Appendix A

Statistical Distinguishers

As usual in these lecture notes we restrict ourselves to finite probability spaces.

A. 1 Distingishing Distributions by a Test

Let A be a finite probability space with two probability distributions P_{0} and P_{1}. Accordingly for a real valued function $\Delta: A \longrightarrow \mathbb{R}$ we have the mean values (or expectations)

$$
\mu_{i}=\sum_{a \in A} \Delta(a) \cdot P_{i}(a)
$$

For $\varepsilon>0$ we call Δ an ε-distinguisher of P_{0} and P_{1} if

$$
\left|\mu_{1}-\mu_{0}\right| \geq \varepsilon
$$

That is, the expectations of Δ with respect to P_{0} and P_{1} differ considerably.
Note the analogy with the common statistical test scenario where we decide whether a sample deviates from an assumed distribution by comparing mean values.

This notion has an obvious analogue for bit valued functions (or binary attributes) $\Delta: A \longrightarrow \mathbb{F}_{2}$. Here

$$
\mu_{i}=\sum_{a \in \Delta^{-1}(1)} P_{i}(a)=P_{i}\left(\Delta^{-1}(1)\right)
$$

is the probability that $\Delta(a)=1$ for a randomly chosen $a \in A$. Thus

$$
\mu_{1}-\mu_{0}=P_{1}\left(\Delta^{-1}(1)\right)-P_{0}\left(\Delta^{-1}(1)\right)
$$

The "test" $\Delta \varepsilon$-distinguishes between the distributions P_{1} and P_{0} if the probabilities for $\Delta(a)=1$ with respect to these two distributions differ by at least ε.

Note that the notion "test" just means "function". However in the present context it suggests a role that this function plays. A similar remark also holds for the notion "randomize".

We may "randomize" our test by more generally considering a function

$$
\Delta: A \times \Omega \longrightarrow \mathbb{F}_{2}
$$

where Ω is a finite probability space from which we take an additional random input ω, and then consider the probabilities μ_{i} that $\Delta(a, \omega)=1$,

$$
\mu_{i}=\frac{1}{\# A \cdot \# \Omega} \cdot \#\{(a, \omega) \in A \times \Omega \mid \Delta(a, \omega)=1\}
$$

A. 2 Testing Bitsequences

A statistical test for bitsequences of length r is simply a Boolean function $\Delta: \mathbb{F}_{2}^{r} \longrightarrow \mathbb{F}_{2}$, a probabilistic statistical test is a function

$$
\Delta: \mathbb{F}_{2}^{r} \times \Omega \longrightarrow \mathbb{F}_{2}
$$

where Ω is a finite probability space.
We want to distinguish between random bitsequences $u \in \mathbb{F}_{2}^{r}$, and bitsequences that arise from a "generator map"

$$
G: \mathbb{F}_{2}^{n} \longrightarrow \mathbb{F}_{2}^{r}
$$

that transforms a randomly chosen $x \in \mathbb{F}_{2}^{n}$ (called "seed") to a bitsequence $G(x) \in \mathbb{F}_{2}^{r}$. This sequence $G(x)$, if it passes our tests, may qualify as a pseudorandom sequence. In this test scenario the reference distribution P_{0} is the uniform distribution on \mathbb{F}_{2}^{r},

$$
P_{0}(u)=\frac{1}{2^{r}} \quad \text { for all } u \in \mathbb{F}_{2}^{r}
$$

We want to compare it with the induced distribution

$$
P_{1}(u)=\frac{1}{2^{n}} \cdot \#\left\{x \in \mathbb{F}_{2}^{n} \mid G(x)=u\right\}
$$

Or, somewhat more generally, if G is defined on a subset $A \subseteq \mathbb{F}_{2}^{n}$ only,

$$
P_{1}(u)=\frac{1}{\# A} \cdot \#\{x \in A \mid G(x)=u\}
$$

A probabilistic statistical test $\Delta: \mathbb{F}_{2}^{r} \times \Omega \longrightarrow \mathbb{F}_{2} \varepsilon$-distinguishes between random bitsequences $u \in \mathbb{F}_{2}^{r}$ and sequences generated by $G: \mathbb{F}_{2}^{n} \longrightarrow \mathbb{F}_{2}^{r}$ if

$$
\left|\mu_{1}-\mu_{0}\right| \geq \varepsilon
$$

where

$$
\mu_{0}=\frac{1}{2^{r} \cdot \# \Omega} \cdot \#\left\{(u, \omega) \in \mathbb{F}_{2}^{r} \times \Omega \mid \Delta(u, \omega)=1\right\}
$$

is the probability that the test assigns the value 1 to a random bitsequence $u \in \mathbb{F}_{2}^{r}$, and

$$
\left.\mu_{1}=\frac{1}{2^{n} \cdot \# \Omega} \cdot \#\{(x, \omega) \in A \times \Omega \mid \Delta(G(x)), \omega)=1\right\}
$$

is the probability that the test yields the value 1 for a bitstring generated by a random seed $x \in A$.

Examples

We want to distinguish sequences generated by a map $G: \mathbb{F}_{2}^{n} \longrightarrow \mathbb{F}_{2}^{r}$ from random sequences (by deterministic tests, that is $\# \Omega=1$).

Example 1

First an extremely simple example with the test function

$$
\Delta: \mathbb{F}_{2}^{r} \longrightarrow \mathbb{F}_{2}, \quad \Delta(u)= \begin{cases}1 & \text { if } \#\left\{i \mid u_{i}=1\right\} \geq \frac{r}{2} \\ 0 & \text { otherwise }\end{cases}
$$

That is Δ decides on the majority of ones in the sequence u. Then obviously $\mu_{0}=\frac{1}{2}$.

Case 1a: Let $n=1$ and $G: \mathbb{F}_{2} \longrightarrow \mathbb{F}_{2}^{r}$ be defined by

$$
\begin{aligned}
G(0) & =(0,0,0, \ldots), \\
G(1) & =(1,1,1, \ldots) .
\end{aligned}
$$

Then also $\mu_{1}=\frac{1}{2}$, yielding $\mu_{1}-\mu_{0}=0$. Thus Δ is not an ε-distinguisher for any $\varepsilon>0$.

Case 1b: We keep the definition of $G(1)$ but change the definition of $G(0)$ to

$$
G(0)=(1,0,1,0,1, \ldots) .
$$

Then $\Delta(G(0))=\Delta(G(1))=1$, hence $\mu_{1}=1$, yielding $\mu_{1}-\mu_{0}=\frac{1}{2}$. Thus Δ is an ε-distinguisher for $0<\varepsilon \leq \frac{1}{2}$.

Example 2

For a serious example we consider sequences generated by a linear feedback shift register $G: \mathbb{F}_{2}^{n} \longrightarrow \mathbb{F}_{2}^{r}$ of length n where $2 n<r \leq 2^{n}-1$. We know that the output of G is distinguished by a low linear complexity $\lambda(u) \leq n$. Therefore we use

$$
\Delta: \mathbb{F}_{2}^{r} \longrightarrow \mathbb{F}_{2}, \quad \Delta(u)= \begin{cases}1 & \text { if } \lambda(u)<\frac{r}{2} \\ 0 & \text { if } \lambda(u) \geq \frac{r}{2}\end{cases}
$$

as test. Since $n<\frac{r}{2}$ this yields

$$
\mu_{1}=\frac{1}{2^{n}} \cdot \#\left\{x \in \mathbb{F}_{2}^{n} \mid \Delta(G(x))=1\right\}=1
$$

For arbitrary sequences $u \in \mathbb{F}_{2}^{r}$ we know from Theorem 3 that we may expect $\lambda(u) \approx \frac{r}{2}$. A more precise statement follows from the frequency count in Proposition 11

$$
\left.k:=\#\left\{u \in \mathbb{F}_{2}^{r} \mid \lambda(u)\right) \leq \frac{r-1}{2}\right\}=1+\sum_{l=1}^{\left\lfloor\frac{r-1}{2}\right\rfloor} 2^{2 l-1}=\frac{1}{2}+\frac{1}{2} \cdot \sum_{l=0}^{\left\lfloor\frac{r-1}{2}\right\rfloor} 4^{l}
$$

Case 2a: Let r be even. Then $\left\lfloor\frac{r-1}{2}\right\rfloor=\frac{r}{2}-1$, and

$$
\begin{gathered}
k=\frac{1}{2}+\frac{1}{2} \cdot \frac{4^{r / 2}-1}{3}=\frac{1}{2}+\frac{1}{6} \cdot\left(2^{r}-1\right)=\frac{1}{3}+\frac{1}{6} \cdot 2^{r}, \\
\mu_{0}=\frac{1}{2^{r}} \cdot k=\frac{1}{6}+\frac{1}{3 \cdot 2^{r}} \leq \frac{1}{3} \quad \text { for } r \geq 1
\end{gathered}
$$

Case 2b: Let r be odd. Then $\left\lfloor\frac{r-1}{2}\right\rfloor=\frac{r-1}{2}$, and

$$
\begin{gathered}
k=\frac{1}{2}+\frac{1}{2} \cdot \frac{4^{(r+1) / 2}-1}{3}=\frac{1}{2}+\frac{1}{6} \cdot\left(2^{r+1}-1\right)=\frac{1}{3}+\frac{1}{3} \cdot 2^{r} \\
\mu_{0}=\frac{1}{2^{r}} \cdot k=\frac{1}{3}+\frac{1}{3 \cdot 2^{r}} \leq \frac{1}{2} \quad \text { for } r \geq 1
\end{gathered}
$$

Hence in any case we have

$$
\mu_{1}-\mu_{0} \geq \frac{1}{2} \quad \text { for } r \geq 1
$$

Thus Δ is an ε-distinguisher for $0<\varepsilon \leq \frac{1}{2}$, distinguishing between LFSR sequences and random sequences.

