Appendix A

Statistical Distinguishers

As usual in these lecture notes we restrict ourselves to finite probability spaces.

A.1 Distingishing Distributions by a Test

Let A be a finite probability space with two probability distributions P_0 and P_1 . Accordingly for a real valued function $\Delta: A \longrightarrow \mathbb{R}$ we have the mean values (or expectations)

$$\mu_i = \sum_{a \in A} \Delta(a) \cdot P_i(a).$$

For $\varepsilon > 0$ we call Δ an ε -distinguisher of P_0 and P_1 if

$$|\mu_1 - \mu_0| \ge \varepsilon$$
.

That is, the expectations of Δ with respect to P_0 and P_1 differ considerably.

Note the analogy with the common statistical test scenario where we decide whether a sample deviates from an assumed distribution by comparing mean values.

This notion has an obvious analogue for bit valued functions (or binary attributes) $\Delta \colon A \longrightarrow \mathbb{F}_2$. Here

$$\mu_i = \sum_{a \in \Delta^{-1}(1)} P_i(a) = P_i(\Delta^{-1}(1))$$

is the probability that $\Delta(a) = 1$ for a randomly chosen $a \in A$. Thus

$$\mu_1 - \mu_0 = P_1(\Delta^{-1}(1)) - P_0(\Delta^{-1}(1)).$$

The "test" $\Delta \varepsilon$ -distinguishes between the distributions P_1 and P_0 if the probabilities for $\Delta(a) = 1$ with respect to these two distributions differ by at least ε .

136

Note that the notion "test" just means "function". However in the present context it suggests a role that this function plays. A similar remark also holds for the notion "randomize".

We may "randomize" our test by more generally considering a function

$$\Delta: A \times \Omega \longrightarrow \mathbb{F}_2$$

where Ω is a finite probability space from which we take an additional random input ω , and then consider the probabilities μ_i that $\Delta(a,\omega) = 1$,

$$\mu_i = \frac{1}{\#A \cdot \#\Omega} \cdot \#\{(a, \omega) \in A \times \Omega \mid \Delta(a, \omega) = 1\}.$$

A.2 Testing Bitsequences

A statistical test for bitsequences of length r is simply a Boolean function $\Delta \colon \mathbb{F}_2^r \longrightarrow \mathbb{F}_2$, a probabilistic statistical test is a function

$$\Delta: \mathbb{F}_2^r \times \Omega \longrightarrow \mathbb{F}_2$$

where Ω is a finite probability space.

We want to distinguish between random bitsequences $u \in \mathbb{F}_2^r$, and bitsequences that arise from a "generator map"

$$G \colon \mathbb{F}_2^n \longrightarrow \mathbb{F}_2^r$$

that transforms a randomly chosen $x \in \mathbb{F}_2^n$ (called "seed") to a bitsequence $G(x) \in \mathbb{F}_2^r$. This sequence G(x), if it passes our tests, may qualify as a pseudorandom sequence. In this test scenario the reference distribution P_0 is the uniform distribution on \mathbb{F}_2^r ,

$$P_0(u) = \frac{1}{2^r}$$
 for all $u \in \mathbb{F}_2^r$.

We want to compare it with the induced distribution

$$P_1(u) = \frac{1}{2^n} \cdot \#\{x \in \mathbb{F}_2^n \mid G(x) = u\}.$$

Or, somewhat more generally, if G is defined on a subset $A \subseteq \mathbb{F}_2^n$ only,

$$P_1(u) = \frac{1}{\#A} \cdot \#\{x \in A \mid G(x) = u\}.$$

A probabilistic statistical test $\Delta: \mathbb{F}_2^r \times \Omega \longrightarrow \mathbb{F}_2$ ε -distinguishes between random bitsequences $u \in \mathbb{F}_2^r$ and sequences generated by $G: \mathbb{F}_2^n \longrightarrow \mathbb{F}_2^r$ if

$$|\mu_1 - \mu_0| \ge \varepsilon$$

137

where

$$\mu_0 = \frac{1}{2^r \cdot \#\Omega} \cdot \#\{(u,\omega) \in \mathbb{F}_2^r \times \Omega \mid \Delta(u,\omega) = 1\}$$

is the probability that the test assigns the value 1 to a random bit sequence $u \in \mathbb{F}_2^r$, and

$$\mu_1 \ = \ \frac{1}{2^n \cdot \#\Omega} \cdot \#\{(x,\omega) \in A \times \Omega \mid \Delta(G(x)), \omega) = 1\}$$

is the probability that the test yields the value 1 for a bitstring generated by a random seed $x \in A$.

Examples

We want to distinguish sequences generated by a map $G: \mathbb{F}_2^n \longrightarrow \mathbb{F}_2^r$ from random sequences (by deterministic tests, that is $\#\Omega = 1$).

Example 1

First an extremely simple example with the test function

$$\Delta \colon \mathbb{F}_2^r \longrightarrow \mathbb{F}_2, \quad \Delta(u) = \begin{cases} 1 & \text{if } \#\{i \mid u_i = 1\} \ge \frac{r}{2}, \\ 0 & \text{otherwise,} \end{cases}$$

That is Δ decides on the majority of ones in the sequence u. Then obviously $\mu_0 = \frac{1}{2}$.

Case 1a: Let n = 1 and $G: \mathbb{F}_2 \longrightarrow \mathbb{F}_2^r$ be defined by

$$G(0) = (0, 0, 0, \ldots),$$

 $G(1) = (1, 1, 1, \ldots).$

Then also $\mu_1 = \frac{1}{2}$, yielding $\mu_1 - \mu_0 = 0$. Thus Δ is not an ε -distinguisher for any $\varepsilon > 0$.

Case 1b: We keep the definition of G(1) but change the definition of G(0)

$$G(0) = (1, 0, 1, 0, 1, \ldots).$$

Then $\Delta(G(0)) = \Delta(G(1)) = 1$, hence $\mu_1 = 1$, yielding $\mu_1 - \mu_0 = \frac{1}{2}$. Thus Δ is an ε -distinguisher for $0 < \varepsilon \le \frac{1}{2}$.

138

Example 2

For a serious example we consider sequences generated by a linear feedback shift register $G: \mathbb{F}_2^n \longrightarrow \mathbb{F}_2^r$ of length n where $2n < r \le 2^n - 1$. We know that the output of G is distinguished by a low linear complexity $\lambda(u) \le n$. Therefore we use

$$\Delta \colon \mathbb{F}_2^r \longrightarrow \mathbb{F}_2, \quad \Delta(u) = \begin{cases} 1 & \text{if } \lambda(u) < \frac{r}{2}, \\ 0 & \text{if } \lambda(u) \ge \frac{r}{2}, \end{cases}$$

as test . Since $n < \frac{r}{2}$ this yields

$$\mu_1 = \frac{1}{2^n} \cdot \#\{x \in \mathbb{F}_2^n \mid \Delta(G(x)) = 1\} = 1.$$

For arbitrary sequences $u \in \mathbb{F}_2^r$ we know from Theorem 3 that we may expect $\lambda(u) \approx \frac{r}{2}$. A more precise statement follows from the frequency count in Proposition 11

$$k := \#\{u \in \mathbb{F}_2^r \mid \lambda(u)) \le \frac{r-1}{2}\} = 1 + \sum_{l=1}^{\lfloor \frac{r-1}{2} \rfloor} 2^{2l-1} = \frac{1}{2} + \frac{1}{2} \cdot \sum_{l=0}^{\lfloor \frac{r-1}{2} \rfloor} 4^l.$$

Case 2a: Let r be even. Then $\lfloor \frac{r-1}{2} \rfloor = \frac{r}{2} - 1$, and

$$k = \frac{1}{2} + \frac{1}{2} \cdot \frac{4^{r/2} - 1}{3} = \frac{1}{2} + \frac{1}{6} \cdot (2^r - 1) = \frac{1}{3} + \frac{1}{6} \cdot 2^r,$$
$$\mu_0 = \frac{1}{2^r} \cdot k = \frac{1}{6} + \frac{1}{3 \cdot 2^r} \le \frac{1}{3} \quad \text{for } r \ge 1.$$

Case 2b: Let r be odd. Then $\lfloor \frac{r-1}{2} \rfloor = \frac{r-1}{2}$, and

$$k = \frac{1}{2} + \frac{1}{2} \cdot \frac{4^{(r+1)/2} - 1}{3} = \frac{1}{2} + \frac{1}{6} \cdot (2^{r+1} - 1) = \frac{1}{3} + \frac{1}{3} \cdot 2^r,$$

$$\mu_0 = \frac{1}{2^r} \cdot k = \frac{1}{3} + \frac{1}{3 \cdot 2^r} \le \frac{1}{2} \quad \text{for } r \ge 1.$$

Hence in any case we have

$$\mu_1 - \mu_0 \ge \frac{1}{2}$$
 for $r \ge 1$.

Thus Δ is an ε -distinguisher for $0 < \varepsilon \le \frac{1}{2}$, distinguishing between LFSR sequences and random sequences.