l. Hence m = n+ 1− l and λn+1 = m. This
proves the proposition. 3

Corollary 1 If dn 6= 0 and λn ≤ n
2 , then

λn+1 = n+ 1− λn > λn.

Proof. By Lemma 12 we have λn+1 ≥ n+ 1− λn, thus λn+1 ≥ n
2 + 1 > λn.

By Proposition 10 we conclude λn+1 = n+ 1− λn. 3

During the successive construction of a linear generator in the proof of
the proposition, in each iteration step one of two cases occurs:

• dn = 0: then λn+1 = λn.

• dn 6= 0: then

– λn+1 = λn if λn >
n
2 ,

– λn+1 = n+ 1− λn if λn ≤ n
2 .

In particular we always have:

• If λn >
n
2 , then λn+1 = λn.

• If λn ≤ n
2 , then λn+1 = λn or λn+1 = n+ 1− λn.

By the way we found an alternative method of predicting LFSRs:

Corollary 2 If u ∈ FN2 is generated by an LFSR of length ≤ l, then one
such LFSR may be determined from u0, . . . , u2l−1.

Proof. Assume n is the first index ≥ 2l such that dn 6= 0. Then λn ≤ l ≤ n
2 ,

thus λn+1 = n+ 1− λn ≥ l + 1, contradiction. 3
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3.3 The Berlekamp-Massey Algorithm

The proof of Proposition 10 is constructive: It contains an algorithm that
successively builds a linear generator. For the step from length n to length
n+ 1 three cases (1, 2a, 2b) are possible:

Case 1 dn = 0, hence the generator with feedback polynomial ϕ next out-
puts un: Then ϕ and l remain unchanged, and so remain ψ, t, r, dr.

Case 2 dn 6= 0, hence the generator with feedback polynomial ϕ doesn’t
output un as next element: Then we form a new feedback polynomial
η whose corresponding generator outputs (u0, . . . , un). We distinguish
between:

a) l > n
2 : Then λn+1 = λn. We replace ϕ by η and leave l, ψ, t, r, dr

unchanged.

b) l ≤ n
2 : Then λn+1 = n+ 1− λn. We replace ϕ by η, l by n+ 1− l,

ψ by ϕ, t by l, r by n, dr by dn.

So a semi-formal description of the Berlekamp-Massey algorithm (or
BM algorithm) is:

Input: A sequence u = (u0, . . . , uN−1) ∈ KN .

Output: The linear complexity λN (u),

the feedback polynomial ϕ of a linear generator of length λN (u) that
produces u.

Auxiliary variables: n = current index, initialized by n := 0,

l = current linear complexity, initialized by l := 0,

ϕ = current feedback polynomial = 1− a1T − · · ·− alT l, initialized by
ϕ := 1,

invariant condition: ui = a1ui−1 + · · ·+ alui−l for l ≤ i < n,

d = current discrepancy = un − a1un−1 − · · · − alun−l,
r = previous index, initialized by r := −1,

t = previous linear complexity,

ψ = previous feedback polynomial = 1 − b1T − · · · − btT t, initialized
by ψ := 1,

invariant condition: ui = b1ui−1 + · · ·+ btui−t for t ≤ i < r,

d′ = previous discrepancy = ur − b1ur−1 − · · · − btur−t, initialized by
d′ := 1,

η = new feedback polynomial,

m = new linear complexity.
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Iteration steps: For n = 0, . . . , N − 1:

d := un − a1un−1 − · · · − alun−l
If d 6= 0

η := ϕ− d
d′ · T

n−r · ψ
If l ≤ n

2 [linear complexity increases]
m := n+ 1− l
t := l
l := m
ψ := ϕ
r := n
d′ := d

ϕ := η
Output: λN (u) := l and ϕ

Of course we may output also the complete sequence (λn).
As an example we apply the algorithm to the sequence 001101110. The

steps where d 6= 0, l ≤ n
2 , are tagged by “[!]”.

preconditions of the step actions

n = 0 u0 = 0 l = 0 ϕ = 1 d := u0 = 0
r = −1 d′ = 1 t = ψ = 1

n = 1 u1 = 0 l = 0 ϕ = 1 d := u1 = 0
r = −1 d′ = 1 t = ψ = 1

n = 2 u2 = 1 l = 0 ϕ = 1 d := u2 = 1 [!]
r = −1 d′ = 1 t = ψ = 1 η := 1− T 3

m := 3

n = 3 u3 = 1 l = 3 ϕ = 1− T 3 d := u3 − u0 = 1
r = 2 d′ = 1 t = 0 ψ = 1 η := 1− T − T 3

n = 4 u4 = 0 l = 3 ϕ = 1− T − T 3 d := u4 − u3 − u1 = −1
r = 2 d′ = 1 t = 0 ψ = 1 η := 1− T + T 2 − T 3

n = 5 u5 = 1 l = 3 ϕ = 1− T + T 2 − T 3 d := u5 − u4 + u3 − u2 = 1
r = 2 d′ = 1 t = 0 ψ = 1 η := 1− T + T 2 − 2T 3

From now on the results differ depending on the characteristic of the
base field K. First assume charK 6= 2. Then the procedure continues as
follows:
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preconditions of the step actions

n = 6 u6 = 1 l = 3 d := u6 − u5 + u4 − 2u3 = −2 [!]
ϕ = 1− T + T 2 − 2T 3 η = 1− T + T 2 − 2T 3 + 2T 4

r = 2 d′ = 1 t = 0 ψ = 1 m := 4

n = 7 u7 = 1 l = 4 d := u7 − u6 + u5 − 2u4 + 2u3 = 3
ϕ = 1− T + T 2 − 2T 3 + 2T 4 η = 1 + 1

2T −
1
2T

2 − 1
2T

3 − T 4

r = 6 d′ = −2 t = 3
ψ = 1− T + T 2 − 2T 3

n = 8 u8 = 0 l = 4 d := u8 + 1
2u7 − 1

2u6 − 1
2u5 − u4 = −1

2 [!]
ϕ = 1 + 1

2T −
1
2T

2 − 1
2T

3 − T 4 η := 1 + 1
2T −

3
4T

2 − 1
4T

3 − 5
4T

4 + 1
2T

5

r = 6 d′ = −2 t = 3 m := 5
ψ = 1− T + T 2 − 2T 3

The resulting sequence of linear complexities is

λ0 = 0, λ1 = 0, λ2 = 0, λ3 = 3, λ4 = 3, λ5 = 3, λ6 = 3, λ7 = 4, λ8 = 4, λ9 = 5,

and the generating formula is

ui = −1

2
ui−1 +

3

4
ui−2 +

1

4
ui−3 +

5

4
ui−4 −

1

2
ui−5 for i = 5, . . . , 8.

For charK = 2 the last three iteration steps look differently:

preconditions of the step actions

n = 6 u6 = 1 l = 3 d := u6 − u5 − u4 = 0
ϕ = 1− T − T 2

r = 2 d′ = 1 t = 0 ψ = 1

n = 7 u7 = 1 l = 3 d := u7 − u6 − u5 = 1 [!]
ϕ = 1− T − T 2 η = 1− T − T 2 − T 5

r = 2 d′ = 1 t = 0 ψ = 1 m := 5

n = 8 u8 = 0 l = 5 d := u8 − u7 − u6 − u3 = 1
ϕ = 1− T − T 2 − T 5 η := 1− T 3 − T 5

r = 7 d′ = 1 t = 3 ψ = 1− T − T 2

In this case the sequence of linear complexities is

λ0 = 0, λ1 = 0, λ2 = 0, λ3 = 3, λ4 = 3, λ5 = 3, λ6 = 3, λ7 = 3, λ8 = 5, λ9 = 5,

and the generating formula is

ui = ui−3 + ui−5 for i = 5, . . . , 8.

A Sage program for the char 2 case is in Sage Example 3.1. It uses the
function bmAlg from Appendix C.2.

Figure 3.2 shows the growth of the linear complexities.
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Sage Example 3.1 Applying the BM-algorithm

sage: u = [0,0,1,1,0,1,1,1,0]

sage: res = bmAlg(u)

sage: res

[[0, 0, 0, 3, 3, 3, 3, 3, 5, 5], T^5 + T^3 + 1]

- n
0 1 2 3 4 5 6 7 8 9

6
λn

1

2
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�
��

�
n
2

s s s

s s s s s
s s

q

qs s q

Figure 3.2: The sequence of linear complexities. The red line is for charK 6=
2.

The cost of the BM algorithm is O(N2 logN).
The sequence (λn)n∈N or (for finite output sequences) (λn)0≤n≤N is called

the linearity profile of the sequence u.
Here is the linearity profile of the first 128 bits of the sequence that we

generated by an LFSR in Section 1.10:

(0, 1, 1, 2, 2, 3, 3, 4, 4, 4, 4, 7, 7, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12,

12, 13, 13, 13, 13, 16, 16, 16, 16, . . .),

its graphic representation is in Figure 3.3:
In Section 4.1 we’ll generate a “perfect” pseudorandom sequence. The

linearity profile of its first 128 bits is:

(0, 1, 1, 1, 1, 4, 4, 4, 4, 5, 5, 5, 5, 8, 8, 8, 8, 8, 8, 8, 12, 12, 12, 12,

12, 12, 12, 12, 12, 17, 17, 17, 17, 17, 17, 18, 18, 18, 20, 20, 20, 21, 21,

22, 22, 22, 24, 24, 24, 24, 24, 24, 28, 28, 28, 28, 28, 29, 29, 30, 30, 31,
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Figure 3.3: Linearity profile of an LFSR sequence

31, 32, 32, 32, 34, 34, 34, 34, 36, 36, 36, 37, 37, 38, 38, 39, 39, 40, 40,

41, 41, 41, 41, 41, 41, 46, 46, 46, 46, 46, 46, 47, 47, 48, 48, 49, 49, 50,

50, 50, 52, 52, 52, 53, 53, 54, 54, 54, 54, 54, 54, 54, 54, 61, 61, 61, 61,

61, 61, 61, 61, 61, 63, 63, 63, 64, 64),

graphically illustrated by Figure 3.4.

20 40 60 80 100 120

10

20

30

40

50

60

Figure 3.4: Linearity profile of a perfect pseudorandom sequence

In the second example we see a somewhat irregular oscillation around
the diagonal, as should be expected for a “good” random sequence. The first
example also shows a similar behaviour, but only until the linear complexity
of the sequence is reached.
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3.4 The BM Algorithm as a Cryptanalytic Tool

We revisit the cryptanalysis of an XOR ciphertext in Section 2.3 and explore
how well the BM algorithm performs in this example following the cycle
“construct – predict – adjust” as in Section 2.10. Remember the ciphertext:

10011100 10100100 01010110 10100110 01011101 10101110

01100101 10000000 00111011 10000010 11011001 11010111

00110010 11111110 01010011 10000010 10101100 00010010

11000110 01010101 00001011 11010011 01111011 10110000

10011111 00100100 00001111 01010011 11111101

For use with SageMath we provisionally fix its first 48 bits:

ciphtext = [1,0,0,1,1,1,0,0,1,0,1,0,0,1,0,0,0,1,0,1,0,

1,1,0,1,0,1,0,0,1,1,0,0,1,0,1,1,1,0,1,1,0,1,0,1,1,1,0]

As in Section 2.3 we suspect that the cipher is XOR with a key stream from
an LFSR, but now of unknown length. As before we guess that the text
is in German and might begin with the word “Treffpunkt”. To solve the
cryptogram we need some bits of plaintext, say the first t letters (assumed
in the 8-bit ISO 8859-1 character set), making up 8t bits of the key stream.

Let us tentatively start with two letters of plaintext: Tr, and the corre-
sponding 16 keystream bits

10011100 10100100 (ciphertext)

Tr = 01010100 01110010 (assumed plaintext)

-------- --------

11001000 11010110 (keystream)

After attaching the Sage modules Bitblock.sage, FSR.sage, and
bmAlg.sage from Appendix C (or Part II, Appendix E.1) we use the in-
teractive commands

sage: kbits = [1,1,0,0,1,0,0,0,1,1,0,1,0,1,1,0]

sage: res = bmAlg(kbits)

sage: fbpol = res[1]; fbpol

T^8 + T^7 + T^5 + T^4 + T^3 + T^2 + T + 1

This result tells us that the shortest LFSR that generates our 16 keystream
bits has length 8 and the taps 1, 2, 3, 4, 5, 7, 8 set. Next we initialize this
LFSR in SageMath (note the reverse order of the bits in the initial state):

sage: coeff = [1,1,1,1,1,0,1,1]

sage: reg = LFSR(coeff)

sage: start = [0,0,0,1,0,0,1,1]

sage: reg.setState(start)
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Using this LFSR we predict 32 more, hence altogether 48 tentative keystream
bits:

sage: testkey = reg.nextBits(48); testkey

[1,1,0,0,1,0,0,0,1,1,0,1,0,1,1,0,1,0,0,1,1,1,0,0,

0,0,0,0,0,1,1,0,0,0,0,1,0,1,1,1,0,1,1,1,1,0,0,0]

These tentative key bits yield 48 bits of experimental plaintext, represented
by 6 bytes in decimal notation:

sage: testplain = xor(ciphtext,testkey)

sage: testtext = []

sage: for i in range(6):

block = testplain[8*i:8*i+8]

nr = bbl2int(block)

testtext.append(nr)

sage: testtext

[84, 114, 202, 160, 74, 214]

or, written as ISO 8859-1 characters, “TrE̊tJÖ” (where t represents the
non-breaking space)—a definitive failure.

So let us guess one more letter of plaintext: Tre, and use the correspond-
ing 24 keystream bits

10011100 10100100 01010110 (ciphertext)

Tre = 01010100 01110010 01100101 (assumed plaintext)

-------- -------- --------

11001000 11010110 00110011 (keystream)

As above we apply the BM algorithm interactively and get an LFSR of length
12 with feedback polynomial T 12+T 10+T 9+T 8+T 6+T 5+T 3+T+1, hence
taps 1, 3, 5, 6, 8, 9, 10, 12. Setting up the LFSR and predicting 48 keystream
bits:

sage: coeff = [1,0,1,0,1,1,0,1,1,1,0,1]

sage: reg = LFSR(coeff)

sage: start = [1,0,1,1,0,0,0,1,0,0,1,1]

sage: reg.setState(start)

sage: testkey = reg.nextBits(48); testkey

[1,1,0,0,1,0,0,0,1,1,0,1,0,1,1,0,0,0,1,1,0,0,1,1,

0,1,0,1,0,0,0,0,1,0,0,0,1,0,1,1,0,1,0,1,0,0,0,1]

we again get 48 bits of experimental plaintext, as bytes in decimal notation:
[84, 114, 101, 246, 214, 255]. The translation to ISO 8859-1 yields the
next flop: “TreöÖÿ”.

As next step we use four letters of known plaintext Tref (as in Sec-
tion 2.3) and derive 32 tentative keystream bits:
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10011100 10100100 01010110 10100110 (ciphertext)

Tref = 01010100 01110010 01100101 01100110 (assumed plaintext)

-------- -------- -------- --------

11001000 11010110 00110011 11000000 (keystream)

The BM algorithm yields an LFSR of length 16 with feedback polynomial
T 16 + T 5 + T 3 + T 2 + 1, hence taps 2, 3, 5, 16. It predicts 48 keystream bits:

sage: coeff = [0,1,1,0,1,0,0,0,0,0,0,0,0,0,0,1]

sage: reg = LFSR(coeff)

sage: start = [0,1,1,0,1,0,1,1,0,0,0,1,0,0,1,1]

sage: reg.setState(start)

sage: testkey = reg.nextBits(48); testkey

[1,1,0,0,1,0,0,0,1,1,0,1,0,1,1,0,0,0,1,1,0,0,1,1,

1,1,0,0,0,0,0,0,0,0,1,1,1,0,1,1,1,0,0,0,1,1,1,0]

and the experimental plaintext [84, 114, 101, 102, 102, 32] that looks
promising: “Trefft” (where t here represents simple space character).

Sure of victory we decipher the complete text:

sage: cstream = "10011100101...1111111101"

sage: fullcipher = str2bbl(cstream)

sage: start = [0,1,1,0,1,0,1,1,0,0,0,1,0,0,1,1]

sage: reg.setState(start)

sage: keystream = reg.nextBits(232)

sage: fullplain = xor(fullcipher,keystream)

sage: fulltext = []

sage: for i in range(232/8):

block = fullplain[8*i:8*i+8]

nr = bbl2int(block)

fulltext.append(nr)

sage: fulltext

[84,114,101,102,102,32,109,111,114,103,101,110,32,56,32,85,104,114,

32,66,97,104,110,104,111,102,32,77,90]

T r e f f _ m o r g e n _ 8 _ U h r

_ B a h n h o f _ M Z

“Meeting tomorrow at 8 p. m. train station Mainz”.

Remark

The success of this cryptanalytic approach crucially depends on the LFSR
scenario, or in other words on a linearity profile like that in Figure 3.3 for the
keystream. If the keystream comes from another kind of source we expect
a linearity profile as in Figure 3.4 and shall not be able to make a stable
prediction before the plaintext is exhausted.
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We could also try nonlinear FSRs in an analoguous way as in Ap-
pendix B. Unfortunately most trials—even if the recursive profile stabilizes—
will find a trivial FSR that allows no prediction beyond the end of the already
known partial key sequence, see Appendix B. Then the approach “construct
– predict – adjust” cannot work better than by guessing more keystream
bits in a purely random way.
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3.5 The Distribution of Linear Complexity

The distribution of the linear complexities of bit sequences of a fixed length
can be determined exactly.

A given sequence u = (u0, . . . , uN−1) ∈ FN2 has two possible extensions
ũ = (u0, . . . , uN ) ∈ FN+1

2 by 1 bit. The relation between λ(ũ) and λ(u) is
given by the Massey recursion: Let

δ =

{
0 if the prediction is correct,

1 otherwise.

Here “prediction” refers to the next outpit bit from the LFSR we constructed
for u. Then

λ(ũ) =


λ(u) if δ = 0,

λ(u) if δ = 1 and λ(u) > N
2 ,

N + 1− λ(u) if δ = 1 and λ(u) ≤ N
2 .

In the middle case we need a new LFSR, but of the same length.
From these relations we derive a formula for the number µN (l) of all

sequences of length N that have a given linear complexity l. To this end let

MN (l) := {u ∈ FN2 | λ(u) = l} for N ≥ 1 and l ∈ N,

µN (l) := #MN (l).

The following three statements are immediately clear:

• 0 ≤ µN (l) ≤ 2N ,

• µN (l) = 0 for l > N ,

•
∑N

l=0 µN (l) = 2N .

From these we find explicit rules for the recursion from µN+1(l) to µN (l):

Case 1, 0 ≤ l ≤ N
2 . Every u ∈ FN2 may be continued in two different ways:

uN = 0 or 1. Exactly one of them matches the prediction and leads to
ũ ∈MN+1(l). The other one leads to ũ ∈MN+1(N+1− l). Since there
are no other contributions to MN+1(l) we conclude µN+1(l) = µN (l).

Case 2, l = N+1
2 (may occur only for odd N). The correctly pre-

dicted uN leads to ũ ∈ MN+1(l), however the same is true for the
mistakenly predicted one because of the Massey recursion. Hence
µN+1(l) = 2 · µN (l).

Case 3, l ≥ N
2 +1. Both possible continuations lead to ũ ∈MN+1(l). Addi-

tionally we have one element from each of of the wrong predictions of
all u ∈MN+1−l(l) from case 1. Hence µN+1(l) = 2 ·µN (l) +µN+1−l(l).
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The following lemma summarizes these considerations:

Lemma 14 The frequency µN (l) of bit sequences of length N and linear
complexity l complies with the recursion

µN+1(l) =


µN (l) if 0 ≤ l ≤ N

2 ,

2 · µN (l) if l = N+1
2 ,

2 · µN (l) + µN+1−l(l) if l ≥ N
2 + 1.

From this recursion we get an explicit formula:

Proposition 11 [Rueppel] The frequency µN (l) of bit sequences of length
N and linear complexity l is given by

µN (l) =


1 if l = 0,

22l−1 if 1 ≤ l ≤ N
2 ,

22(N−l) if N+1
2 ≤ l ≤ N,

0 if l > N.

Proof. For n = 1 we have M1(0) = {(0)}, M1(1) = {(1)}, hence
µ1(0) = µ1(1) = 1.

Now we proceed by induction from N to N + 1. The case l = 0 is trivial
since MN+1(0) = {(0, . . . , 0)}, µN+1(0) = 1. As before we distinguish three
cases:

Case 1, 1 ≤ l ≤ N
2 . A forteriori 1 ≤ l ≤ N+1

2 , and

µN+1(l) = µN (l) = 22l−1.

Case 2, l = N+1
2 (N odd). Here µN (l) = 22(N−l), and the exponent is

2N − 2l = 2N −N − 1 = N − 1 = 2l − 2, hence

µN+1(l) = 2 · 22(N−l) = 22l−2+1 = 22l−1.

Case 3, l ≥ N
2 + 1. Again µN (l) = 22(N−l). For l′ = N + 1 − l we have

l′ ≤ N + 1− N
2 − 1 = N

2 , hence µN (l′) = 22l′−1, and

µN+1(l) = 2µN (l) + µN (l′) = 22N−2l+1 + 22N−2l+1

= 22N−2l+2 = 22(N+1−l).

This completes the proof. 3

Table 3.1 gives an impression of the distribution.
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1 2 3 4 5 6 7 8 9 10 N →
0 1 1 1 1 1 1 1 1 1 1
1 1 2 2 2 2 2 2 2 2 2
2 1 4 8 8 8 8 8 8 8
3 1 4 16 32 32 32 32 32
4 1 4 16 64 128 128 128
5 1 4 16 64 256 512
6 1 4 16 64 256
7 1 4 16 64
8 1 4 16
9 1 4
10 1
l
↓

Table 3.1: The distribution of linear complexity

Observations

• Row l is constant from N = 2l on (red numbers), the diagonals, from
N = 2l − 1 on (blue numbers).

• Each column N , from row l = 1 to row l = N , contains the powers
2k, k = 0, . . . , N − 1, each one exactly once—first the odd powers in
ascending order (red), followed by the even powers (blue) in descending
order.

• For every length N there is exactly one sequence of linear complexity
0 and N each: From Section 3.1 we know that these are the sequences
(0, . . . , 0, 0) and (0, . . . , 0, 1).

Figure 3.5 shows the histogram of this distribution for N = 10, Fig-
ure 3.6, for N = 100. The second histogram looks strikingly small. We’ll
clarify this phenomen in the following Section 3.6.
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Figure 3.5: The distribution of linear complexity for bitsequences of length
N = 10

Figure 3.6: The distribution of linear complexity for bitsequences of length
N = 100
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3.6 The Mean Value of the Linear Complexity

From the exact distribution of the linear complexity we also can exactly
determine the mean value and the variance (for fixed length N):

Theorem 3 (Rueppel) Explicit formulas for the mean value

EN =
1

2N
·
∑
u∈FN

2

λ(u)

and the variance VN of the linear complexity of all bit sequences of length N
are:

EN =
N

2
+

2

9
+

ε

18
− N

3 · 2N
− 2

9 · 2N
≈ N

2
,

VN =
86

81
− 14− ε

27
· N

2N
− 82− 2ε

81
· 1

2N
− 9N2 + 12N + 4

81
· 1

22N
≈ 86

81

where ε = 0 for N even, ε = 1 for N odd (ε is the parity of N).

Remarkably the variance is almost independent of N . Thus almost all linear
complexities vary around the mean value in a small strip only that is (almost)
independent of N and becomes relatively more narrow with increasing N as
illustrated by Figures 3.5 and 3.6.

For the proof we have to make a small detour. We’ll encounter sums that
have a nice expression using a well-known trick from calculus.

Lemma 15 For the derivatives of the function

f : R− {1} −→ R, f(x) =
xr+1 − x
x− 1

,

we have the formulas:

f ′(x) =
1

(x− 1)2
·
[
rxr+1 − (r + 1)xr + 1

]
,

f ′′(x) =
1

(x− 1)3
·
[
(r2 − r)xr+1 − 2(r2 − 1)xr + (r2 + r)xr−1 − 2

]
,

x2f ′′(x)+xf ′(x) =
x

(x− 1)3
·
[
r2xr+2 − (2r2 + 2r − 1)xr+1 + (r + 1)2xr − x− 1

]
.

Proof. By direct calculation. 3

Using these formulas for f we explicitly calculate some sums:
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Corollary 1 For all x ∈ R, x 6= 1, we have:

r∑
i=1

xi =
1

x− 1
·
[
xr+1 − x

]
,

r∑
i=1

ixi =
x

(x− 1)2
·
[
rxr+1 − (r + 1)xr + 1

]
,

r∑
i=1

i2xi =
x

(x− 1)3
·
[
r2xr+2 − (2r2 + 2r − 1)xr+1 + (r + 1)2xr − x− 1

]
.

Proof. From the sum formula for the geometric series we conclude

r∑
i=1

xi = x ·
r−1∑
i=0

xi = x · x
r − 1

x− 1
= f(x),

r∑
i=1

ixi = x ·
r∑
i=1

ixi−1 = x · f ′(x),

r∑
i=1

i2xi =
r∑
i=1

i(i− 1)xi +
r∑
i=1

ixi = x2 · f ′′(x) + x · f ′(x).

Therefore the claimed formulas follow from Lemma 15. 3

Corollary 2

r∑
i=1

i 22i−1 =
3r − 1

9
· 22r+1 +

2

9
,

r∑
i=1

i2 22i−1 =
3r2 − 2r

9
· 22r+1 +

5

27
· 22r+1 − 10

27
.

Proof.

r∑
i=1

i22i−1 =
1

2
·
r∑
i=1

i4i =
1

2
· 4
9
·
[
r4r+1 − (r + 1)4r + 1

]
=

2

9
· [3r4r − 4r + 1] ,

r∑
i=1

i222i−1 =
1

2
·
r∑
i=1

i24i =
1

2
· 4

27
·
[
r24r+2 − (2r2 + 2r − 1)4r+1 + (r + 1)24r − 5

]
=

2

27
·
[
(9r2 − 6r + 5) · 4r − 5

]
.

3
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Now the mean value of the linear complexity is

EN =
1

2N
·
∑
u∈FN

2

λ(u) =
1

2N
·
N∑
l=0

l · µN (l),

2NEN =

bN
2
c∑

l=1

l · 22l−1

︸ ︷︷ ︸
S1

+

N∑
l=dN+1

2
e

l · 22(N−l)

︸ ︷︷ ︸
S2

.

First let N be even. Then

S1 =

N
2∑
l=1

l · 22l−1 =
3N − 2

18
· 2N+1 +

2

9
=
N

3
· 2N − 2

9
· 2N +

2

9
,

S2 =
N∑

l=N
2

+1

l · 4N−l k=N−l
=

N
2
−1∑

k=0

(N − k) · 4k = N ·

N
2
−1∑

k=0

4k −

N
2
−1∑

k=0

k · 4k

= N · 4N/2 − 1

3
− 4

9
·
[
(
N

2
− 1) · 4

N
2 − N

2
· 4

N
2
−1 + 1

]
=

N

3
· 2N − N

3
− 4

9
·
[
N

2
· 2N − 2N − N

8
· 2N + 1

]
=

(
N

6
+

4

9

)
· 2N − N

3
− 4

9
.

Taken together this yields

2NEN =
N

2
· 2N +

2

9
· 2N − N

3
− 2

9
,

proving the first formula of Theorem 3 for N even.
For odd N we have

S1 =

N−1
2∑
l=1

l · 22l−1 =
3(N − 1)− 2

18
· 2N +

2

9
=

3N − 5

18
· 2N +

2

9

=
N

6
· 2N − 5

18
· 2N +

2

9
,
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S2 =
N∑

l=N+1
2

l · 4N−l k=N−l
=

N−1
2∑

k=0

(N − k) · 4k = N ·

N−1
2∑

k=0

4k −

N−1
2∑

k=0

k · 4k

= N · 4(N+1)/2 − 1

3
− 4

9
·
[
N − 1

2
· 4

N+1
2 − N + 1

2
· 4

N−1
2 + 1

]
=

N

3
· 2N+1 − N

3
− 4

9
·
[
N − 1

2
· 2N+1 − N + 1

2
· 2N−1 + 1

]
=

2N

3
· 2N − N

3
− 4N

9
· 2N +

4

9
· 2N +

N

9
· 2N +

1

9
· 2N − 4

9

=

(
N

3
+

5

9

)
· 2N − N

3
− 4

9
,

2NEN =
N

2
· 2N +

5

18
· 2N − N

3
− 2

9
,

proving the first formula of Theorem 3 also for odd N .
Now let’s calculate the variance VN . We start with

VN + 2NE2
N =

1

2N
·
∑
u∈FN

2

λ(u)2 =
1

2N
·
N∑
l=0

l2 · µN (l),

=

bN
2
c∑

l=1

l2 · 22l−1

︸ ︷︷ ︸
S3

+
N∑

l=dN+1
2
e

l2 · 4N−l

︸ ︷︷ ︸
S4

.

Again we first treat the case of even N . Then the first sum evaluates as

S3 =

N
2∑
l=1

l2 · 22l−1 =
3 · N2

4 − 2 · N2
9

· 2N+1 +
5

27
· 2N+1 − 10

27

=
N2

6
· 2N − 2N

9
· 2N +

10

27
· 2N − 10

27
.

We decompose the second sum:

S4 =

N∑
l=N

2
+1

l2 · 4N−l k=N−l
=

N
2
−1∑

k=0

(N − k)2 · 4k

= N2 ·

N
2
−1∑

k=0

4k︸ ︷︷ ︸
S4a

−2N ·

N
2
−1∑

k=0

k · 4k︸ ︷︷ ︸
S4b

+

N
2
−1∑

k=0

k2 · 4k︸ ︷︷ ︸
S4c
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and separately evaluate the summands:

S4a = N2 · 4
N
2 − 1

3
=
N2

3
· 2N − N2

3
,

S4b = N · 4

9
·
[
(
N

2
− 1) · 4

N
2 − N

2
· 4

N
2
−1 + 1

]
=

4N

9
·
[
N

2
· 2N − 2N − N

8
· 2N + 1

]
=
N2

6
· 2N − 4N

9
· 2N +

4N

9
,

S4c =
4

27
·
[
(
N

2
− 1)2 · 4

N
2

+1 −
(

2 · (N
2
− 1)2 + 2 · (N

2
− 1)− 1

)
· 4

N
2

+(
N

2
)2 · 4

N
2
−1 − 5

]
=

4

27
·
[
2 · (N

2

4
−N + 1) · 2N −N · 2N + 2 · 2N + 2N +

N2

16
· 2N − 5

]
=

1

12
·N2 · 2N − 4

9
·N · 2N +

20

27
· 2N − 20

27
.

We have to subtract

2N · E2
N =

[
N

2
+

2

9
− N

3 · 2N
− 2

9 · 2N

]2

· 2N

=
N2

4
· 2N +

2N

9
· 2N +

4

81
· 2N − N2

3
− 10N

27
− 8

81

+
N2

9 · 2N
+

4N

27 · 2N
+

4

81 · 2N
.

All this fragments together yield

2N · VN =
86

81
· 2N − 14N

27
− 82

81
− N2

9 · 2N
− 4N

27 · 2N
− 4

81 · 2N
,

proving the second formula of Theorem 3 for even N .
The corresponding calculation for odd N is:

S3 =

N−1
2∑
l=1

l2 · 22l−1 =
N2

12
· 2N − 5N

18
· 2N +

41

108
· 2N − 10

27
,

S4a = N2 ·

N−1
2∑

k=0

4k =
2N2

3
· 2N − N2

3
,

S4b = N ·

N−1
2∑

k=0

k · 4k =
N2

3
· 2N − 5N

9
· 2N +

4N

9
,

S4c =

N−1
2∑

k=0

k2 · 4k =
N2

6
· 2N − 5N

9
· 2N +

41

54
· 2N − 20

27
,
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2N · E2
N =

[
N

2
+

5

18
− N

3 · 2N
− 2

9 · 2N

]2

· 2N

=
N2

4
· 2N +

5N

18
· 2N +

25

324
· 2N − N2

3
− 11N

27
− 10

81

+
N2

9 · 2N
+

4N

27 · 2N
+

4

81 · 2N
.

Putting the fragments together we get

2N · VN = S3 + S4a − 2 · S4b + S4c − 2N · E2
N

=
86

81
· 2N − 13N

27
− 80

81
− 9N2 + 12N + 4

81 · 2N
.

This completes the proof of Theorem 3.



K. Pommerening, Bitstream Ciphers 95

3.7 Linear Complexity and Turing Complexity

A universal Turing machine is able to simulate every other Turing
machine by a suitable program. Let M be one, and let u ∈ Fn2 be a bit
sequence of length n. Then the Turing-Kolmogorov-Chaitin (TKC)
complexity χ(u) is the length of the shortest program of M that outputs
u. There is always one such program of length n: Simply take u as input
sequence and output it unchanged. (Informally: Move the input tape forward
by n steps and stop.)

Remark The function χ: F∗2 −→ N itself is not computable. This means
there is no Turing machine that computes χ. Thus the TKC com-
plexity is of low practical value as a measure of complexity. However
in the recent years it gained some momentum in a more precise form
by the work of Vitanyi and others, see for example:

Ming Li, Paul Vitanyi: An Introduction to Kolmogorov Com-
plexity and Its Applications. Springer, New York 1993, 1997.

A central result of the theory is:

1

2n
·#{u ∈ Fn2 | χ(u) > n · (1− ε)} > 1− 1

2nε−1
.

This result says that almost all sequences have a TKC complexity near the
maximum value, there is no significantly shorter description of a sequence
than to simply write it down. A common interpretation of this result is:
“Almost all sequences are random.” This corresponds quite well with the
intuitive idea of randomness. Nobody would consider a sequence with a
short description such as “alternate one million times between 0 and 1” as
random.

Thomas Beth, Zong-Duo Dai: On the complexity of pseudo-
random sequences – or: If you can describe a sequence it can’t
be random. Eurocrypt 89, 533–543.

This paper contains some small errors that are corrected in [9].
Also “linear complexity” λ measures complexity, using a quite special

machine model: the LFSR. On first sight it suffers from severe deficits. The
sequence “999999 times 0, then a single 1” has a very low TKC complexity—
corresponding to a very low intuitive randomness—, but the linear complex-
ity is 1 million.

Of course we could also try to use nonlinear FSRs for measuring com-
plexity, see for instance the papers:

• Agnes Hui Chan, Richard A. Games: On the quadratic span of peri-
odic sequences. Crypto 89, 82–89.
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• Cees J. A. Jansen, Dick E. Boekee: The shortest feedback shift reg-
ister that can generate a given sequence. Crypto 89, 90–96.

and Appendix B. However, as we saw, a short description by a nonlinear
FSR also implies a small linear complexity.

In any case linear complexity has the advantage of easy explicite com-
putability, and “in general” it characterizes the randomness of a bit sequence
very well. This vague statement admits a surprisingly precise wording (stated
here without proof). To make a fair comparision note that the description
of a sequence by an LFSR needs 2× λ bits: the taps of the register and the
starting value. Therefore we should compare χ and 2 · λ:

Proposition 12 (Beth/Dai)

1

2n
·#{u ∈ Fn2 | (1− ε)2λ(u) ≤ χ(u)} ≥ 1− 8

3 · 2
nε
2−ε

,

1

2n
·#{u ∈ Fn2 | (1− ε)χ(u) ≤ 2λ(u)} ≥ 1− 1

3
· 1

2nε−(1−ε)(1+logn)+1
− 1

3
· 1

2n
.

We interpret this as: “For almost all bit sequences the linear complexity and
the TKC complexity coincide with only a negligeable discrepancy (up to the
obvious factor 2).”

This result confirms that linear complexity—despite its simplicity—is
a useful measure of complexity, and that in general bit sequences of high
linear complexity have no short description in other machine models. Thus
they are cryptographically useful. Every efficient prediction method—in the
sense of cryptanalysis of bitstream ciphers—would provide a short descrip-
tion in the sense of TKC complexity. And conversely: If a sequence has a
short description, then we even can generate it by a short LFSR. Thus we
may summarize: In general a bit sequence of high linear complexity is not
efficiently predictable.

Note that these results

• are “asymptotic” in character. For the “bounded” world we live in they
only yield qualitative statements—a standard phenomen for results on
cryptographic security.

• concern probabilities only. There might be 2r � 2n sequences of small
TKC complexity that however have high linear complexity—relatively
very few, but absolutely quite a lot! In Chapter 4 we’ll construct such
sequences, dependent on secret parameters, and show (up to one of
the usual hardness assumptions for mathematical problems) that they
don’t allow an efficient prediction algorithm, in particular not by a
“short” LFSR.
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3.8 Approaches to Nonlinearity for Feedback Shift
Registers

LFSRs are popular—in particular among electrical engineers and military—
for several reasons:

• very easy implementation,

• extreme efficiency in hardware,

• good qualification as random generators for statistical applications and
simulations,

• unproblematic operation in parallel even in large quantities.

But unfortunately from a cryptological view they are completely insecure
if used naively. To capitalize their positive properties while escaping their
cryptological weakness there are several approaches.

Approach 1, Nonlinear Feedback

Nonlinear feedback follows the scheme from Figure 1.7 with a nonlinear
Boolean function f . There is a general proof that in realistic use cases
NLFSRs are cryptographically useless if used in the direct naive way [6].
We won’t pursue this approach here.

Approach 2, Nonlinear Output Filter

The nonlinear ouput filter (nonlinear feedforward) realizes the scheme from
Figure 3.7. The shift register itself is linear, the Boolean function f , nonlin-
ear.

The nonlinear ouput filter is a special case of a nonlinear combiner.

Approach 3, Nonlinear Combiner

The nonlinear combiner uses a “battery” of n LFSRs—preferably of different
lengths—operated in parallel. The output sequences of the LFSRs serve as
input of a Boolean function f : Fn2 −→ F2, see Figure 3.8. (Sometimes also
called “nonlinear feedforward.”) We’ll see in Section 3.9 how to cryptanalyze
this random generator.

Approach 4, Output Selection/Decimation/Clocking

There are different ways of controlling a battery of n parallel LFSRs by
another LFSR:
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Figure 3.7: Nonlinear ouput filter for an LFSR
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• Output selection takes the current output bit of exactly one of the
LFSRs from the “battery”, depending on the state of the auxiliary
register, and outputs it as the next pseudorandom bit. More generally
we could choose “r from n”.

• For decimation one usually takes n = 1, and outputs the current bit
of the one battery register only if the auxiliary register is in a certain
state, for example its own current output is 1. Of course this kind of
decimation applies to arbitrary bit sequences in an analogous way.

• For clocking we look at the state of the auxiliary register and depend-
ing on it decide which of the battery registers to step in the current
cycle (and by how many positions), leaving the other registers in their
current states (this mimics the control logic of rotor machines in clas-
sical cryptography).

These methods turn out to be special cases of nonlinear combiners if properly
rewritten. Thus approach 3 represents the most important method of making
the best of LFSRs.

The encryption standard A5/1 for mobile communications uses three
LFSRs of lengths 19, 22 und 23, each with maximum possible period, and
slightly differently clocked. It linearly (by simple binary addition) combines
the three output streams. The—even weaker—algorithm A5/2 controls the
clocking by an auxiliary register. Both variants can be broken on a standard
PC in real-time.

The Bluetooth encryption standard E0 uses four LFSRs and combines
them in a nonlinear way. This method is somewhat stronger than A5, but
also too weak for real security [7].

Example: The Geffe generator

The Geffe generator provides a simple example of output selection. Its
description is in Figure 3.9. The output is x, if z = 0, and y, if z = 1.
Expressed by a formula:

u =

{
x, if z = 0,

y, if z = 1

= (1− z)x+ zy = x+ zx+ zy.

This formula shows how to interpret the Geffe generator as a nonlinear
combiner with a Boolean function f: F3

2 −→ F2 of degree 2. For later use we
implement f in Sage sample 3.2.

For a concrete example we first choose three LFSRs of lengths 15, 16,
17, whose periods are 215 − 1 = 32767, 216 − 1 = 65535, and 217 − 1 =
131071. These are pairwise coprime. Combining their outputs (in each step)

https://en.wikipedia.org/wiki/A5/1
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Figure 3.9: Geffe generator

Sage Example 3.2 The Geffe function

sage: geff = BoolF(str2bbl("00011100"),method="ANF")

sage: geff.printTT()

Value at 000 is 0

Value at 001 is 0

Value at 010 is 0

Value at 011 is 1

Value at 100 is 1

Value at 101 is 0

Value at 110 is 1

Value at 111 is 1

as bitblocks of length 3 yields a sequence with a period that has an impressive
length of 281459944554495, about 300 × 1012 (300 European billions, for
Americans this are 300 trillions).

Register 1 recursive formula un = un−1 + un−15, taps 100000000000001,
initial state 011010110001001.

Register 2 recursive formula un = un−2 + un−3 + un−5 + un−16, taps
0110100000000001, initial state 0110101100010011.

Register 3 recursive formula un = un−3+un−17, taps 00100000000000001,
initial state 01101011000100111.
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Sage sample 3.3 defines the three LFSRs. We let each of the LFSRs generate
a sequence of length 100, see Sage sample 3.4.

Sage Example 3.3 Three LFSRs

sage: reg15 = LFSR([1,0,0,0,0,0,0,0,0,0,0,0,0,0,1])

sage: reg15.setState([0,1,1,0,1,0,1,1,0,0,0,1,0,0,1])

sage: print(reg15)

Length: 15 | Taps: 100000000000001 | State: 011010110001001

sage: reg16 = LFSR([0,1,1,0,1,0,0,0,0,0,0,0,0,0,0,1])

sage: reg16.setState([0,1,1,0,1,0,1,1,0,0,0,1,0,0,1,1])

sage: print(reg16)

Length: 16 | Taps: 0110100000000001 | State: 0110101100010011

sage: reg17 = LFSR([0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1])

sage: reg17.setState([0,1,1,0,1,0,1,1,0,0,0,1,0,0,1,1,1])

sage: print(reg17)

Length: 17 | Taps: 00100000000000001 | State: 01101011000100111

Sage Example 3.4 Three LFSR sequences

sage: nofBits = 100

sage: outlist15 = reg15.nextBits(nofBits)

sage: print(outlist15)

[1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0,

0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1,

0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0,

1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1,

0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1]

sage: outlist16 = reg16.nextBits(nofBits)

sage: print(outlist16)

[1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1,

0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1,

1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0,

1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1,

1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1]

sage: outlist17 = reg17.nextBits(nofBits)

sage: print(outlist17)

[1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1,

0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0,

1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0,

0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1,

0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0]
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The three sequences of length 100 are:

10010 00110 10110 11100 00100 11011 01000 00111 01101 10000

00101 10110 11111 11001 00100 10101 01110 00111 00110 01011

11001 00011 01011 00011 00111 10000 00001 11011 10001 11000

00100 01110 11110 10010 01111 00101 10111 10010 11100 10001

11100 10001 10101 10001 00000 01100 11111 10110 11000 00111

00001 10000 00001 11111 10010 01001 01010 10110 01011 00110

In Sage sample 3.5 the Geffe function combines them to the output se-
quence

11010 00111 00011 01101 00100 10011 00001 10011 10101 10000

00100 00110 11110 10010 00110 10101 00110 10011 01100 01001

Sage Example 3.5 The combined sequence

sage: outlist = []

sage: for i in range(0,nofBits):

....: x = [outlist15[i],outlist16[i],outlist17[i]]

....: outlist.append(geff.valueAt(x))

....:

sage: print(outlist)

[1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1,

0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1,

1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0,

1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1,

0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1]
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3.9 Correlation Attacks—the Achilles Heels of
Combiners

Let f : Fn2 −→ F2 be the combining function of a nonlinear combiner. The
number

Kf := #{x = (x1, . . . , xn) ∈ Fn2 | f(x) = x1}

counts the coincidences of the value of the function with its first argument.
If it is > 2n−1, then the probability of a coincidence,

p =
1

2n
·Kf >

1

2
,

is above average, and the combined output sequence “correlates” with the
output of the first LFSR more then expected by random. If p < 1

2 , then the
correlation deviates from the expected value in the other direction.

The cryptanalyst can exploit this effect in an attack with known plain-
text. We suppose that she knows the “hardware”, that is the taps of the
registers, and also the combining function f . She seeks the initial states of
all the LFSRs. We assume she knows the bits k0, . . . , kr−1 of the key stream.
For each of the 2l1 initial states of the first LFSR she generates the sequence
u0, . . . , ur−1, and counts the coincidences. The expected values are

1

r
·#{i | ui = ki} ≈

{
p for the correct initial state of LFSR 1,
1
2 otherwise.

If r is large enough, she can determine the true initial state of LFSR 1 (with
high probability) for a cost of ∼ 2l1 . She continues with the other registers,
and finally identifies the complete key with a cost of ∼ 2l1 + · · ·+ 2ln . Note
that the cost is exponential, but significantly lower than the cost ∼ 2l1 · · · 2ln
of the naive exhaustion of the key space.

In the language of linear cryptanalysis from Part II she made use of the
linear relation

f(x1, . . . , xn)
p
≈ x1

for f . Clearly she could use any linear relation as well to reduce the com-
plexity of key search. (A more in-depth analysis of the situation leads to the
notion of correlation immunity that is related with the linear potential.)

Correlations from the Geffe generator

From the truth table 3.2 we get the correlations produced by the Geffe
generator. Thus the probabilities of coincidences are

p =


3
4 for register 1 (x),
3
4 for register 2 (y),
1
2 for register 3 (z = control bit).
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x 0 0 0 0 1 1 1 1
y 0 1 0 1 0 1 0 1
z 0 0 1 1 0 0 1 1

f(x, y, z) 0 0 0 1 1 1 0 1

Table 3.2: Truth table of the Geffe function

linear form 0 z y y + z x x+ z x+ y x+ y + z
representation 000 001 010 011 100 101 110 111

potential λ 0 0 1/4 1/4 1/4 1/4 0 0
probability p 1/2 1/2 3/4 1/4 3/4 3/4 1/2 1/2

Table 3.3: Coincidence probabilities of the Geffe function

A correlation attack easily detects the initial states of registers 1 and 2—the
battery registers—given only a short piece of an output sequence. Afterwards
exhaustion finds the initial state of register 3, the control register.

We exploit this weakness of the Geffe generator for an attack in Sage
sample 3.6 that continues Sage sample 3.2. Since we defined the linear pro-
file for objects of the class BoolMap only, we first of all have to interpret the
function geff as a Boolean map, that is a one-element list of Boolean func-
tions. Then the linear profile is represented by a matrix of 2 columns and 8
rows. The first column [64, 0, 0, 0, 0, 0, 0, 0] shows the coincidences
with the linear form 0 in the range. So it contains no useful information, ex-
cept the denominator 64 that applies to all entries. The second row [0, 0,

16, 16, 16, 16, 0, 0] yields the list of coincidence probabilities p (after
dividing it by 64) in Table 3.3, using the formula

p =
1

2
· (±
√
λ+ 1).

If λ = 0, then p = 1/2. If λ = 1/4, then p = 1/4 or 3/4. For deciding between
these two values for p we use Table 3.2.

Sage Example 3.6 Linear profile of the Geffe function

sage: g = BoolMap([geff])

sage: linProf = g.linProf(); linProf

[[64,0], [0,0], [0,16], [0,16], [0,16], [0,16], [0,0], [0,0]]

In Sage sample 3.7 we apply this finding to the 100 element sequence from
Sage sample 3.5. The function coinc from the Sage module Bitblock.sage

in Appendix E.1 of Part II counts the coincidences. For the first register we
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find 73 coincidences, for the second one 76, for the third one only 41. This
confirms the values 75, 75, 50 predicted by our theory.

Sage Example 3.7 Coincidences for the Geffe generator

sage: coinc(outlist15,outlist)

73

sage: coinc(outlist16,outlist)

76

sage: coinc(outlist17,outlist)

41

Cryptanalysis of the Geffe Generator

These results promise an effortless analysis of our sample sequence. For an
assessment of the success probability we consider a bitblock b ∈ Fr2 and first
ask how large is the probability that a random bitblock u ∈ Fr2 coincides with
b at exactly t positions. For an answer we have to look at the symmetric
binomial distribution (where p = 1

2 is the probability of coincidence at a
single position): The probability of exactly t coincidences is

Br, 1
2
(t) =

(
r
t

)
2r
.

Hence the cumulated probability of up to T coincidences is

T∑
t=0

Br, 1
2
(t) =

1

2r
·
T∑
t=0

(
r

t

)
.

If r is not too large, then we may explicitly calculate this value for a given
bound T . If on the other hand r is not too small, then we approximate
the value using the normal distribution. The mean value of the number of
coincidences is r/2, the variance, r/4, and the standard deviation,

√
r/2.

In any case for r = 100 the probability of finding at most (say) 65 co-
incidences is 0.999, the probability of surpassing this number is 1 ‰. For
the initial state of register 1 we have to try 215 = 32786 possibilities (gener-
ously including the zero state 0 ∈ F15

2 into the count). So we expect about
33 oversteppings with at least 66 coincidences. One of these should occur
for the true initial state of register 1 that we expect to produce about 75
coincidences. Maybe it even produces the maximum number of coincidences.

Sage sample 3.8 shows that this really happens. However the max-
imum number of coincidences, 73, occurs twice in the histogram. The
first occurrence happens at index 13705, corresponding to the initial state
011010110001001, the correct solution. The second occurrence, at index
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Sage Example 3.8 Analysis of the Geffe generator—register 1

sage: clist = []

sage: histogr = [0] * (nofBits + 1)

sage: for i in range(0,2**15):

....: start = int2bbl(i,15)

....: reg15.setState(start)

....: testlist = reg15.nextBits(nofBits)

....: c = coinc(outlist,testlist)

....: histogr[c] += 1

....: clist.append(c)

....:

sage: print(histogr)

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 12, 12, 37, 78, 116, 216,

329, 472, 722, 1003, 1369, 1746, 1976, 2266, 2472, 2531, 2600,

2483, 2355, 2149, 1836, 1574, 1218, 928, 726, 521, 343, 228, 164,

102, 60, 47, 36, 13, 8, 7, 4, 2, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

sage: mm = max(clist)

sage: ix = clist.index(mm)

sage: block = int2bbl(ix,15)

sage: print("Maximum =", mm, "at index", ix, ", start value", block)

Maximum = 73 at index 13705 , start value\

[0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1]

Sage Example 3.9 Analysis of the Geffe generator—continued

sage: ix = clist.index(mm,13706); ix

31115

sage: print(int2bbl(ix,15))

[1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1]

31115, see Sage sample 3.9, yields the false solution 111100110001011 that
eventually leads to a contradiction.

Sage sample 3.10 shows the analogous analysis of register 2. Here the
maximum of coincidences, 76, is unique, occurs at index 27411 corresponding
to the initial state 0110101100010011, and provides the correct solution.

To complete the analysis we must yet determine the initial state of reg-
ister 3, the control register. The obvious idea is to exhaust the 217 different
possibilities. There is a shortcut since we already know 51 of the first 100
bits of the control register: At a position where the values of registers 1 and
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Sage Example 3.10 Analysis of the Geffe generator—register 2

sage: clist = []

sage: histogr = [0] * (nofBits + 1)

sage: for i in range(0,2**16):

....: start = int2bbl(i,16)

....: reg16.setState(start)

....: testlist = reg16.nextBits(nofBits)

....: c = coinc(outlist,testlist)

....: histogr[c] += 1

....: clist.append(c)

....:

sage: print(histogr)

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 3, 4, 8, 17, 25, 51, 92, 171,

309, 477, 750, 1014, 1423, 1977, 2578, 3174, 3721, 4452, 4821,

5061, 5215, 5074, 4882, 4344, 3797, 3228, 2602, 1974, 1419,

1054, 669, 434, 306, 174, 99, 62, 38, 19, 10, 3, 0, 1, 0, 0,

0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0]

sage: mm = max(clist)

sage: ix = clist.index(mm)

sage: block = int2bbl(ix,16)

sage: print("Maximum =", mm, "at index", ix, ", start value", block)

Maximum = 76 at index 27411 , start value\

[0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1]

2 differ, the control bit is necessarily 0 if the final output coincides with reg-
ister 1, and 1 otherwise. Only at positions where registers 1 and 2 coincide
the corresponding bit of register 3 is undetermined.

register 1: 10010001101011011100001001101101000001110110110000

register 2: 11001000110101100011001111000000001110111000111000

register 3: -1-00--0-1101-110001---00-1-00-1--1101--110---0---

bitsequence: 11010001110001101101001001001100001100111010110000

... 00101101101111111001001001010101110001110011001011

... 00100011101111010010011110010110111100101110010001

... ----110-------1-1-11-0-100----01--01-1-001-1-00-1-

... 00100001101111010010001101010100110100110110001001

In particular we already know 11 of the 17 initial bits, and are left with only
26 = 64 possibilities to try.
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u17 = u14 + u0 0 = 1 + u0 u0 = 1
u19 = u16 + u2 1 = 0 + u2 u2 = 1
u20 = u17 + u3 u20 = 0 + 0 u20 = 0
u22 = u19 + u5 u22 = u5 + 1 u5 = u22 + 1
u23 = u20 + u6 0 = u20 + u6 u6 = u20 u6 = 0
u25 = u22 + u8 u25 = u22 + u8 u8 = u22 + u25 u8 = u22

u27 = u24 + u10 u27 = 0 + 1 u27 = 1
u28 = u25 + u11 0 = u25 + 0 u25 = 0
u30 = u27 + u13 u30 = u27 + u13 u13 = u27 + u30 u13 = u30 + 1
u33 = u30 + u16 u33 = u30 + 0 u30 = u33 u30 = 1
u36 = u33 + u19 0 = u33 + 1 u33 = 1
u39 = u36 + u22 u39 = 0 + u22 u22 = u39

u42 = u39 + u25 0 = u39 + u25 u39 = u25 u39 = 0

Table 3.4: Determination of the control register’s initial state

But even this may be further simplified, since the known and the un-
known bits obey linear relations of the type un = un−3+un−17. The unknown
bits of the initial state are u0, u2, u5, u6, u8, u13. The solution follows the
columns of Table 3.4, that immediately give

u0 = 1, u2 = 1, u6 = 0.

The remaining solutions are

u8 = u22 = u39 = 0, u5 = u22 + 1 = u8 + 1 = 1, u13 = u30 + 1 = 0.

Hence the initial state of the control register is 01101011000100111, and we
know this is the correct solution. We don’t need to bother with the second
possible solution for register 1 since we already found a constellation that
correctly reproduces the sequence.
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3.10 Design Criteria for Nonlinear Combiners

From the forgoing discussion we derive design criteria for nonlinear combin-
ers:

• The battery registers should be as long as possible.

• The combining function f should have a low linear potential.

How long should the battery registers be? There are some algorithms for
“fast” correlation attacks using the Walsh transformation, in particular
against sparse linear feedback functions (that use only a small number of
taps) [4]. These don’t reduce the complexity class of the attack (“exponential
in the length of the shortest register”) but reduce the cost by a significant
factor. So they are able to attack registers with up to 100 coefficients 1 in
the feedback function. As a consequence

• The single LFSRs should have a length of at least 200 bits, and use
about 100 taps each.

To assess the number n of LFSRs we bear in mind that the combining
function should be “correlation immune”, in particular have a low linear
potential. A well-chosen Boolean function of 16 variables should suffice, but
there are no known recommendations in the literature.

Rueppel found an elegant way out to make the correlation attack break
down: Use a “time-dependent” combining function, that is a family (ft)t∈N.
The bit ut of the key stream is calculated by the function ft. We won’t
analyze this approach here.

Observing that the correlation attack needs knowledge of the taps, the
security could be somewhat better if the taps are secret. Then the attacker
has to perform additional exhaustions that multiply the complexity by fac-
tors such as 2l1 for the first LFSR alone. This scenario allows choosing LFSRs
of somewhat smaller lengths. But bear in mind that for a hardware imple-
mentation the taps are parts of the algorithm, not of the key, that is they
are public parameters in the sense of Figure 2.1.

Efficiency

LFSRs and nonlinear combiners allow efficient realizations by special hard-
ware that produces one bit per clock cycle. This rate can be enlarged by
parallelization. From this point of view estimating the cost of execution on
a usual PC processor is somewhat inadequate. Splitting each of the ≥ 200
bit registers into 4 parts of about 64 bits shifting a single register requires at
least 4 clock cycles, summing up to 64 clock cycles for 16 registers. Add some
clock cycles for the combining function. Thus one single bit would take about
100 clock cycles. A 2-GHz processor, even with optimized implementation,
would produce at most 2 · 109/100 = 20 million bits per second.
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As a summary we note:

Using LFSRs and nonlinear combining functions we can build use-
ful and fast random generators, especially in hardware.

Unfortunately there is no satisfying theory for the cryptologic security
of this type of random generators, even less a mathematical proof. Security
is assessed by plausible criteria that—as for bitblock ciphers—are related to
the nonlinearity of Boolean functions.



Chapter 4

Perfect Pseudorandom
Generators

As we saw the essential cryptologic criterion for pseudorandom generators
is unpredictability. In the 1980s cryptographers, guided by an analogy with
asymmetric cryptography, found a way of modelling this property in terms of
complexity theory: Prediction should boil down to a known “hard” algorith-
mic problem such as factoring integers or discrete logarithm. This idea estab-
lished a new quality standard for pseudorandom generators, much stronger
than statistical tests, but eventually building on unproven mathematical hy-
potheses. Thus the situation with respect to the security of pseudorandom
generators is comparable to asymmetric encryption.

As an interesting twist it soon turned out that in a certain sense unpre-
dictability is a universal property: For an unpredictable sequence there is no
efficient algorithm at all that distinguishes it from a true random sequence,
a seemingly much stronger requirement. See Theorem 4 (Yao’s theorem).
This universality justifies the denomination “perfect” for the corresponding
pseudorandom generators. In particular there is no efficient statistical test
that is able to distinguish the output of a perfect pseudorandom genera-
tor from a true random sequence. Thus, on the theoretical side, we have
a very appropriate model for pseudorandom generators that are absolutely
strong from a statistical viewpoint, and invulnerable from a cryptological
viewpoint. In other words:

Perfect pseudorandom generators are cryptographically secure
and statistically undistinguishable from true random sources—
and are fit for any efficient application that needs random input.

Presumably perfect pseudorandom generators exist, but there is
no complete mathematical proof ot their existence.

The first concrete approaches to the construction of perfect pseudoran-
dom generators yielded algorithms that were too slow for most practical uses

111
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(given the then current CPUs), the best known being the BBS generator (for
Lenore Blum, Manuel Blum, Michael Shub). But modified approaches soon
provided pseudorandom generators that are passably fast und nevertheless
(presumably) cryptographically secure.

Looking back at Section 3.7 we might stumble over the apparent contra-
diction with the general “rule”: “If a sequence has a short description (as the
BBS sequence obviously has!), then it can’t be random and even has a short
description by a linear feedback shift register.” In particular this would yield
an efficient algorithm that distinguishes it from a random sequence. However
as already stated in 3.7 this rule leaves a small loophole—small in relative
terms but maybe wide enough in absolute terms. The notion of pseudoran-
domness tries to slip through this loophole, see Figure 4.1: Pseudorandom
sequences

• are not random because they have a short description,

• can’t nevertheless be efficiently predicted, or distinguished from ran-
dom sequences.

For some more theoretical framework see the book [1].

Figure 4.1: “Pseudorandom” as intersection of “Short description” and
“Unpredictable”—the size of the areas is by far not to scale.

In the literature we find many tests for randomness:

• Marsaglia’s diehard test suite, a collection of statistical tests that
check the fitness of a sequence for statistical, but not cryptological
applications,

• Golomb’s postulates, see Section 1.10 above,

https://en.wikipedia.org/wiki/Diehard_tests
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• the linear complexity profile, see Chapter 3 above,

• Maurer’s universal test, see [5, 5.4.5],

• the LIL test, see [9].

By definition a perfect pseudorandom generator will pass all these tests.
However in practice, since perfectness is an “asymptotic property” only,
applying these tests can’t harm.
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4.1 The BBS Generator

As with the RSA cipher we consider an integer module n that is a product of
two large prime numbers. For the BBS generator we choose a Blum integer,
preferably—but not necessarily—a special or even superspecial one.

Choosing n superspecial ensures that the sequence of states has
a huge period. See the discussion in the Appendices 12–14 of
Part III. However the following security proof doesn’t depend on
this property.

The BBS generator works in the following way that easily fits into the
general framework of Figure 2.1: As a first step choose two large random
Blum primes p and q, and form their product n = pq. The factors p and q
are internal (secret) parameters, the product n may be treated as internal
or external (public) parameter. As a second step choose a random integer,
the “seed”, s with 1 ≤ s ≤ n− 1, and coprime with n.

The coprimality is efficiently tested with the Euclidean algo-
rithm. If we catch an s not coprime with n, we have factorized
n by hazard. This might happen, but is extremely unlikely, and
can easily be captured at initialization time.

Then we proceed with generating a pseudorandom sequence: Take x0 =
s ∈ Mn as initial state, and form the sequence of inner states of the pseu-
dorandom generator: xi = x2

i−1 mod n for i = 1, 2, 3, . . . In each step output
the last significant bit of the binary representation, that is ui = xi mod 2
for i = 1, 2, 3 . . ., or in other words, the parity of xi.

If xi <
√
n, then x2

i mod n = x2
i , the integer square, so x2

i+1 has
the same parity as xi. In order to avoid a constant segment at
the beginning of the output, often the boundary areas s <

√
n,

as well as s > n−
√
n, are excluded. However if we really choose

s as a true random value, the probability for s falling into these
boundary areas is extremely low. But to be on the safe side we
may require

√
n ≤ s ≤ n−

√
n.

If the seed s happens to be a quadratic non-residue, the sequence
of inner states (the BBS sequence) has a preperiod of length 1.

Example

Of course an example with small numbers is practically irrelevant, but it
illustrates the algorithm: Take p = 7, q = 11, n = 77, s = 53. Then s2 =
2809, hence x1 = 37, and u1 = 1 since x1 is odd. The following table shows
the beginning of the sequence of states:
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i 1 2 3 4 . . .

xi 37 60 58 53 . . .
ui 1 0 0 1 . . .

Since x4 = 53 = s the seed s happens to be a quadratic residue, and the
BBS sequence has period 4. Therefore the output “pseudorandom” sequence
(ui) a forteriori has period 4.

Treating the primes p and q as secret is essential for the security of the
BBS generator. They serve for forming n only, afterwards they may even be
destroyed—in contrast with RSA there is no further use for them (except
when you use SageMath, see below). Likewise all the non-output bits of the
inner states xi must be secret. Moreover there is no reason to reveal the
product n = pq even if the following security proof doesn’t depend on the
nondisclosure of n.

SageMath has an implementation of the BBS generator via the methods
random blum prime() and blum blum shub(). The code sample 4.1 shows
how to use them.

Sage Example 4.1 Generating a pseudorandom bit sequence by the BBS
generator

sage: from sage.crypto.util import random_blum_prime

sage: from sage.crypto.stream import blum_blum_shub

sage: p = random_blum_prime(2^511, 2^512)

sage: q = random_blum_prime(2^511, 2^512)

sage: s = 11.powermod(248,p*q) # a (not so random) example

sage: prseq = blum_blum_shub(1024,s,p,q)

Table 4.1 shows a Blum integer with 309 decimal places (or 1024 bits)
that was an intermediate result of this program. Considering the progress
of factoring algorithms we better should use Blum integers of at least 2048
bits.

4506 15286 74466 50249 26225 14044 26383 22616 74480 10227

69340 10344 80414 96318 08671 21639 63710 30387 17602 25696

53909 02080 09976 45161 76261 91025 59480 62175 49124 86394

40823 70452 14981 62658 94574 67753 74945 83135 16199 61782

07594 51105 16833 44889 30109 66289 10763 64987 90309 41852

27681 66632 02722 32988 57145 85172 07427 89442 30004 31819

83739 34537

Table 4.1: A 1024 bit Blum integer

Table 4.2 shows the resulting bitsequence. Be warned that the SageMath
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output is of type StringMonoidElement. For further use in a stream cipher
it might be necessary to convert it to a bitblock or bitstring.

1000 1111 1001 0101 1001 0111 0011 0100 0010 1000 1100 0001

1010 0101 1110 1001 1010 1001 0110 0010 1010 1010 0111 0111

1000 1010 1000 1101 1111 1101 1010 1100 1100 0001 0101 1001

0111 1111 0001 0100 1010 0000 1100 1010 0101 1000 1110 0000

0001 1011 0100 0100 1010 0010 1010 1010 0110 1001 0111 1100

1011 0010 0011 0100 1101 1001 0101 0100 0111 0100 0010 0111

1101 1000 0010 0111 1000 0110 1110 0111 1110 1101 0110 1000

0001 0011 1111 0011 0011 0101 0001 0001 1010 0110 0101 1000

1010 1100 1011 0011 1111 1000 1001 0100 0001 1110 1111 1111

1001 0000 0010 0000 0111 0111 1001 0001 1111 0100 1010 0011

1000 0111 1100 0000 1011 0110 1011 1010 0111 0100 1110 1001

1001 0101 0011 1000 0010 0011 1010 1001 1100 0010 1111 1001

1010 1001 0110 0011 1001 0100 1000 1111 1001 1001 0010 1000

0111 0110 1101 0011 0110 0010 1110 0010 0000 1100 1011 1111

0011 0010 0110 1110 1000 1000 1110 1110 0011 0010 0100 0100

1101 1000 0011 0010 1000 1110 1000 1101 1010 0001 0011 1100

1001 0110 1010 0000 0000 0000 1011 0111 1010 0010 1100 1010

0100 0010 0010 0010 0010 1011 0100 0000 1100 1010 1101 0000

1101 1111 0011 0001 1000 0000 0111 0111 1110 1111 0011 1011

1111 0001 0010 1000 0110 1011 0111 0011 1111 1011 0101 0100

0110 1111 1111 0011 1011 0000 1010 0010 1100 0010 1001 0101

1110 1001 1001 1001

Table 4.2: 1024 “perfect” pseudorandom bits. Note that generating 1024
pseudorandom bits from a 1024-bit random integer isn’t worth the effort.
However we could continue this sequence much further and generate, say,
230 pseudorandom bits.

Figure 4.2 gives an optical impression of the randomness of this sequence,
and Figure 4.3, of its linearity profile.
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Figure 4.2: Visualization of a “perfect” pseudorandom sequence

Figure 4.3: Linearity profile of a “perfect” pseudorandom sequence
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4.2 The BBS Generator and Quadratic Residuos-
ity

Given a seed s ∈ M+
n the BBS generator outputs a bit sequence

(b1(s), . . . , br(s))—by the way the same sequence as the seed s′ =
√
s2 mod n

that is a quadratic residue. A probabilistic circuit (see Appendix B of
Part III)

C : Fr2 × Ω −→ F2

has an ε-advantage for BBS extrapolation with respect to n if

P ({(s, ω) ∈Mn × Ω | C(b1(s), . . . , br(s), ω) = lsb(
√
s2 mod n)}) ≥ 1

2
+ ε.

In other words: The algorithm implemented by C “predicts” (or extrapo-
lates) the bit preceding a given subsequence with ε-advantage.

If we seed the generator with a quadratic residue s, then C out-
puts the parity of s (with ε-advantage). If fed with a later seg-
ment (bi+1, . . . , bi+r) (with i ≥ 1) of a BBS output C extrapo-
lates the preceding bit bi.

In the following lemmas and proposition let τt be the maximum expense
of the operation xy mod n where n is a t-bit integer and 0 ≤ x, y < n. We
know that τt = O(t2) (and even know an exact upper bound for the circuit
size).

Lemma 16 Let n be a Blum integer < 2t. Assume the probabilistic cir-
cuit C : Fr2 × Ω −→ F2 has an ε-advantage for BBS extrapolation with re-
spect to n. Then there is a probabilistic circuit C ′ : Ft2 × Ω −→ F2 of size
#C ′ ≤ #C + rτt + 4 that has an ε-advantage for deciding quadratic residu-
osity for x ∈M+

n .

Proof. First we compute the BBS sequence (b1, . . . , br) for the seed s ∈M+
n at

an expense of rτt. Then C computes the bit lsb(
√
s2 mod n) with advantage

ε. Therefore setting

C ′(s, ω) :=

{
1 if C(b1, . . . , br, ω) = lsb(s),

0 otherwise,

we decide the quadratic residuosity of s with ε-advantage by the corollary
of Proposition 24 in Appendix A.11 of Part III. The additional costs for
comparing bits are at most 4 additional nodes in the circuit. 3

Now let C: Ft2 ×Ω −→ F2 be an arbitrary probabilistic circuit. Then for
m ≥ 1 we define the m-fold circuit by

C(m) : Ft2 × Ωm −→ F2,
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C(m)(s, ω1, . . . , ωm) :=

{
1 if #{i | C(s, ωi) = 1} ≥ m

2 ,

0 otherwise.

So this circuit represents the “majority decision”. Its implementation con-
sists of m parallel copies of C, one integer addition of m bits, and one
comparision of d2logme-bit integers, hence by Appendix B.3 of Part III its
size is

#C(m) ≤ r ·#C + 2m2.

Lemma 17 (Amplification of advantage) Let A ⊆ Ft2, and let C be a circuit
that computes the Boolean function f : A −→ F2 with an ε-advantage. Let
m = 2h+ 1 be odd.

Then C(m) computes the function f with an error probability of

≤ (1− 4ε2)h

2
.

For each δ > 0 there is an

m ≤ 3 +
1

2δε2

such that C(m) computes the function f with an error probability δ.

Proof. The probability that C gives a correct answer is

p := P ({(s, ω) ∈ A× Ω | C(s, ω) = f(s)}) ≥ 1

2
+ ε.

Since enlarging ε tightens the assertion we may assume that p = 1
2 + ε.

The complementary value q := 1 − p = 1
2 − ε equals the probability that

C gives a wrong answer. Hence the probability of getting exactly k correct
answers from m independent invocations of C is

(
m
k

)
pkqm−k. Thus the error

probability we search is

P ({(s, ω1, . . . , ωm) ∈ A× Ωm | C(m)(s, ω1, . . . , ωm) = f(s)})

=

h∑
k=0

(
m

k

)
(
1

2
+ ε)k(

1

2
− ε)m−k

= (
1

2
+ ε)h(

1

2
− ε)h+1 ·

h∑
k=0

(
m

k

)
(
1

2
+ ε)k−h(

1

2
− ε)h−k

= (
1

4
− ε2)h · (1

2
− ε) ·

h∑
k=0

(
m

k

)( 1
2 − ε
1
2 + ε

)h−k
︸ ︷︷ ︸

≤1︸ ︷︷ ︸
≤2m−1=4h

≤ (1− 4ε2)h
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which proves the first statement.
For an error probability δ a sufficient condition is:

(1− 4ε2)h ≤ 2δ,

h · ln(1− 4ε2) ≤ ln 2 + ln δ,

h ≥ ln 2 + ln δ

ln(1− 4ε2)
.

Therefore we choose

(1) h :=

⌈
ln 2 + ln δ

ln(1− 4ε2)

⌉
.

Then the error probability of C(m) is at most δ, and

h ≤ 1 +
ln 2 + ln δ

ln(1− 4ε2)
= 1 +

ln 1
δ − ln 2

ln 1
1−4ε2

≤ 1 +
1
δ − 1− ln 2

4ε2
≤ 1 +

1

4δε2
,

proving the second statement. 3

By the way the size of C(m) is

#C(m) ≤
[
3 +

1

2δε2

]
·#C + 2 ·

[
3 +

1

2δε2

]2

.

Merging the two lemmas we get:

Proposition 13 Let n be a Blum integer < 2t. Assume the probabilis-
tic circuit C : Fr2 × Ω −→ F2 has an ε-advantage for BBS extrapolation
with respect to n. Then for each δ > 0 there is a probabilistic circuit
C ′ : Ft2 × Ω′ −→ F2 that decides quadratic residuosity in M+

n with error prob-
ability δ and has size

#C ′ ≤
[
3 +

1

2δε2

]
· [#C + rτt + 4] + 2 ·

[
3 +

1

2δε2

]2

.

Note that the size of C ′ is polynomial in r, #C, 1
δ , 1

ε , and t, and we even
could make this polynomial explicit. Thus:

From an efficient probabilistic BBS extrapolation algorithm for
the module n with ε-advantage we can construct an efficient prob-
abilistic decision algorithm for quadratic residuosity for n with
arbitrary small error probability.
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This complexity bound becomes even more perspicuous, when we specify
dependencies from the input complexity, measured by the bit size t. Thus
we choose

• r ≤ f(t) with a polynomial f ∈ Q[T ] (that is we generate only “poly-
nomially many” pseudorandom bits),

• 1
δ ≤ g(t) (or δ ≥ 1/g(t)) with a polynomial g ∈ Q[T ] (that is we don’t
choose δ “too small”, not like an ambitious δ < 1/2t),

• 1
ε ≤ h(t) (or ε ≥ 1/h(t)) with a polynomial h ∈ Q[T ] (that is ε is
reasonably small, not only like a modest ε ≈ 1/ log(t)).

Then

#C ′ ≤
[
3 +

1

2
g(t)h(t)2

]
· [#C + f(t) τt + 4] + 2 ·

[
3 +

1

2
g(t)h(t)2

]2

≤ Φ(t) ·#C + Ψ(t)

with polynomials Φ, Ψ ∈ Q[t]. In the following section we’ll see how this
statement makes BBS a “perfect” pseudorandom generator.

The hypothetical decision algorithm for s ∈ M+
n from Proposition 13

runs like this (assuming that n is a public parameter):

1. Construct the BBS-sequence b1(s), . . . , br(s) (using the public param-
eter n).

2. Choose the desired error probability δ.

3. Choose m = 2h+ 1 with h as in Equation 1.

4. Choose random elements ω1, . . . , ωm ∈ Ω and determine bi =
C(s, ωi) ∈ F2 for i = 1, . . . , r.

5. Count z = #{i | bi = lsb(s)}.

6. If z ≥ m/2 output 1 (“quadratic residue”), else output 0 (“quadratic
nonresidue”).
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4.3 Perfect Pseudorandom Generators

A sound definition of the concept “pseudorandom generator” is overdue.
Informally we define it as an efficient algorithm that takes a “short” bitstring
s ∈ Fn2 and converts it into a “long” bitstring s ∈ Fr2, compare Appendix A.2.

The terminology of complexity theory as in Appendix B of Part III
allows us to give a mathematically exact (but not completey satisfying from
a practical point of view) definition by considering parameter-dependent

families of Boolean maps (or circuits) Gn : Fn2 −→ Fr(n)
2 , and analyzing their

behaviour when the parameter n grows to infinity. Such an algorithm—
represented by the family (Gn)n∈N of Boolean circuits—can be efficient only
if the “expanding function” r : N −→ N grows at most polynomially with the
parameter n, otherwise even writing down the output sequence in an efficient
way is impossible. We measure the complexity in a meaningful way by the
size of the circuit (or by counting the number of needed bit operations) that
likewise must grow at most polynomially with n.

To make this idea more precise we consider an infinite parameter set
M ⊆ N. We assume that an instance of the generator is defined for each
m ∈ M . As an example think of M as a set of Blum integers. Let
Mn = M ∩ [2n−1 . . . 2n[ be the set of n-bit integers in M .

A pseudorandom generator with parameter set M and expan-
sion function r is a family G = (Gm)m∈M of Boolean circuits

Gm : Am −→ F r(n)
2 with Am ⊆ Fn2 ,

where n is the bitlength of m, such that there exists a (deterministic) poly-
nomial family of circuits G̃ = (G̃n)n∈N, where G̃n has 2n deterministic input
nodes, with G̃n(m,x) = Gm(x). (In other words: The pseudorandom bits are
efficiently computable. In particular the function r is bounded by a polyno-
mial in n.) Am is called the set of seeds for the parameter m. Thus each Gm

expands an n-bit sequence x ∈ Am to a r(n)-bit sequence Gm(x) ∈ F r(n)
2 .

To see how the BBS generator fits into this definition let M be the
set of Blum integers or an infinite subset of it, Am = Mm, and Gm(x) =
(b1(x), . . . , br(n)(x)) be the corresponding BBS sequence, bi(x) = lsb(xi)
where x0 = x, xi = x2

i−1 mod m, for m ∈M .
A polynomial test for the pseudorandom generator G is a polynomial

family of (probabilistic) circuits C = (Cn)n∈N,

Cn : Fn2 × F r(n)
2 × Ωn −→ F2

over a probability space Ωn ⊆ F s(n)
2 where s(n) is the number of probabilis-

tic inputs of Cn. Thus the test Cn may depend on the parameter m. The
probability that the test computes the value 1 for a sequence generated by
G is

p(G,C,m) = P{(x, ω) ∈ Am × Ωn | Cn(m,Gm(x), ω) = 1}.
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The probability that the test computes the value 1 for an arbitrary (“true
random”) sequence of the same length is

p̄(C,m) = P{(u, ω) ∈ F r(n)
2 × Ωn | Cn(m,u, ω) = 1}.

Ideally (for a “good” generator) these two probabilities should agree approx-
imately: the test should not be an ε-distinguisher for reasonable values of
ε and for almost all parameters m. We say the pseudorandom generator G
passes the test C if for all non-constant polynomials h ∈ N[X] the set A
of m ∈M with

|p(G,C,m)− p̄(C,m)| ≥ 1

h(n)

is sparse in M (the set of parameters m for which C is a 1/h(n)-
distinguisher).

Recall from Appendix B.7 of Part III that this means that

#(A ∩Mn)

#Mn
≤ 1

η(n)
for almost all n ∈ N

for each non-constant polynomial η ∈ N[X].

The pseudorandom generator G is called perfect if it passes all polynomial
tests. In sloppy words:

No efficient statistical test (or algorithm) is able to distinguish a
bit sequence generated by G from a “true random” bit sequence.
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4.4 Yao’s Criterion

At first sight trying to prove the perfectness of a pseudorandom generator G
seems hopeless. How to manage “all polynomial tests”? But surprisingly a

seemingly much weaker test is sufficient. Let Gm(x) = (b
(m)
1 (x), . . . , b

(m)
r(n)(x))

be the bit sequence generated by Gm from the seed x. Let C = (Cn)n∈N be
a polynomial family of circuits,

Cn : Fn2 × F in2 × Ωn −→ F2

with 0 ≤ in ≤ r(n) − 1, and let h ∈ N[X] be a non-constant polynomial.
Then we say that C has a 1

h -advantage for extrapolating G if the set of
parameters m ∈M with

P{(x, ω) ∈ Am × Ωn | Cn(m, b
(m)
jm+1(x), . . . , b

(m)
jm+in

(x), ω) = b
(m)
jm

(x)}

(2) ≥ 1

2
+

1

h(n)

for an index jm, 1 ≤ jm ≤ r(n)−in, is not sparse in M . In other words given
a subsequence C extrapolates the preceding bit with a small advantage in
sufficiently many cases. We say that G passes the extrapolation test if
there exists no such polynomial family of circuits with a 1

h -advantage for
extrapolating G for any polynomial h ∈ N[X].

For instance the linear congruential generator fails the extrapolation test,
as does a linear feedback shift register.

Theorem 4 [Yao’s criterion] The following statements are equivalent for a
pseudorandom generator G:

(i) G is perfect.

(ii) G passes the extrapolation test.

Proof. “(i) =⇒ (ii)”: Assume G fails the extrapolation test. Then there is a
polynomial family C of circuits that has a 1

h -advantage for extrapolating G.
Let A ⊆M be the non-sparse set of parameters for which the inequality (2)
holds. We construct a polynomial test C ′ = (C ′n)n∈N:

C ′n(m,u, ω) = Cn(m,ujm+1, . . . , ujm+in , ω) + ujm + 1

where for m ∈ Fn2 − A we set jm = 1 (this value doesn’t matter anyway).
Hence

C ′n(m,u, ω) = 1⇐⇒ Cn(m,ujm+1, . . . , ujm+in , ω) = ujm .
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For m ∈ A we get

p(G,C ′,m) = P{Cn(m, b
(m)
jm+1(x), . . . , b

(m)
jm+in

(x), ω) = b
(m)
jm

(x)} ≥ 1

2
+

1

h(n)

and have to compare this value with

p̄(C ′,m) = P{Cn(m,ujm+1, . . . , ujm+in , ω) = ujm}

= P{Cn(. . .) = 0 and ujm = 0}+ P{Cn(. . .) = 1 and ujm = 1}.

(The sum corresponds to a decomposition into two disjoint subsets.) Each
summand denotes the probability that two independent events occur simul-
taneously. Thus

p̄(C ′,m) =
1

2
P{Cn(. . .) = 0}+

1

2
P{Cn(. . .) = 1} =

1

2
.

Hence for m ∈ A
p(G,C ′,m)− p̄(C ′,m) ≥ 1

h(n)
.

We conclude that G fails the test C ′, and therefore is not perfect.
“(ii) =⇒ (i)”: Assume G is not perfect. Then there is a polynomial test

C failed by G. Hence there is a non-constant polynomial h ∈ N[X] and a
t ∈ N with

|p(G,C,m)− p̄(C,m)| ≥ 1

h(n)

for m from a non-sparse subset A ⊆ M with #An ≥ #Mn/n
t for infinitely

many n ∈ I. For at least half of all m ∈ An we have p(G,C,m) > p̄(C,m)
or the inverse inequality. First we treat the first of these two cases (for fixed
n).

For k = 0, . . . , r(n) let

pkm = P{Cn(m, t1, . . . , tk, b
(m)
k+1(x), . . . , b

(m)
r(n)(x), ω) = 1}

where t1, . . . , tk ∈ F2 are random bits. So we consider the probability in
Am × (F k2 × Ωn). We have

p0
m = p(G,C,m), pr(n)

m = p̄(C,m),

1

h(n)
≤ p0

m − pr(n)
m =

r(n)∑
k=1

(pk−1
m − pkm)

for the m ∈ An under consideration. Thus there is an rm with 1 ≤ rm ≤ r(n)
such that

prm−1
m − prmm ≥

1

r(n)h(n)
.
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One of these values rm occurs at least (#Mn/2n
tr(n)) times, denote it by

kn.
Let Ω′n = F kn2 × Ωn. The polynomial family C ′ of circuits whose deter-

ministic inputs are fed from An × F r(n)−kn
2 , and whose probabilistic inputs

from Ω′n, is defined for this n by

C ′n(m,u1, . . . , ur(n)−kn , t1, . . . , tkn , ω) = Cn(m, t, u, ω) + tkn + 1.

Hence
C ′n(m,u, t, ω) = tkn ⇐⇒ Cn(m, t, u, ω) = 1.

Now
C ′n(m, b

(m)
kn+1(x), . . . , b

(m)
r(n)(x), t, ω) = b

(m)
kn

(x)

⇐⇒


Cn(m, t, b

(m)
kn+1(x), . . . , b

(m)
r(n)(x), ω) = 1 and tkn = b

(m)
kn

(x)

or

Cn(m, t, b
(m)
kn+1(x), . . . , b

(m)
r(n)(x), ω) = 0 and tkn 6= b

(m)
kn

(x)

Both cases describe the occurence of two independent events. Therefore the
probability of the second one is 1

2(1− pknm ). The first one is equivalent with

Cn(m, t1, . . . , tkn−1, b
(m)
kn

(x), . . . , b
(m)
r(n)(x), ω) = 1 and tkn = b

(m)
kn

(x) .

Its probability is pkn−1
m /2. Together this gives

P{C ′n(m, b
(m)
kn+1(x), . . . , b

(m)
r(n)(x), t, ω) = b

(m)
kn

(x)}

=
1

2
+

1

2
(pkn−1
m − pknm ) ≥ 1

2
+

1

2r(n)h(n)

for at least #Mn/2n
tr(n) of the parameters m ∈Mn. With u = t+deg(r)+1

this is ≥ #Mn/n
u for infinitely many n ∈ I.

In the case where p(G,C,m) < p̄(C,m) for at least half of all m ∈ An
we analoguously set

C ′n(m,u, t, ω) = Cn(m, t, u, ω) + tkn .

Then the derivation runs along the same lines.
Therefore G fails the extrapolation test (with in = r(n) − kn and

jm = kn). 3

By the way the proof made use of the non-uniformity of the compu-
tational model: C ′n depends on kn, and we didn’t give an algorithm that
determines kn.
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4.5 The Prediction Test

The extrapolation test looks somewhat strange since it extrapolates the bit
sequence in reverse direction, a clear contrast with the usual cryptanalytic
procedures that try to predict forthcoming bits. We’ll immediately remedy
this quaint effect:

Let C = (Cn)n∈N be a polynomial family of circuits,

Cn : Fn2 × F in2 × Ωn −→ F2

with 0 ≤ in ≤ r(n)−1, and let h ∈ N[X] be a non-constant polynomial. Then
C has a 1

h -advantage for predicting G if the subset of parameters m ∈ M
with

P{(x, ω) | Cn(m, b
(m)
1 (x), . . . , b

(m)
in

(x), ω) = b
(m)
in+1(x)} ≥ 1

2
+

1

h(n)

is not sparse in M . The pseudorandom generator G passes the prediction
test if no polynomial family of circuits has an advantage for predicting G.
The proof of “(i) =⇒ (ii)” in Theorem 4 directly adapts to this situation
yielding:

Corollary 1 Every perfect pseudorandom generator passes the prediction
test.

Corollary 2 If the quadratic residuosity conjecture is true, then the BBS
generator is perfect, in particular passes the prediction test.

Proof. Otherwise from Proposition 13 we could construct a polynomial fam-
ily of circuits that decides quadratic residuosity for a non-sparse subset of
Blum integers. 3

The paper

U. V. Vazirani, V. V. Vazirani: Efficient and secure pseudo-
random number generation, Crypto 84, 193–202

contains a stronger result: If the factoring conjecture is true, i. e. if factoring
large integers is hard, then the BBS generator is perfect.
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4.6 Examples and Practical Considerations

We saw that the BBS generator is perfect under a plausible but unproven
assumption, the quadratic residuosity hypothesis. However we don’t know
relevant concrete details, for example what parameters might be inappropri-
ate. We know that certain initial states generate output sequences with short
periods. Some examples of this effect are known, but we are far from a com-
plete answer except for superspecial Blum modules. However the security
proof (depending on the quadratic residuosity hypothesis) doesn’t require
additional assumptions. Therefore we may confidently use the BBS gener-
ator with a pragmatic attitude: randomly choosing the parameters (primes
and initial state) the probability of hitting “bad” values is extremely low,
much lower then finding a needle in a haystack, or even in the universe.

Nevertheless some questions are crucial for getting good pseudorandom
sequences from the BBS generator in an efficient way:

• How large should we choose the module m?

• How many bits can we use for a fixed module and initial state without
compromising the security?

The provable results—relative to the quadratic residuosity hypothesis—
are qualitative only, not quantitative. The recommendation to choose a mod-
ule that escapes the known factorization methods also rests on heuristic con-
siderations only, and doesn’t seem absolutely mandatory for a module that
itself is kept secret. The real quality of the pseudorandom bit sequence, be
it for statistical or for cryptographic applications, can only be assessed by
empirical criteria for the time being. We are confident that the danger of
generating a “bad” pseudorandom sequence is extremely small, in any case
negligeable, for modules that escape the presently known factorization algo-
rithms, say at least of a length of 2048 bits, and for a true random choice of
the module and the initial state.

Émile Borel proposed an informal ranking of negligeability of
extremely small probabilities: ≤ 10−6 from a human view; ≤
10−15 from a terrestrial view; ≤ 10−45 from a cosmic view. By
choosing a sufficiently large module m for RSA or BBS we easily
undercut Borel’s bounds by far.

For the length of the useable output sequence we only know the quali-
tative criterion “at most polynomially many” that is useless in a concrete
application. But even if we only use “quadratically many” bits we wouldn’t
hesitate to take 4 millions bits from the generator with a ≥ 2000 bit module.
Should we need substantially more bits we would restart the generator with
new parameters after every few millions of bits.
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An additional question suggests itself: Are we allowed to output more
then a single bit of the inner state in each iteration step to enhance the
practical benefit of the generator? At least 2 bits?

Vazirani and Vazirani, and independently Alexi, Chor, Goldreich,
and Schnorr gave a partial answer to this question, unfortunately also a
qualitative one only: at least O(log2 log2m) of the least significant bits are
“safe”. Depending on the constants that hide in the “O” we need to choose
a sufficiently large module, and trust empirical experience. A common rec-
ommendation is using blog2 log2mc bits per step. Then for a module m
of 2048 bits, or roughly 600 decimal places, we can use 11 bits per step.
Calculating x2 mod m for a n bit number m takes ( n64)2 multiplications of
64-bit integers and subsequently the same number of divisions of the type
“128 bits by 64 bits”. For n = 2048 this makes a total of 2 · (25)2 = 2048
multiplicative operations to generate 11 bits, or about 200 operations per
bit. A well-established rule of thumb says that a modern CPU executes one
multiplicative operation per clock cycle. (Special CPUs that use pipelines
and parallelism are significantly faster.) Thus on a 2-GHz CPU with 64-bit
architecture we may expect roughly 2 ·109/200 ≈ 10 million bits per second,
provided the algorithm is implemented in an optimized way. This consider-
ation shows that the BBS generator is almost competitive with a software
implementation of a sufficiently secure nonlinear combiner of LFSRs, and is
fast enough for many purposes if executed on a present day CPU.

The cryptographic literature offers several pseudorandom generators
that follow similar principles as BBS:

The RSA generator (Shamir). Choose a random module m of n bits as
a product of two large primes p, q, and an exponent d that is coprime
with (p−1)(q−1), furthermore a random initial state x = x0. The state
transition is x 7→ xd mod m. Thus we calculate xi = xdi−1 mod m, and
output the least significant bit, or the blog2 log2mc least significant
bits. If the RSA generator is not perfect, then there exists an efficient
algorithm that breaks the RSA cipher. Since calculating d-th powers
is more expensive by a factor n than squaring the cost is higher then
for BBS: for a random d the algorithm needs O(n3) cycles per bit.

The index generator (Blum/Micali). As module choose a random
large prime p of n bits, and find a primitive root a for p. Furthermore
choose a random initial state x = x0, coprime with p − 1. Then cal-
culate xi = axi−1 mod p, and and ouput the most significant bit of xi,
or the blog2 log2 pc most significant bits. The perfectness of the index
generator relies on the hypothesis that calculating discrete logarithms
modp is hard. The cost per bit also is O(n3).

The elliptic index generator (Kaliski). It works like the index gener-
ator, but replacing the group of invertible elements of the field Fp by
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an elliptic curve over Fp (such a curve is a finite group in a canonical
way).
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x2 y2

xd1 mod m
-output y2

XXXXXXXX

x1 y1

xd0 mod m
— — — n bits — — — — — — — —

-output y1
XXXXXXXXXXXXXXXX

x0

— 2n/d bits —
XXXXXXXXXXXXXXXX

x0 has 2n/d bits.

xd0 has 2n bits.

Figure 4.4: Micali-Schnorr generator

4.7 The Micali-Schnorr Generator

Micali and Schnorr proposed a pseudorandom generator that is a descen-
dent of the RSA generator. Fix an odd number d ≥ 3. The parameter set
is the set of all products m of two primes p and q whose bit lengths differ
by at most 1, and such that d is coprime with (p − 1)(q − 1). For an n-bit
number m let h(n) be an integer ≈ 2n

d . Then the d-th power of an h(n)-bit
number is (approximately) a 2n-bit number.

In the i-th step calculate zi = xdi−1 mod m. Take the first h(n) bits as the

new state xi, that is xi = bzi/2n−h(n)c, and output the remaining bits, that
is yi = zi mod 2n−h(n). Thus the bits of the result zi are partitioned into two
disjoint parts: the new state xi, and the output yi. Figure 4.4 illustrates this
scheme.

But why may we hope that this pseudorandom generator is perfect? This
depends on the hypothesis: There is no efficient test that distinguishes the
uniform distribution on {1, . . . ,m − 1} from the distribution of xd mod m
for uniformly distributed x ∈ {1, . . . , 2h(n)}. If this hypothesis is true, then
the Micali-Schnorr generator is perfect. This argument seems tautologic,
but heuristic considerations show a relation with the security of RSA and
with factorization. Anyway we have to concede that this “proof of security”
seems considerably more airy then that for BBS.

How fast do the pseudorandom bits tumble out of the machine? As ele-
mentary operations we again count the multiplication of two 64-bit numbers,
and the division of a 128-bit number by a 64-bit number with 64-bit quo-
tient. We multiply and divide by the classical algorithms. Thus the product
of s (64-bit) words and t words costs st elementary operations. The cost of



K. Pommerening, Bitstream Ciphers 132

division is the same as the cost of the product of divisor and quotient.
The concrete recommendation by the inventors is: d = 7, n = 512.

(Today we would choose a larger n.) The output of each step consists of 384
bits, withholding 128 bits as the new state. The binary power algorithm for
a 128-bit number x with exponent 7 costs several elementary operations:

• x has 128 bits, hence 2 words.

• x2 has 256 bits, hence 4 words, and costs 2 · 2 = 4 elementary opera-
tions.

• x3 has 384 bits, hence 6 words, and costs 2 · 4 = 8 elementary opera-
tions.

• x4 has 512 bits, hence 8 words, and costs 4 · 4 = 16 elementary opera-
tions.

• x7 has 896 bits, hence 14 words, and costs 6 · 8 = 48 elementary
operations.

• x7 mod m has ≤ 512 bits, and likewise costs 6 · 8 = 48 elementary
operations.

This makes a total of 124 elementary operations; among them only one
reduction modm (for x7). Our reward consists of 384 pseudorandom bits.
Thus we get about 3 bits per elementary operation, or, by the assumptions
in Section 4.6, about 6 milliards bits per second. Compared with the BBS
generator this amounts to a factor of about 1000.

Parallelization increases the speed virtually without limit: The Micali-
Schnorr generator allows complete parallelization. Thus distributing the
work among k CPUs brings a profit by the factor k since the CPUs can work
indepedently of each other without need of communication.
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4.8 The Impagliazzo-Naor Generator

Recall the knapsack problem (or subset sum problem):

Given positive integers a1, . . . , an ∈ N and T ∈ N.

Wanted a subset S ⊆ {1, . . . , n} with∑
i∈S

ai = T.

This problem is believed to be hard. We know it is NP-complete. Building
on it Impagliazzo and Naor developed a pseudorandom generator:

Let k and n be (sufficiently large) integers with n < k < 3n
2 . As param-

eters we choose random a1, . . . , an ∈ [1 . . . 2k].

Attention: quite a lot of big numbers.

The state space consists of the power set of {1, . . . , n}. So the states are
subsets S ⊆ {1, . . . , n}. We represent them by bit sequences in Fn2 in the
natural way. In each single step we form the sum∑

i∈S
ai mod 2k.

This is a k-bit integer. Output the first k−n bits, and retain the last n bits
as the new state, see Figure 4.5.

Thus state transition and output function are:

T (S) =
∑
i∈S

ai mod 2n

(retain the rightmost n bits)

U(S) = b
∑

i∈S ai mod 2k

2n
c

output the leftmost k − n bits

If this pseudorandom generator is not perfect, then the knapsack problem
admits an efficient solution. Here we omit the proof. See

• R. Impagliazzo, M. Naor: Efficient cryptographic schemes provably
as secure as subset sum. J. Cryptology 9 (1996), 199–216.
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Figure 4.5: The Impagliazzo-Naor generator



Appendix A

Statistical Distinguishers

As usual in these lecture notes we restrict ourselves to finite probability
spaces.

A.1 Distingishing Distributions by a Test

Let A be a finite probability space with two probability distributions P0 and
P1. Accordingly for a real valued function ∆ : A −→ R we have the mean
values (or expectations)

µi =
∑
a∈A

∆(a) · Pi(a).

For ε > 0 we call ∆ an ε-distinguisher of P0 and P1 if

|µ1 − µ0| ≥ ε.

That is, the expectations of ∆ with respect to P0 and P1 differ considerably.

Note the analogy with the common statistical test scenario where
we decide whether a sample deviates from an assumed distribu-
tion by comparing mean values.

This notion has an obvious analogue for bit valued functions (or binary
attributes) ∆: A −→ F2. Here

µi =
∑

a∈∆−1(1)

Pi(a) = Pi(∆
−1(1))

is the probability that ∆(a) = 1 for a randomly chosen a ∈ A. Thus

µ1 − µ0 = P1(∆−1(1))− P0(∆−1(1)).

The “test” ∆ ε-distinguishes between the distributions P1 and P0 if the
probabilities for ∆(a) = 1 with respect to these two distributions differ by
at least ε.

135
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Note that the notion “test” just means “function”. However in
the present context it suggests a role that this function plays. A
similar remark also holds for the notion “randomize”.

We may “randomize” our test by more generally considering a function

∆: A× Ω −→ F2

where Ω is a finite probability space from which we take an additional ran-
dom input ω, and then consider the probabilities µi that ∆(a, ω) = 1,

µi =
1

#A ·#Ω
·#{(a, ω) ∈ A× Ω |∆(a, ω) = 1}.

A.2 Testing Bitsequences

A statistical test for bitsequences of length r is simply a Boolean function
∆: Fr2 −→ F2, a probabilistic statistical test is a function

∆: Fr2 × Ω −→ F2

where Ω is a finite probability space.
We want to distinguish between random bitsequences u ∈ Fr2, and bitse-

quences that arise from a “generator map”

G : Fn2 −→ Fr2

that transforms a randomly chosen x ∈ Fn2 (called “seed”) to a bitsequence
G(x) ∈ Fr2. This sequence G(x), if it passes our tests, may qualify as a
pseudorandom sequence. In this test scenario the reference distribution P0

is the uniform distribution on Fr2,

P0(u) =
1

2r
for all u ∈ Fr2 .

We want to compare it with the induced distribution

P1(u) =
1

2n
·#{x ∈ Fn2 |G(x) = u} .

Or, somewhat more generally, if G is defined on a subset A ⊆ Fn2 only,

P1(u) =
1

#A
·#{x ∈ A |G(x) = u} .

A probabilistic statistical test ∆ : Fr2 × Ω −→ F2 ε-distinguishes between
random bitsequences u ∈ Fr2 and sequences generated by G : Fn2 −→ Fr2 if

|µ1 − µ0| ≥ ε
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where

µ0 =
1

2r ·#Ω
·#{(u, ω) ∈ Fr2 × Ω |∆(u, ω) = 1}

is the probability that the test assigns the value 1 to a random bitsequence
u ∈ Fr2, and

µ1 =
1

2n ·#Ω
·#{(x, ω) ∈ A× Ω |∆(G(x)), ω) = 1}

is the probability that the test yields the value 1 for a bitstring generated
by a random seed x ∈ A.

Examples

We want to distinguish sequences generated by a map G : Fn2 −→ Fr2 from
random sequences (by deterministic tests, that is #Ω = 1).

Example 1

First an extremely simple example with the test function

∆: Fr2 −→ F2, ∆(u) =

{
1 if #{i | ui = 1} ≥ r

2 ,

0 otherwise,

That is ∆ decides on the majority of ones in the sequence u. Then obviously
µ0 = 1

2 .

Case 1a: Let n = 1 and G : F2 −→ Fr2 be defined by

G(0) = (0, 0, 0, . . .),

G(1) = (1, 1, 1, . . .).

Then also µ1 = 1
2 , yielding µ1 − µ0 = 0. Thus ∆ is not an ε-distinguisher

for any ε > 0.

Case 1b: We keep the definition of G(1) but change the definition of G(0)
to

G(0) = (1, 0, 1, 0, 1, . . .).

Then ∆(G(0)) = ∆(G(1)) = 1, hence µ1 = 1, yielding µ1 − µ0 = 1
2 . Thus ∆

is an ε-distinguisher for 0 < ε ≤ 1
2 .
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Example 2

For a serious example we consider sequences generated by a linear feedback
shift register G : Fn2 −→ Fr2 of length n where 2n < r ≤ 2n − 1. We know
that the output of G is distinguished by a low linear complexity λ(u) ≤ n.
Therefore we use

∆: Fr2 −→ F2, ∆(u) =

{
1 if λ(u) < r

2 ,

0 if λ(u) ≥ r
2 ,

as test . Since n < r
2 this yields

µ1 =
1

2n
·#{x ∈ Fn2 |∆(G(x)) = 1} = 1.

For arbitrary sequences u ∈ Fr2 we know from Theorem 3 that we may expect
λ(u) ≈ r

2 . A more precise statement follows from the frequency count in
Proposition 11:

k := #{u ∈ Fr2 | λ(u)) ≤ r − 1

2
} = 1 +

b r−1
2
c∑

l=1

22l−1 =
1

2
+

1

2
·
b r−1

2
c∑

l=0

4l.

Case 2a: Let r be even. Then b r−1
2 c = r

2 − 1, and

k =
1

2
+

1

2
· 4r/2 − 1

3
=

1

2
+

1

6
· (2r − 1) =

1

3
+

1

6
· 2r,

µ0 =
1

2r
· k =

1

6
+

1

3 · 2r
≤ 1

3
for r ≥ 1.

Case 2b: Let r be odd. Then b r−1
2 c = r−1

2 , and

k =
1

2
+

1

2
· 4(r+1)/2 − 1

3
=

1

2
+

1

6
· (2r+1 − 1) =

1

3
+

1

3
· 2r,

µ0 =
1

2r
· k =

1

3
+

1

3 · 2r
≤ 1

2
for r ≥ 1.

Hence in any case we have

µ1 − µ0 ≥
1

2
for r ≥ 1.

Thus ∆ is an ε-distinguisher for 0 < ε ≤ 1
2 , distinguishing between LFSR

sequences and random sequences.



Appendix B

Recursive and Periodic
Sequences

How to Find the Shortest Feedback Shift Register
That Generates a Given Finite Sequence

This chapter is in the separate document FindFSR.pdf
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Appendix C

SageMath Code for
Bitstream Ciphers

The code snippets can be downloaded from the web page
https://www.staff.uni-mainz.de/pommeren/Cryptology/Bitstream/

where the are grouped in three modules

• FSR.sage

• bmAlg.sage

• Periods.sage

They are written in pure Python, hence execute also in a Python environ-
ment. For use with Sage attach them by the instructions:

sage: load_attach_path(path="/PATH_TO/Sage", replace=False)

sage: attach(’FSR.sage’)

sage: attach(’bmAlg.sage’)

sage: attach(’Periods.sage’)

Remember that xor is in the module Bitblock.sage introduced with Part II
of these lecture notes.
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C.1 Feedback Shift Registers

Sage Example C.1 A general feedback shift register. The Boolean function
f must be initialized first, using the module BoolF.sage, see Part II

def fsr(f,x,n):

"""Generate a feedback shift register sequence.

Parameters: Boolean function f, start vector x,

number n of output bits."""

u = x

outlist = []

for i in range (0,n):

b = f.valueAt(u) # feedback value

c = u.pop() # output rightmost bit

u.insert(0,b) # feedback the leftmost bit

# and shift register to the right

outlist.append(c)

return outlist

Note the use of the indices:

• start vector: [x[0],...,x[l-1]] = [u[l-1],...,u[1],u[0]]

• feedback value: ui = f(ui−1, . . . , ui−l)

• output sequence: u[0],u[1],...,u[n-1]

Due to the prominence of LFSRs we concide them a special class that
allows for several parallel instances:
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Sage Example C.2 Linear feedback shift register.

class LFSR(object):

"""Linear Feedback Shift Register

Attributes: the length of the register

a list of bits describing the taps of the register

the state"""

__max = 1024 # max length

def __init__(self,blist):

"""Initializes a LFSR with a list of taps and the all 0 state."""

ll = len(blist)

assert ll <= self.__max, "LFSR_Error: Bitblock too long."

self.__length = ll

self.__taplist = blist

self.__state = [0] * ll

def __str__(self):

"""Defines a printable string telling the internals of

the register."""

outstr = "Length: " + str(self.__length)

outstr += " | Taps: " + bbl2str(self.__taplist)

outstr += " | State: " + bbl2str(self.__state)

return outstr

def getLength(self):

"""Returns the length of the LFSR."""

return self.__length

def setState(self,slist):

"""Sets the state."""

sl = len(slist)

assert sl == self.__length, "LFSR_Error: Bitblock has wrong length."

self.__state = slist

def nextBits(self,n):

"""Returns the next n bits as a list and updates the state."""

outlist = []

a = self.__taplist

u = self.__state

for i in range (0,n):

b = binScPr(a,u)

c = u.pop()

u.insert(0,b)

outlist.append(c)

self.__state = u

return outlist
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C.2 The BM Algorithm

Sage Example C.3 The BM algorithm. It uses bibScPr from the module
Bitblock.sage, see Part II

R.<T> = GF(2)[]

def bmAlg(u):

"""Find the shortest linear feedback shift register that generates

the bit sequence u."""

# Initialization ------------------------------

lcprof = [0]

phi = R(1)

lc = 0 # linear complexity up to actual index

r = -1 # last index

psi = R(1) # last feedback polynomial

nn = len(u)

# End initialization

for n in range(0,nn):

b = u[n-lc:n] # coefficients for feedback

flist = [] # feedback taps

for i in range(0,lc):

if (i < phi.degree()):

coeff = phi.coefficients(sparse=False)[i+1] # get coefficient of phi at t^(i+1)

else:

coeff = 0

flist.insert(0,coeff)

d = u[n] - binScPr(flist,b) # discrepancy between predicted bit and true bit

# -- always 0 or 1 in F_2

if (d == 1):

eta = phi - T^(n-r) * psi

if (2*lc <= n):

m = n+1-lc # new linear complexity

t = lc # linear complexity in last state

lc = m

psi = phi

r = n

phi = eta

lcprof.append(lc)

outlist = [lcprof,phi]

return outlist
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