### 4.4 Yao's Criterion

At first sight trying to prove the perfectness of a pseudorandom generator $G$ seems hopeless. How to manage "all polynomial tests"? But surprisingly a seemingly much weaker test is sufficient. Let $G_{m}(x)=\left(b_{1}^{(m)}(x), \ldots, b_{r(n)}^{(m)}(x)\right)$ be the bit sequence generated by $G_{m}$ from the seed $x$. Let $C=\left(C_{n}\right)_{n \in \mathbb{N}}$ be a polynomial family of circuits,

$$
C_{n}: \mathbb{F}_{2}^{n} \times \mathbb{F}_{2}^{i_{n}} \times \Omega_{n} \longrightarrow \mathbb{F}_{2}
$$

with $0 \leq i_{n} \leq r(n)-1$, and let $h \in \mathbb{N}[X]$ be a non-constant polynomial. Then we say that $C$ has a $\frac{1}{h}$-advantage for extrapolating $G$ if the set of parameters $m \in M$ with

$$
\begin{align*}
P\left\{(x, \omega) \in A_{m} \times \Omega_{n} \mid C_{n}(m\right. & \left.\left., b_{j_{m}+1}^{(m)}(x), \ldots, b_{j_{m}+i_{n}}^{(m)}(x), \omega\right)=b_{j_{m}}^{(m)}(x)\right\} \\
& \geq \frac{1}{2}+\frac{1}{h(n)} \tag{2}
\end{align*}
$$

for an index $j_{m}, 1 \leq j_{m} \leq r(n)-i_{n}$, is not sparse in $M$. In other words given a subsequence $C$ extrapolates the preceding bit with a small advantage in sufficiently many cases. We say that $G$ passes the extrapolation test if there exists no such polynomial family of circuits with a $\frac{1}{h}$-advantage for extrapolating $G$ for any polynomial $h \in \mathbb{N}[X]$.

For instance the linear congruential generator fails the extrapolation test, as does a linear feedback shift register.

Theorem 4 [YAO's criterion] The following statements are equivalent for a pseudorandom generator $G$ :
(i) $G$ is perfect.
(ii) $G$ passes the extrapolation test.

Proof. "(i) $\Longrightarrow$ (ii)": Assume $G$ fails the extrapolation test. Then there is a polynomial family $C$ of circuits that has a $\frac{1}{h}$-advantage for extrapolating $G$. Let $A \subseteq M$ be the non-sparse set of parameters for which the inequality (2) holds. We construct a polynomial test $C^{\prime}=\left(C_{n}^{\prime}\right)_{n \in \mathbb{N}}$ :

$$
C_{n}^{\prime}(m, u, \omega)=C_{n}\left(m, u_{j_{m}+1}, \ldots, u_{j_{m}+i_{n}}, \omega\right)+u_{j_{m}}+1
$$

where for $m \in \mathbb{F}_{2}^{n}-A$ we set $j_{m}=1$ (this value doesn't matter anyway). Hence

$$
C_{n}^{\prime}(m, u, \omega)=1 \Longleftrightarrow C_{n}\left(m, u_{j_{m}+1}, \ldots, u_{j_{m}+i_{n}}, \omega\right)=u_{j_{m}}
$$

For $m \in A$ we get
$p\left(G, C^{\prime}, m\right)=P\left\{C_{n}\left(m, b_{j_{m}+1}^{(m)}(x), \ldots, b_{j_{m}+i_{n}}^{(m)}(x), \omega\right)=b_{j_{m}}^{(m)}(x)\right\} \geq \frac{1}{2}+\frac{1}{h(n)}$
and have to compare this value with

$$
\begin{gathered}
\bar{p}\left(C^{\prime}, m\right)=P\left\{C_{n}\left(m, u_{j_{m}+1}, \ldots, u_{j_{m}+i_{n}}, \omega\right)=u_{j_{m}}\right\} \\
=P\left\{C_{n}(\ldots)=0 \text { and } u_{j_{m}}=0\right\}+P\left\{C_{n}(\ldots)=1 \text { and } u_{j_{m}}=1\right\} .
\end{gathered}
$$

(The sum corresponds to a decomposition into two disjoint subsets.) Each summand denotes the probability that two independent events occur simultaneously. Thus

$$
\bar{p}\left(C^{\prime}, m\right)=\frac{1}{2} P\left\{C_{n}(\ldots)=0\right\}+\frac{1}{2} P\left\{C_{n}(\ldots)=1\right\}=\frac{1}{2} .
$$

Hence for $m \in A$

$$
p\left(G, C^{\prime}, m\right)-\bar{p}\left(C^{\prime}, m\right) \geq \frac{1}{h(n)}
$$

We conclude that $G$ fails the test $C^{\prime}$, and therefore is not perfect.
"(ii) $\Longrightarrow(\mathrm{i})$ ": Assume $G$ is not perfect. Then there is a polynomial test $C$ failed by $G$. Hence there is a non-constant polynomial $h \in \mathbb{N}[X]$ and a $t \in \mathbb{N}$ with

$$
|p(G, C, m)-\bar{p}(C, m)| \geq \frac{1}{h(n)}
$$

for $m$ from a non-sparse subset $A \subseteq M$ with $\# A_{n} \geq \# M_{n} / n^{t}$ for infinitely many $n \in I$. For at least half of all $m \in A_{n}$ we have $p(G, C, m)>\bar{p}(C, m)$ or the inverse inequality. First we treat the first of these two cases (for fixed $n)$.

For $k=0, \ldots, r(n)$ let

$$
p_{m}^{k}=P\left\{C_{n}\left(m, t_{1}, \ldots, t_{k}, b_{k+1}^{(m)}(x), \ldots, b_{r(n)}^{(m)}(x), \omega\right)=1\right\}
$$

where $t_{1}, \ldots, t_{k} \in \mathbb{F}_{2}$ are random bits. So we consider the probability in $A_{m} \times\left(\mathbb{F}_{2}^{k} \times \Omega_{n}\right)$. We have

$$
\begin{aligned}
& p_{m}^{0}=p(G, C, m), \quad p_{m}^{r(n)}=\bar{p}(C, m) \\
& \frac{1}{h(n)} \leq p_{m}^{0}-p_{m}^{r(n)}=\sum_{k=1}^{r(n)}\left(p_{m}^{k-1}-p_{m}^{k}\right)
\end{aligned}
$$

for the $m \in A_{n}$ under consideration. Thus there is an $r_{m}$ with $1 \leq r_{m} \leq r(n)$ such that

$$
p_{m}^{r_{m}-1}-p_{m}^{r_{m}} \geq \frac{1}{r(n) h(n)} .
$$

One of these values $r_{m}$ occurs at least $\left(\# M_{n} / 2 n^{t} r(n)\right)$ times, denote it by $k_{n}$.

Let $\Omega_{n}^{\prime}=\mathbb{F}_{2}^{k_{n}} \times \Omega_{n}$. The polynomial family $C^{\prime}$ of circuits whose deterministic inputs are fed from $A_{n} \times \mathbb{F}_{2}^{r(n)-k_{n}}$, and whose probabilistic inputs from $\Omega_{n}^{\prime}$, is defined for this $n$ by

$$
C_{n}^{\prime}\left(m, u_{1}, \ldots, u_{r(n)-k_{n}}, t_{1}, \ldots, t_{k_{n}}, \omega\right)=C_{n}(m, t, u, \omega)+t_{k_{n}}+1
$$

Hence

$$
C_{n}^{\prime}(m, u, t, \omega)=t_{k_{n}} \Longleftrightarrow C_{n}(m, t, u, \omega)=1
$$

Now

$$
\begin{gathered}
C_{n}^{\prime}\left(m, b_{k_{n}+1}^{(m)}(x), \ldots, b_{r(n)}^{(m)}(x), t, \omega\right)=b_{k_{n}}^{(m)}(x) \\
\Longleftrightarrow\left\{\begin{array}{l}
C_{n}\left(m, t, b_{k_{n}+1}^{(m)}(x), \ldots, b_{r(n)}^{(m)}(x), \omega\right)=1 \quad \text { and } t_{k_{n}}=b_{k_{n}}^{(m)}(x) \\
\text { or } \\
C_{n}\left(m, t, b_{k_{n}+1}^{(m)}(x), \ldots, b_{r(n)}^{(m)}(x), \omega\right)=0 \text { and } t_{k_{n}} \neq b_{k_{n}}^{(m)}(x)
\end{array}\right.
\end{gathered}
$$

Both cases describe the occurence of two independent events. Therefore the probability of the second one is $\frac{1}{2}\left(1-p_{m}^{k_{n}}\right)$. The first one is equivalent with

$$
C_{n}\left(m, t_{1}, \ldots, t_{k_{n}-1}, b_{k_{n}}^{(m)}(x), \ldots, b_{r(n)}^{(m)}(x), \omega\right)=1 \quad \text { and } \quad t_{k_{n}}=b_{k_{n}}^{(m)}(x)
$$

Its probability is $p_{m}^{k_{n}-1} / 2$. Together this gives

$$
\begin{gathered}
P\left\{C_{n}^{\prime}\left(m, b_{k_{n}+1}^{(m)}(x), \ldots, b_{r(n)}^{(m)}(x), t, \omega\right)=b_{k_{n}}^{(m)}(x)\right\} \\
\quad=\frac{1}{2}+\frac{1}{2}\left(p_{m}^{k_{n}-1}-p_{m}^{k_{n}}\right) \geq \frac{1}{2}+\frac{1}{2 r(n) h(n)}
\end{gathered}
$$

for at least $\# M_{n} / 2 n^{t} r(n)$ of the parameters $m \in M_{n}$. With $u=t+\operatorname{deg}(r)+1$ this is $\geq \# M_{n} / n^{u}$ for infinitely many $n \in I$.

In the case where $p(G, C, m)<\bar{p}(C, m)$ for at least half of all $m \in A_{n}$ we analoguously set

$$
C_{n}^{\prime}(m, u, t, \omega)=C_{n}(m, t, u, \omega)+t_{k_{n}}
$$

Then the derivation runs along the same lines.
Therefore $G$ fails the extrapolation test (with $i_{n}=r(n)-k_{n}$ and $j_{m}=k_{n}$ ) 。

By the way the proof made use of the non-uniformity of the computational model: $C_{n}^{\prime}$ depends on $k_{n}$, and we didn't give an algorithm that determines $k_{n}$.

