
Appendix A

Statistical Distinguishers

As usual in these lecture notes we restrict ourselves to finite probability
spaces.

A.1 Distingishing Distributions by a Test

Let A be a finite probability space with two probability distributions P0 and
P1. Accordingly for a real valued function � : A �! R we have the mean
values (or expectations)

µi =
X

a2A
�(a) · Pi(a).

For " > 0 we call � an "-distinguisher of P0 and P1 if

|µ1 � µ0| � ".

That is, the expectations of � with respect to P0 and P1 di↵er considerably.

Note the analogy with the common statistical test scenario where
we decide whether a sample deviates from an assumed distribu-
tion by comparing mean values.

This notion has an obvious analogue for bit valued functions (or binary
attributes) � : A �! F2. Here

µi =
X

a2��1(1)

Pi(a) = Pi(�
�1(1))

is the probability that �(a) = 1 for a randomly chosen a 2 A. Thus

µ1 � µ0 = P1(�
�1(1))� P0(�

�1(1)).

The “test” � "-distinguishes between the distributions P1 and P0 if the
probabilities for �(a) = 1 with respect to these two distributions di↵er by
at least ".

135

K. Pommerening, Bitstream Ciphers 136

Note that the notion “test” just means “function”. However in
the present context it suggests a role that this function plays. A
similar remark also holds for the notion “randomize”.

We may “randomize” our test by more generally considering a function

� : A⇥ ⌦ �! F2

where ⌦ is a finite probability space from which we take an additional ran-
dom input !, and then consider the probabilities µi that �(a,!) = 1,

µi =
1

#A ·#⌦
·#{(a,!) 2 A⇥ ⌦ |�(a,!) = 1}.

A.2 Testing Bitsequences

A statistical test for bitsequences of length r is simply a Boolean function
� : Fr

2 �! F2, a probabilistic statistical test is a function

� : Fr
2 ⇥ ⌦ �! F2

where ⌦ is a finite probability space.
We want to distinguish between random bitsequences u 2 Fr

2, and bitse-
quences that arise from a “generator map”

G : Fn
2 �! Fr

2

that transforms a randomly chosen x 2 Fn
2 (called “seed”) to a bitsequence

G(x) 2 Fr
2. This sequence G(x), if it passes our tests, may qualify as a

pseudorandom sequence. In this test scenario the reference distribution P0

is the uniform distribution on Fr
2,

P0(u) =
1

2r
for all u 2 Fr

2 .

We want to compare it with the induced distribution

P1(u) =
1

2n
·#{x 2 Fn

2 |G(x) = u} .

Or, somewhat more generally, if G is defined on a subset A ✓ Fn
2 only,

P1(u) =
1

#A
·#{x 2 A |G(x) = u} .

A probabilistic statistical test � : Fr
2 ⇥ ⌦ �! F2 "-distinguishes between

random bitsequences u 2 Fr
2 and sequences generated by G : Fn

2 �! Fr
2 if

|µ1 � µ0| � "

K. Pommerening, Bitstream Ciphers 137

where

µ0 =
1

2r ·#⌦
·#{(u,!) 2 Fr

2 ⇥ ⌦ |�(u,!) = 1}

is the probability that the test assigns the value 1 to a random bitsequence
u 2 Fr

2, and

µ1 =
1

2n ·#⌦
·#{(x,!) 2 A⇥ ⌦ |�(G(x)),!) = 1}

is the probability that the test yields the value 1 for a bitstring generated
by a random seed x 2 A.

Examples

We want to distinguish sequences generated by a map G : Fn
2 �! Fr

2 from
random sequences (by deterministic tests, that is #⌦ = 1).

Example 1

First an extremely simple example with the test function

� : Fr
2 �! F2, �(u) =

(
1 if #{i | ui = 1} � r

2 ,

0 otherwise,

That is � decides on the majority of ones in the sequence u. Then obviously
µ0 =

1
2 .

Case 1a: Let n = 1 and G : F2 �! Fr
2 be defined by

G(0) = (0, 0, 0, . . .),

G(1) = (1, 1, 1, . . .).

Then also µ1 = 1
2 , yielding µ1 � µ0 = 0. Thus � is not an "-distinguisher

for any " > 0.

Case 1b: We keep the definition of G(1) but change the definition of G(0)
to

G(0) = (1, 0, 1, 0, 1, . . .).

Then �(G(0)) = �(G(1)) = 1, hence µ1 = 1, yielding µ1 � µ0 =
1
2 . Thus �

is an "-distinguisher for 0 < " 1
2 .

K. Pommerening, Bitstream Ciphers 138

Example 2

For a serious example we consider sequences generated by a linear feedback
shift register G : Fn

2 �! Fr
2 of length n where 2n < r 2n � 1. We know

that the output of G is distinguished by a low linear complexity �(u) n.
Therefore we use

� : Fr
2 �! F2, �(u) =

(
1 if �(u) < r

2 ,

0 if �(u) � r
2 ,

as test . Since n < r
2 this yields

µ1 =
1

2n
·#{x 2 Fn

2 |�(G(x)) = 1} = 1.

For arbitrary sequences u 2 Fr
2 we know from Theorem 3 that we may expect

�(u) ⇡ r
2 . A more precise statement follows from the frequency count in

Proposition 11:

k := #{u 2 Fr
2 | �(u))

r � 1

2
} = 1 +

b r�1
2 cX

l=1

22l�1 =
1

2
+

1

2
·
b r�1

2 cX

l=0

4l.

Case 2a: Let r be even. Then b r�1
2 c = r

2 � 1, and

k =
1

2
+

1

2
· 4

r/2 � 1

3
=

1

2
+

1

6
· (2r � 1) =

1

3
+

1

6
· 2r,

µ0 =
1

2r
· k =

1

6
+

1

3 · 2r 1

3
for r � 1.

Case 2b: Let r be odd. Then b r�1
2 c = r�1

2 , and

k =
1

2
+

1

2
· 4

(r+1)/2 � 1

3
=

1

2
+

1

6
· (2r+1 � 1) =

1

3
+

1

3
· 2r,

µ0 =
1

2r
· k =

1

3
+

1

3 · 2r 1

2
for r � 1.

Hence in any case we have

µ1 � µ0 � 1

2
for r � 1.

Thus � is an "-distinguisher for 0 < " 1
2 , distinguishing between LFSR

sequences and random sequences.

