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4.4 Yao’s Criterion

At first sight trying to prove the perfectness of a pseudorandom generator G
seems hopeless. How to manage “all polynomial tests”? But surprisingly a

seemingly much weaker test is su�cient. Let Gm(x) = (b(m)
1 (x), . . . , b(m)

r(n)(x))

be the bit sequence generated by Gm from the seed x. Let C = (Cn)n2N be
a polynomial family of circuits,

Cn : Fn
2 ⇥ F in

2 ⇥ ⌦n �! F2

with 0  in  r(n) � 1, and let h 2 N[X] be a non-constant polynomial.
Then we say that C has a 1

h -advantage for extrapolating G if the set of
parameters m 2 M with

P{(x,!) 2 Am ⇥ ⌦n | Cn(m, b(m)
jm+1(x), . . . , b

(m)
jm+in

(x),!) = b(m)
jm

(x)}

(2) � 1

2
+

1

h(n)

for an index jm, 1  jm  r(n)�in, is not sparse in M . In other words given
a subsequence C extrapolates the preceding bit with a small advantage in
su�ciently many cases. We say that G passes the extrapolation test if
there exists no such polynomial family of circuits with a 1

h -advantage for
extrapolating G for any polynomial h 2 N[X].

For instance the linear congruential generator fails the extrapolation test,
as does a linear feedback shift register.

Theorem 4 [Yao’s criterion] The following statements are equivalent for a
pseudorandom generator G:

(i) G is perfect.

(ii) G passes the extrapolation test.

Proof. “(i) =) (ii)”: Assume G fails the extrapolation test. Then there is a
polynomial family C of circuits that has a 1

h -advantage for extrapolating G.
Let A ✓ M be the non-sparse set of parameters for which the inequality (2)
holds. We construct a polynomial test C 0 = (C 0

n)n2N:

C 0
n(m,u,!) = Cn(m,ujm+1, . . . , ujm+in ,!) + ujm + 1

where for m 2 Fn
2 � A we set jm = 1 (this value doesn’t matter anyway).

Hence

C 0
n(m,u,!) = 1 () Cn(m,ujm+1, . . . , ujm+in ,!) = ujm .
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For m 2 A we get

p(G,C 0,m) = P{Cn(m, b(m)
jm+1(x), . . . , b

(m)
jm+in

(x),!) = b(m)
jm

(x)} � 1

2
+

1

h(n)

and have to compare this value with

p̄(C 0,m) = P{Cn(m,ujm+1, . . . , ujm+in ,!) = ujm}

= P{Cn(. . .) = 0 and ujm = 0}+ P{Cn(. . .) = 1 and ujm = 1}.

(The sum corresponds to a decomposition into two disjoint subsets.) Each
summand denotes the probability that two independent events occur simul-
taneously. Thus

p̄(C 0,m) =
1

2
P{Cn(. . .) = 0}+ 1

2
P{Cn(. . .) = 1} =

1

2
.

Hence for m 2 A

p(G,C 0,m)� p̄(C 0,m) � 1

h(n)
.

We conclude that G fails the test C 0, and therefore is not perfect.
“(ii) =) (i)”: Assume G is not perfect. Then there is a polynomial test

C failed by G. Hence there is a non-constant polynomial h 2 N[X] and a
t 2 N with

|p(G,C,m)� p̄(C,m)| � 1

h(n)

for m from a non-sparse subset A ✓ M with #An � #Mn/nt for infinitely
many n 2 I. For at least half of all m 2 An we have p(G,C,m) > p̄(C,m)
or the inverse inequality. First we treat the first of these two cases (for fixed
n).

For k = 0, . . . , r(n) let

pkm = P{Cn(m, t1, . . . , tk, b
(m)
k+1(x), . . . , b

(m)
r(n)(x),!) = 1}

where t1, . . . , tk 2 F2 are random bits. So we consider the probability in
Am ⇥ (F k

2 ⇥ ⌦n). We have

p0m = p(G,C,m), pr(n)m = p̄(C,m),

1

h(n)
 p0m � pr(n)m =

r(n)X

k=1

(pk�1
m � pkm)

for the m 2 An under consideration. Thus there is an rm with 1  rm  r(n)
such that

prm�1
m � prmm � 1

r(n)h(n)
.
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One of these values rm occurs at least (#Mn/2ntr(n)) times, denote it by
kn.

Let ⌦0
n = F kn

2 ⇥ ⌦n. The polynomial family C 0 of circuits whose deter-

ministic inputs are fed from An ⇥ F r(n)�kn
2 , and whose probabilistic inputs

from ⌦0
n, is defined for this n by

C 0
n(m,u1, . . . , ur(n)�kn , t1, . . . , tkn ,!) = Cn(m, t, u,!) + tkn + 1.

Hence
C 0
n(m,u, t,!) = tkn () Cn(m, t, u,!) = 1.

Now
C 0
n(m, b(m)

kn+1(x), . . . , b
(m)
r(n)(x), t,!) = b(m)

kn
(x)

()

8
><

>:

Cn(m, t, b(m)
kn+1(x), . . . , b

(m)
r(n)(x),!) = 1 and tkn = b(m)

kn
(x)

or

Cn(m, t, b(m)
kn+1(x), . . . , b

(m)
r(n)(x),!) = 0 and tkn 6= b(m)

kn
(x)

Both cases describe the occurence of two independent events. Therefore the
probability of the second one is 1

2(1� pknm ). The first one is equivalent with

Cn(m, t1, . . . , tkn�1, b
(m)
kn

(x), . . . , b(m)
r(n)(x),!) = 1 and tkn = b(m)

kn
(x) .

Its probability is pkn�1
m /2. Together this gives

P{C 0
n(m, b(m)

kn+1(x), . . . , b
(m)
r(n)(x), t,!) = b(m)

kn
(x)}

=
1

2
+

1

2
(pkn�1

m � pknm ) � 1

2
+

1

2r(n)h(n)

for at least #Mn/2ntr(n) of the parametersm 2 Mn. With u = t+deg(r)+1
this is � #Mn/nu for infinitely many n 2 I.

In the case where p(G,C,m) < p̄(C,m) for at least half of all m 2 An

we analoguously set

C 0
n(m,u, t,!) = Cn(m, t, u,!) + tkn .

Then the derivation runs along the same lines.
Therefore G fails the extrapolation test (with in = r(n) � kn and

jm = kn). 3

By the way the proof made use of the non-uniformity of the compu-
tational model: C 0

n depends on kn, and we didn’t give an algorithm that
determines kn.


