
Chapter 4

Perfect Pseudorandom
Generators

As we saw the essential cryptologic criterion for pseudorandom generators
is unpredictability. In the 1980s cryptographers, guided by an analogy with
asymmetric cryptography, found a way of modelling this property in terms of
complexity theory: Prediction should boil down to a known “hard” algorith-
mic problem such as factoring integers or discrete logarithm. This idea estab-
lished a new quality standard for pseudorandom generators, much stronger
than statistical tests, but eventually building on unproven mathematical hy-
potheses. Thus the situation with respect to the security of pseudorandom
generators is comparable to asymmetric encryption.

As an interesting twist it soon turned out that in a certain sense unpre-
dictability is a universal property: For an unpredictable sequence there is no
e�cient algorithm at all that distinguishes it from a true random sequence,
a seemingly much stronger requirement. See Theorem 4 (Yao’s theorem).
This universality justifies the denomination “perfect” for the corresponding
pseudorandom generators. In particular there is no e�cient statistical test
that is able to distinguish the output of a perfect pseudorandom genera-
tor from a true random sequence. Thus, on the theoretical side, we have
a very appropriate model for pseudorandom generators that are absolutely
strong from a statistical viewpoint, and invulnerable from a cryptological
viewpoint. In other words:

Perfect pseudorandom generators are cryptographically secure
and statistically undistinguishable from true random sources—
and are fit for any e�cient application that needs random input.

Presumably perfect pseudorandom generators exist, but there is
no complete mathematical proof ot their existence.

The first concrete approaches to the construction of perfect pseudoran-
dom generators yielded algorithms that were too slow for most practical uses
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(given the then current CPUs), the best known being the BBS generator (for
Lenore Blum, Manuel Blum, Michael Shub). But modified approaches soon
provided pseudorandom generators that are passably fast und nevertheless
(presumably) cryptographically secure.

Looking back at Section 3.6 we might stumble over the apparent contra-
diction with the general “rule”: “If a sequence has a short description (as the
BBS sequence obviously has!), then it can’t be random and even has a short
description by a linear feedback shift register.” In particular this would yield
an e�cient algorithm that distinguishes it from a random sequence. However
as already stated in 3.6 this rule leaves a small loophole—small in relative
terms but maybe wide enough in absolute terms. The notion of pseudoran-
domness tries to slip through this loophole, see Figure 4.1: Pseudorandom
sequences

• are not random because they have a short description,

• can’t nevertheless be e�ciently predicted, or distinguished from ran-
dom sequences.

For some more theoretical framework see the book [1].

Figure 4.1: “Pseudorandom” as intersection of “Short description” and
“Unpredictable”—the size of the areas is by far not to scale.

In the literature we find many tests for randomness:

• Marsaglia’s diehard test suite, a collection of statistical tests that
check the fitness of a sequence for statistical, but not cryptological
applications,

• Golomb’s postulates, see Section 1.10 above,
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• the linear complexity profile, see Chapter 3 above,

• Maurer’s universal test, see [5, 5.4.5],

• the LIL test, see [9].

By definition a perfect pseudorandom generator will pass all these tests.
However in practice, since perfectness is an “asymptotic property” only,
applying these tests can’t harm.
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4.1 The BBS Generator

As with the RSA cipher we consider an integer module n that is a product of
two large prime numbers. For the BBS generator we choose a Blum integer,
preferably—but not necessarily—a special or even superspecial one.

Choosing n superspecial ensures that the sequence of states has
a huge period. See the discussion in the Appendices 12–14 of
Part III. However the following security proof doesn’t depend on
this property.

The BBS generator works in the following way that easily fits into the
general framework of Figure 2.1: As a first step choose two large random
Blum primes p and q, and form their product n = pq. The factors p and q
are internal (secret) parameters, the product n may be treated as internal
or external (public) parameter. As a second step choose a random integer,
the “seed”, s with 1  s  n� 1, and coprime with n.

The coprimality is e�ciently tested with the Euclidean algo-
rithm. If we catch an s not coprime with n, we have factorized
n by hazard. This might happen, but is extremely unlikely, and
can easily be captured at initialization time.

Then we proceed with generating a pseudorandom sequence: Take x0 =
s 2 Mn as initial state, and form the sequence of inner states of the pseu-
dorandom generator: xi = x2i�1 mod n for i = 1, 2, 3, . . . In each step output
the last significant bit of the binary representation, that is ui = xi mod 2
for i = 1, 2, 3 . . ., or in other words, the parity of xi.

If xi <
p
n, then x2i mod n = x2i , the integer square, so x2i+1 has

the same parity as xi. In order to avoid a constant segment at
the beginning of the output, often the boundary areas s <

p
n,

as well as s > n�
p
n, are excluded. However if we really choose

s as a true random value, the probability for s falling into these
boundary areas is extremely low. But to be on the safe side we
may require

p
n  s  n�

p
n.

If the seed s happens to be a quadratic non-residue, the sequence
of inner states (the BBS sequence) has a preperiod of length 1.

Example

Of course an example with small numbers is practically irrelevant, but it
illustrates the algorithm: Take p = 7, q = 11, n = 77, s = 53. Then s2 =
2809, hence x1 = 37, and u1 = 1 since x1 is odd. The following table shows
the beginning of the sequence of states:
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i 1 2 3 4 . . .
xi 37 60 58 53 . . .
ui 1 0 0 1 . . .

Since x4 = 53 = s the seed s happens to be a quadratic residue, and the
BBS sequence has period 4. Therefore the output “pseudorandom” sequence
(ui) a forteriori has period 4.

Treating the primes p and q as secret is essential for the security of the
BBS generator. They serve for forming n only, afterwards they may even be
destroyed—in contrast with RSA there is no further use for them (except
when you use SageMath, see below). Likewise all the non-output bits of the
inner states xi must be secret. Moreover there is no reason to reveal the
product n = pq even if the following security proof doesn’t depend on the
nondisclosure of n.

SageMath has an implementation of the BBS generator via the methods
random blum prime() and blum blum shub(). The code sample 4.1 shows
how to use them.

Sage Example 4.1 Generating a pseudorandom bit sequence by the BBS
generator

sage: from sage.crypto.util import random_blum_prime

sage: from sage.crypto.stream import blum_blum_shub

sage: p = random_blum_prime(2^511, 2^512)

sage: q = random_blum_prime(2^511, 2^512)

sage: s = 11.powermod(248,p*q) # a (not so random) example

sage: prseq = blum_blum_shub(1024,s,p,q)

Table 4.1 shows a Blum integer with 309 decimal places (or 1024 bits)
that was an intermediate result of this program. Considering the progress
of factoring algorithms we better should use Blum integers of at least 2048
bits.

4506 15286 74466 50249 26225 14044 26383 22616 74480 10227

69340 10344 80414 96318 08671 21639 63710 30387 17602 25696

53909 02080 09976 45161 76261 91025 59480 62175 49124 86394

40823 70452 14981 62658 94574 67753 74945 83135 16199 61782

07594 51105 16833 44889 30109 66289 10763 64987 90309 41852

27681 66632 02722 32988 57145 85172 07427 89442 30004 31819

83739 34537

Table 4.1: A 1024 bit Blum integer

Table 4.2 shows the resulting bitsequence. Be warned that the SageMath
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output is of type StringMonoidElement. For further use in a stream cipher
it might be necessary to convert it to a bitblock or bitstring.

1000 1111 1001 0101 1001 0111 0011 0100 0010 1000 1100 0001

1010 0101 1110 1001 1010 1001 0110 0010 1010 1010 0111 0111

1000 1010 1000 1101 1111 1101 1010 1100 1100 0001 0101 1001

0111 1111 0001 0100 1010 0000 1100 1010 0101 1000 1110 0000

0001 1011 0100 0100 1010 0010 1010 1010 0110 1001 0111 1100

1011 0010 0011 0100 1101 1001 0101 0100 0111 0100 0010 0111

1101 1000 0010 0111 1000 0110 1110 0111 1110 1101 0110 1000

0001 0011 1111 0011 0011 0101 0001 0001 1010 0110 0101 1000

1010 1100 1011 0011 1111 1000 1001 0100 0001 1110 1111 1111

1001 0000 0010 0000 0111 0111 1001 0001 1111 0100 1010 0011

1000 0111 1100 0000 1011 0110 1011 1010 0111 0100 1110 1001

1001 0101 0011 1000 0010 0011 1010 1001 1100 0010 1111 1001

1010 1001 0110 0011 1001 0100 1000 1111 1001 1001 0010 1000

0111 0110 1101 0011 0110 0010 1110 0010 0000 1100 1011 1111

0011 0010 0110 1110 1000 1000 1110 1110 0011 0010 0100 0100

1101 1000 0011 0010 1000 1110 1000 1101 1010 0001 0011 1100

1001 0110 1010 0000 0000 0000 1011 0111 1010 0010 1100 1010

0100 0010 0010 0010 0010 1011 0100 0000 1100 1010 1101 0000

1101 1111 0011 0001 1000 0000 0111 0111 1110 1111 0011 1011

1111 0001 0010 1000 0110 1011 0111 0011 1111 1011 0101 0100

0110 1111 1111 0011 1011 0000 1010 0010 1100 0010 1001 0101

1110 1001 1001 1001

Table 4.2: 1024 “perfect” pseudorandom bits. Note that generating 1024
pseudorandom bits from a 1024-bit random integer isn’t worth the e↵ort.
However we could continue this sequence much further and generate, say,
230 pseudorandom bits.

Figure 4.2 gives an optical impression of the randomness of this sequence,
and Figure 4.3, of its linearity profile.
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Figure 4.2: Visualization of a “perfect” pseudorandom sequence

Figure 4.3: Linearity profile of a “perfect” pseudorandom sequence
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4.2 The BBS Generator and Quadratic Residuos-
ity

Given a seed s 2 M+
n the BBS generator outputs a bit sequence

(b1(s), . . . , br(s))—by the way the same sequence as the seed s0 =
p
s2 mod n

that is a quadratic residue. A probabilistic circuit (see Appendix B of
Part III)

C : Fr
2 ⇥ ⌦ �! F2

has an "-advantage for BBS extrapolation with respect to n if

P ({(s,!) 2 Mn ⇥ ⌦ | C(b1(s), . . . , br(s),!) = lsb(
p
s2 mod n)}) � 1

2
+ ".

In other words: The algorithm implemented by C “predicts” (or extrapo-
lates) the bit preceding a given subsequence with "-advantage.

If we seed the generator with a quadratic residue s, then C out-
puts the parity of s (with "-advantage). If fed with a later seg-
ment (bi+1, . . . , bi+r) (with i � 1) of a BBS output C extrapo-
lates the preceding bit bi.

In the following lemmas and proposition let ⌧t be the maximum expense
of the operation xy mod n where n is a t-bit integer and 0  x, y < n. We
know that ⌧t = O(t2) (and even know an exact upper bound for the circuit
size).

Lemma 16 Let n be a Blum integer < 2t. Assume the probabilistic cir-
cuit C : Fr

2 ⇥ ⌦ �! F2 has an "-advantage for BBS extrapolation with re-
spect to n. Then there is a probabilistic circuit C 0 : Ft

2 ⇥ ⌦ �! F2 of size
#C 0  #C + r⌧t + 4 that has an "-advantage for deciding quadratic residu-
osity for x 2 M+

n .

Proof. First we compute the BBS sequence (b1, . . . , br) for the seed s 2 M+
n at

an expense of r⌧t. Then C computes the bit lsb(
p
s2 mod n) with advantage

". Therefore setting

C 0(s,!) :=

(
1 if C(b1, . . . , br,!) = lsb(s),

0 otherwise,

we decide the quadratic residuosity of s with "-advantage by the corollary
of Proposition 24 in Appendix A.11 of Part III. The additional costs for
comparing bits are at most 4 additional nodes in the circuit. 3

Now let C: Ft
2 ⇥⌦ �! F2 be an arbitrary probabilistic circuit. Then for

m � 1 we define the m-fold circuit by

C(m) : Ft
2 ⇥ ⌦m �! F2,
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C(m)(s,!1, . . . ,!m) :=

(
1 if #{i | C(s,!i) = 1} � m

2 ,

0 otherwise.

So this circuit represents the “majority decision”. Its implementation con-
sists of m parallel copies of C, one integer addition of m bits, and one
comparision of d2logme-bit integers, hence by Appendix B.3 of Part III its
size is

#C(m)  r ·#C + 2m2.

Lemma 17 (Amplification of advantage) Let A ✓ Ft
2, and let C be a circuit

that computes the Boolean function f : A �! F2 with an "-advantage. Let
m = 2h+ 1 be odd.

Then C(m) computes the function f with an error probability of

 (1� 4"2)h

2
.

For each � > 0 there is an

m  3 +
1

2�"2

such that C(m) computes the function f with an error probability �.

Proof. The probability that C gives a correct answer is

p := P ({(s,!) 2 A⇥ ⌦ | C(s,!) = f(s)}) � 1

2
+ ".

Since enlarging " tightens the assertion we may assume that p = 1
2 + ".

The complementary value q := 1 � p = 1
2 � " equals the probability that

C gives a wrong answer. Hence the probability of getting exactly k correct
answers from m independent invocations of C is

�m
k

�
pkqm�k. Thus the error

probability we search is

P ({(s,!1, . . . ,!m) 2 A⇥ ⌦m | C(m)(s,!1, . . . ,!m) = f(s)})

=
hX

k=0

✓
m

k

◆
(
1

2
+ ")k(

1

2
� ")m�k

= (
1

2
+ ")h(

1

2
� ")h+1 ·

hX

k=0

✓
m

k

◆
(
1

2
+ ")k�h(

1

2
� ")h�k

= (
1

4
� "2)h · (1

2
� ") ·

hX

k=0

✓
m

k

◆ 1
2 � "
1
2 + "

!h�k

| {z }
1| {z }

2m�1=4h

 (1� 4"2)h
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which proves the first statement.
For an error probability � a su�cient condition is:

(1� 4"2)h  2�,

h · ln(1� 4"2)  ln 2 + ln �,

h � ln 2 + ln �

ln(1� 4"2)
.

Therefore we choose

(1) h :=

⇠
ln 2 + ln �

ln(1� 4"2)

⇡
.

Then the error probability of C(m) is at most �, and

h  1 +
ln 2 + ln �

ln(1� 4"2)
= 1 +

ln 1
� � ln 2

ln 1
1�4"2

 1 +
1
� � 1� ln 2

4"2
 1 +

1

4�"2
,

proving the second statement. 3

By the way the size of C(m) is

#C(m) 

3 +

1

2�"2

�
·#C + 2 ·


3 +

1

2�"2

�2
.

Merging the two lemmas we get:

Proposition 13 Let n be a Blum integer < 2t. Assume the probabilis-
tic circuit C : Fr

2 ⇥ ⌦ �! F2 has an "-advantage for BBS extrapolation
with respect to n. Then for each � > 0 there is a probabilistic circuit
C 0 : Ft

2 ⇥ ⌦0 �! F2 that decides quadratic residuosity in M+
n with error prob-

ability � and has size

#C 0 

3 +

1

2�"2

�
· [#C + r⌧t + 4] + 2 ·


3 +

1

2�"2

�2
.

Note that the size of C 0 is polynomial in r, #C, 1
� ,

1
" , and t, and we even

could make this polynomial explicit. Thus:

From an e�cient probabilistic BBS extrapolation algorithm for
the module n with "-advantage we can construct an e�cient prob-
abilistic decision algorithm for quadratic residuosity for n with
arbitrary small error probability.
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This complexity bound becomes even more perspicuous, when we specify
dependencies from the input complexity, measured by the bit size t. Thus
we choose

• r  f(t) with a polynomial f 2 Q[T ] (that is we generate only “poly-
nomially many” pseudorandom bits),

• 1
�  g(t) (or � � 1/g(t)) with a polynomial g 2 Q[T ] (that is we don’t
choose � “too small”, not like an ambitious � < 1/2t),

• 1
"  h(t) (or " � 1/h(t)) with a polynomial h 2 Q[T ] (that is " is
reasonably small, not only like a modest " ⇡ 1/ log(t)).

Then

#C 0 

3 +

1

2
g(t)h(t)2

�
· [#C + f(t) ⌧t + 4] + 2 ·


3 +

1

2
g(t)h(t)2

�2

 �(t) ·#C + (t)

with polynomials �,  2 Q[t]. In the following section we’ll see how this
statement makes BBS a “perfect” pseudorandom generator.

The hypothetical decision algorithm for s 2 M+
n from Proposition 13

runs like this (assuming that n is a public parameter):

1. Construct the BBS-sequence b1(s), . . . , br(s) (using the public param-
eter n).

2. Choose the desired error probability �.

3. Choose m = 2h+ 1 with h as in Equation 1.

4. Choose random elements !1, . . . ,!m 2 ⌦ and determine bi =
C(s,!i) 2 F2 for i = 1, . . . , r.

5. Count z = #{i | bi = lsb(s)}.

6. If z � m/2 output 1 (“quadratic residue”), else output 0 (“quadratic
nonresidue”).
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4.3 Perfect Pseudorandom Generators

A sound definition of the concept “pseudorandom generator” is overdue.
Informally we define it as an e�cient algorithm that takes a “short” bitstring
s 2 Fn

2 and converts it into a “long” bitstring s 2 Fr
2, compare Appendix A.2.

The terminology of complexity theory as in Appendix B of Part III
allows us to give a mathematically exact (but not completey satisfying from
a practical point of view) definition by considering parameter-dependent

families of Boolean maps (or circuits) Gn : Fn
2 �! Fr(n)

2 , and analyzing their
behaviour when the parameter n grows to infinity. Such an algorithm—
represented by the family (Gn)n2N of Boolean circuits—can be e�cient only
if the “expanding function” r : N �! N grows at most polynomially with the
parameter n, otherwise even writing down the output sequence in an e�cient
way is impossible. We measure the complexity in a meaningful way by the
size of the circuit (or by counting the number of needed bit operations) that
likewise must grow at most polynomially with n.

To make this idea more precise we consider an infinite parameter set
M ✓ N. We assume that an instance of the generator is defined for each
m 2 M . As an example think of M as a set of Blum integers. Let
Mn = M \ [2n�1 . . . 2n[ be the set of n-bit integers in M .

A pseudorandom generator with parameter set M and expan-

sion function r is a family G = (Gm)m2M of Boolean circuits

Gm : Am �! F r(n)
2 with Am ✓ Fn

2 ,

where n is the bitlength of m, such that there exists a (deterministic) poly-
nomial family of circuits G̃ = (G̃n)n2N, where G̃n has 2n deterministic input
nodes, with G̃n(m,x) = Gm(x). (In other words: The pseudorandom bits are
e�ciently computable. In particular the function r is bounded by a polyno-
mial in n.) Am is called the set of seeds for the parameter m. Thus each Gm

expands an n-bit sequence x 2 Am to a r(n)-bit sequence Gm(x) 2 F r(n)
2 .

To see how the BBS generator fits into this definition let M be the
set of Blum integers or an infinite subset of it, Am = Mm, and Gm(x) =
(b1(x), . . . , br(n)(x)) be the corresponding BBS sequence, bi(x) = lsb(xi)
where x0 = x, xi = x2i�1 mod m, for m 2 M .

A polynomial test for the pseudorandom generator G is a polynomial
family of (probabilistic) circuits C = (Cn)n2N,

Cn : Fn
2 ⇥ F r(n)

2 ⇥ ⌦n �! F2

over a probability space ⌦n ✓ F s(n)
2 where s(n) is the number of probabilis-

tic inputs of Cn. Thus the test Cn may depend on the parameter m. The
probability that the test computes the value 1 for a sequence generated by
G is

p(G,C,m) = P{(x,!) 2 Am ⇥ ⌦n | Cn(m,Gm(x),!) = 1}.
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The probability that the test computes the value 1 for an arbitrary (“true
random”) sequence of the same length is

p̄(C,m) = P{(u,!) 2 F r(n)
2 ⇥ ⌦n | Cn(m,u,!) = 1}.

Ideally (for a “good” generator) these two probabilities should agree approx-
imately: the test should not be an "-distinguisher for reasonable values of
" and for almost all parameters m. We say the pseudorandom generator G
passes the test C if for all non-constant polynomials h 2 N[X] the set A
of m 2 M with

|p(G,C,m)� p̄(C,m)| � 1

h(n)

is sparse in M (the set of parameters m for which C is a 1/h(n)-
distinguisher).

Recall from Appendix B.7 of Part III that this means that

#(A \Mn)

#Mn
 1

⌘(n)
for almost all n 2 N

for each non-constant polynomial ⌘ 2 N[X].

The pseudorandom generator G is called perfect if it passes all polynomial
tests. In sloppy words:

No e�cient statistical test (or algorithm) is able to distinguish a
bit sequence generated by G from a “true random” bit sequence.
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4.4 Yao’s Criterion

At first sight trying to prove the perfectness of a pseudorandom generator G
seems hopeless. How to manage “all polynomial tests”? But surprisingly a

seemingly much weaker test is su�cient. Let Gm(x) = (b(m)
1 (x), . . . , b(m)

r(n)(x))

be the bit sequence generated by Gm from the seed x. Let C = (Cn)n2N be
a polynomial family of circuits,

Cn : Fn
2 ⇥ F in

2 ⇥ ⌦n �! F2

with 0  in  r(n) � 1, and let h 2 N[X] be a non-constant polynomial.
Then we say that C has a 1

h -advantage for extrapolating G if the set of
parameters m 2 M with

P{(x,!) 2 Am ⇥ ⌦n | Cn(m, b(m)
jm+1(x), . . . , b

(m)
jm+in

(x),!) = b(m)
jm

(x)}

(2) � 1

2
+

1

h(n)

for an index jm, 1  jm  r(n)�in, is not sparse in M . In other words given
a subsequence C extrapolates the preceding bit with a small advantage in
su�ciently many cases. We say that G passes the extrapolation test if
there exists no such polynomial family of circuits with a 1

h -advantage for
extrapolating G for any polynomial h 2 N[X].

For instance the linear congruential generator fails the extrapolation test,
as does a linear feedback shift register.

Theorem 4 [Yao’s criterion] The following statements are equivalent for a
pseudorandom generator G:

(i) G is perfect.

(ii) G passes the extrapolation test.

Proof. “(i) =) (ii)”: Assume G fails the extrapolation test. Then there is a
polynomial family C of circuits that has a 1

h -advantage for extrapolating G.
Let A ✓ M be the non-sparse set of parameters for which the inequality (2)
holds. We construct a polynomial test C 0 = (C 0

n)n2N:

C 0
n(m,u,!) = Cn(m,ujm+1, . . . , ujm+in ,!) + ujm + 1

where for m 2 Fn
2 � A we set jm = 1 (this value doesn’t matter anyway).

Hence

C 0
n(m,u,!) = 1 () Cn(m,ujm+1, . . . , ujm+in ,!) = ujm .
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For m 2 A we get

p(G,C 0,m) = P{Cn(m, b(m)
jm+1(x), . . . , b

(m)
jm+in

(x),!) = b(m)
jm

(x)} � 1

2
+

1

h(n)

and have to compare this value with

p̄(C 0,m) = P{Cn(m,ujm+1, . . . , ujm+in ,!) = ujm}

= P{Cn(. . .) = 0 and ujm = 0}+ P{Cn(. . .) = 1 and ujm = 1}.

(The sum corresponds to a decomposition into two disjoint subsets.) Each
summand denotes the probability that two independent events occur simul-
taneously. Thus

p̄(C 0,m) =
1

2
P{Cn(. . .) = 0}+ 1

2
P{Cn(. . .) = 1} =

1

2
.

Hence for m 2 A

p(G,C 0,m)� p̄(C 0,m) � 1

h(n)
.

We conclude that G fails the test C 0, and therefore is not perfect.
“(ii) =) (i)”: Assume G is not perfect. Then there is a polynomial test

C failed by G. Hence there is a non-constant polynomial h 2 N[X] and a
t 2 N with

|p(G,C,m)� p̄(C,m)| � 1

h(n)

for m from a non-sparse subset A ✓ M with #An � #Mn/nt for infinitely
many n 2 I. For at least half of all m 2 An we have p(G,C,m) > p̄(C,m)
or the inverse inequality. First we treat the first of these two cases (for fixed
n).

For k = 0, . . . , r(n) let

pkm = P{Cn(m, t1, . . . , tk, b
(m)
k+1(x), . . . , b

(m)
r(n)(x),!) = 1}

where t1, . . . , tk 2 F2 are random bits. So we consider the probability in
Am ⇥ (F k

2 ⇥ ⌦n). We have

p0m = p(G,C,m), pr(n)m = p̄(C,m),

1

h(n)
 p0m � pr(n)m =

r(n)X

k=1

(pk�1
m � pkm)

for the m 2 An under consideration. Thus there is an rm with 1  rm  r(n)
such that

prm�1
m � prmm � 1

r(n)h(n)
.
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One of these values rm occurs at least (#Mn/2ntr(n)) times, denote it by
kn.

Let ⌦0
n = F kn

2 ⇥ ⌦n. The polynomial family C 0 of circuits whose deter-

ministic inputs are fed from An ⇥ F r(n)�kn
2 , and whose probabilistic inputs

from ⌦0
n, is defined for this n by

C 0
n(m,u1, . . . , ur(n)�kn , t1, . . . , tkn ,!) = Cn(m, t, u,!) + tkn + 1.

Hence
C 0
n(m,u, t,!) = tkn () Cn(m, t, u,!) = 1.

Now
C 0
n(m, b(m)

kn+1(x), . . . , b
(m)
r(n)(x), t,!) = b(m)

kn
(x)

()

8
><

>:

Cn(m, t, b(m)
kn+1(x), . . . , b

(m)
r(n)(x),!) = 1 and tkn = b(m)

kn
(x)

or

Cn(m, t, b(m)
kn+1(x), . . . , b

(m)
r(n)(x),!) = 0 and tkn 6= b(m)

kn
(x)

Both cases describe the occurence of two independent events. Therefore the
probability of the second one is 1

2(1� pknm ). The first one is equivalent with

Cn(m, t1, . . . , tkn�1, b
(m)
kn

(x), . . . , b(m)
r(n)(x),!) = 1 and tkn = b(m)

kn
(x) .

Its probability is pkn�1
m /2. Together this gives

P{C 0
n(m, b(m)

kn+1(x), . . . , b
(m)
r(n)(x), t,!) = b(m)

kn
(x)}

=
1

2
+

1

2
(pkn�1

m � pknm ) � 1

2
+

1

2r(n)h(n)

for at least #Mn/2ntr(n) of the parametersm 2 Mn. With u = t+deg(r)+1
this is � #Mn/nu for infinitely many n 2 I.

In the case where p(G,C,m) < p̄(C,m) for at least half of all m 2 An

we analoguously set

C 0
n(m,u, t,!) = Cn(m, t, u,!) + tkn .

Then the derivation runs along the same lines.
Therefore G fails the extrapolation test (with in = r(n) � kn and

jm = kn). 3

By the way the proof made use of the non-uniformity of the compu-
tational model: C 0

n depends on kn, and we didn’t give an algorithm that
determines kn.
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4.5 The Prediction Test

The extrapolation test looks somewhat strange since it extrapolates the bit
sequence in reverse direction, a clear contrast with the usual cryptanalytic
procedures that try to predict forthcoming bits. We’ll immediately remedy
this quaint e↵ect:

Let C = (Cn)n2N be a polynomial family of circuits,

Cn : Fn
2 ⇥ F in

2 ⇥ ⌦n �! F2

with 0  in  r(n)�1, and let h 2 N[X] be a non-constant polynomial. Then
C has a 1

h -advantage for predicting G if the subset of parameters m 2 M
with

P{(x,!) | Cn(m, b(m)
1 (x), . . . , b(m)

in
(x),!) = b(m)

in+1(x)} � 1

2
+

1

h(n)

is not sparse in M . The pseudorandom generator G passes the prediction

test if no polynomial family of circuits has an advantage for predicting G.
The proof of “(i) =) (ii)” in Theorem 4 directly adapts to this situation
yielding:

Corollary 1 Every perfect pseudorandom generator passes the prediction
test.

Corollary 2 If the quadratic residuosity conjecture is true, then the BBS
generator is perfect, in particular passes the prediction test.

Proof. Otherwise from Proposition 13 we could construct a polynomial fam-
ily of circuits that decides quadratic residuosity for a non-sparse subset of
Blum integers. 3

The paper

U.V. Vazirani, V.V. Vazirani: E�cient and secure pseudo-
random number generation, Crypto 84, 193–202

contains a stronger result: If the factoring conjecture is true, i. e. if factoring
large integers is hard, then the BBS generator is perfect.
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4.6 Examples and Practical Considerations

We saw that the BBS generator is perfect under a plausible but unproven
assumption, the quadratic residuosity hypothesis. However we don’t know
relevant concrete details, for example what parameters might be inappropri-
ate. We know that certain initial states generate output sequences with short
periods. Some examples of this e↵ect are known, but we are far from a com-
plete answer except for superspecial Blum modules. However the security
proof (depending on the quadratic residuosity hypothesis) doesn’t require
additional assumptions. Therefore we may confidently use the BBS gener-
ator with a pragmatic attitude: randomly choosing the parameters (primes
and initial state) the probability of hitting “bad” values is extremely low,
much lower then finding a needle in a haystack, or even in the universe.

Nevertheless some questions are crucial for getting good pseudorandom
sequences from the BBS generator in an e�cient way:

• How large should we choose the module m?

• How many bits can we use for a fixed module and initial state without
compromising the security?

The provable results—relative to the quadratic residuosity hypothesis—
are qualitative only, not quantitative. The recommendation to choose a mod-
ule that escapes the known factorization methods also rests on heuristic con-
siderations only, and doesn’t seem absolutely mandatory for a module that
itself is kept secret. The real quality of the pseudorandom bit sequence, be
it for statistical or for cryptographic applications, can only be assessed by
empirical criteria for the time being. We are confident that the danger of
generating a “bad” pseudorandom sequence is extremely small, in any case
negligeable, for modules that escape the presently known factorization algo-
rithms, say at least of a length of 2048 bits, and for a true random choice of
the module and the initial state.

Émile Borel proposed an informal ranking of negligeability of
extremely small probabilities:  10�6 from a human view; 
10�15 from a terrestrial view;  10�45 from a cosmic view. By
choosing a su�ciently large module m for RSA or BBS we easily
undercut Borel’s bounds by far.

For the length of the useable output sequence we only know the quali-
tative criterion “at most polynomially many” that is useless in a concrete
application. But even if we only use “quadratically many” bits we wouldn’t
hesitate to take 4 millions bits from the generator with a � 2000 bit module.
Should we need substantially more bits we would restart the generator with
new parameters after every few millions of bits.
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An additional question suggests itself: Are we allowed to output more
then a single bit of the inner state in each iteration step to enhance the
practical benefit of the generator? At least 2 bits?

Vazirani andVazirani, and independentlyAlexi,Chor,Goldreich,
and Schnorr gave a partial answer to this question, unfortunately also a
qualitative one only: at least O(log2 log2m) of the least significant bits are
“safe”. Depending on the constants that hide in the “O” we need to choose
a su�ciently large module, and trust empirical experience. A common rec-
ommendation is using blog2 log2mc bits per step. Then for a module m
of 2048 bits, or roughly 600 decimal places, we can use 11 bits per step.
Calculating x2 mod m for a n bit number m takes ( n

64)
2 multiplications of

64-bit integers and subsequently the same number of divisions of the type
“128 bits by 64 bits”. For n = 2048 this makes a total of 2 · (25)2 = 2048
multiplicative operations to generate 11 bits, or about 200 operations per
bit. A well-established rule of thumb says that a modern CPU executes one
multiplicative operation per clock cycle. (Special CPUs that use pipelines
and parallelism are significantly faster.) Thus on a 2-GHz CPU with 64-bit
architecture we may expect roughly 2 ·109/200 ⇡ 10 million bits per second,
provided the algorithm is implemented in an optimized way. This consider-
ation shows that the BBS generator is almost competitive with a software
implementation of a su�ciently secure nonlinear combiner of LFSRs, and is
fast enough for many purposes if executed on a present day CPU.

The cryptographic literature o↵ers several pseudorandom generators
that follow similar principles as BBS:

The RSA generator (Shamir). Choose a random module m of n bits as
a product of two large primes p, q, and an exponent d that is coprime
with (p�1)(q�1), furthermore a random initial state x = x0. The state
transition is x 7! xd mod m. Thus we calculate xi = xdi�1 mod m, and
output the least significant bit, or the blog2 log2mc least significant
bits. If the RSA generator is not perfect, then there exists an e�cient
algorithm that breaks the RSA cipher. Since calculating d-th powers
is more expensive by a factor n than squaring the cost is higher then
for BBS: for a random d the algorithm needs O(n3) cycles per bit.

The index generator (Blum/Micali). As module choose a random
large prime p of n bits, and find a primitive root a for p. Furthermore
choose a random initial state x = x0, coprime with p � 1. Then cal-
culate xi = axi�1 mod p, and and ouput the most significant bit of xi,
or the blog2 log2 pc most significant bits. The perfectness of the index
generator relies on the hypothesis that calculating discrete logarithms
modp is hard. The cost per bit also is O(n3).

The elliptic index generator (Kaliski). It works like the index gener-
ator, but replacing the group of invertible elements of the field Fp by
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an elliptic curve over Fp (such a curve is a finite group in a canonical
way).
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x2 y2

xd1 mod m
-output y2XXXXXXXX

x1 y1

xd0 mod m
— — — n bits — — — — — — — —

-output y1XXXXXXXXXXXXXXXX

x0
— 2n/d bits —

XXXXXXXXXXXXXXXX

x0 has 2n/d bits.

xd0 has 2n bits.

Figure 4.4: Micali-Schnorr generator

4.7 The Micali-Schnorr Generator

Micali and Schnorr proposed a pseudorandom generator that is a descen-
dent of the RSA generator. Fix an odd number d � 3. The parameter set
is the set of all products m of two primes p and q whose bit lengths di↵er
by at most 1, and such that d is coprime with (p � 1)(q � 1). For an n-bit
number m let h(n) be an integer ⇡ 2n

d . Then the d-th power of an h(n)-bit
number is (approximately) a 2n-bit number.

In the i-th step calculate zi = xdi�1 mod m. Take the first h(n) bits as the

new state xi, that is xi = bzi/2n�h(n)c, and output the remaining bits, that
is yi = zi mod 2n�h(n). Thus the bits of the result zi are partitioned into two
disjoint parts: the new state xi, and the output yi. Figure 4.4 illustrates this
scheme.

But why may we hope that this pseudorandom generator is perfect? This
depends on the hypothesis: There is no e�cient test that distinguishes the
uniform distribution on {1, . . . ,m � 1} from the distribution of xd mod m
for uniformly distributed x 2 {1, . . . , 2h(n)}. If this hypothesis is true, then
the Micali-Schnorr generator is perfect. This argument seems tautologic,
but heuristic considerations show a relation with the security of RSA and
with factorization. Anyway we have to concede that this “proof of security”
seems considerably more airy then that for BBS.

How fast do the pseudorandom bits tumble out of the machine? As ele-
mentary operations we again count the multiplication of two 64-bit numbers,
and the division of a 128-bit number by a 64-bit number with 64-bit quo-
tient. We multiply and divide by the classical algorithms. Thus the product
of s (64-bit) words and t words costs st elementary operations. The cost of
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division is the same as the cost of the product of divisor and quotient.
The concrete recommendation by the inventors is: d = 7, n = 512.

(Today we would choose a larger n.) The output of each step consists of 384
bits, withholding 128 bits as the new state. The binary power algorithm for
a 128-bit number x with exponent 7 costs several elementary operations:

• x has 128 bits, hence 2 words.

• x2 has 256 bits, hence 4 words, and costs 2 · 2 = 4 elementary opera-
tions.

• x3 has 384 bits, hence 6 words, and costs 2 · 4 = 8 elementary opera-
tions.

• x4 has 512 bits, hence 8 words, and costs 4 · 4 = 16 elementary opera-
tions.

• x7 has 896 bits, hence 14 words, and costs 6 · 8 = 48 elementary
operations.

• x7 mod m has  512 bits, and likewise costs 6 · 8 = 48 elementary
operations.

This makes a total of 124 elementary operations; among them only one
reduction modm (for x7). Our reward consists of 384 pseudorandom bits.
Thus we get about 3 bits per elementary operation, or, by the assumptions
in Section 4.6, about 6 milliards bits per second. Compared with the BBS
generator this amounts to a factor of about 1000.

Parallelization increases the speed virtually without limit: The Micali-

Schnorr generator allows complete parallelization. Thus distributing the
work among k CPUs brings a profit by the factor k since the CPUs can work
indepedently of each other without need of communication.
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4.8 The Impagliazzo-Naor Generator

Recall the knapsack problem (or subset sum problem):

Given positive integers a1, . . . , an 2 N and T 2 N.

Wanted a subset S ✓ {1, . . . , n} with

X

i2S
ai = T.

This problem is believed to be hard. We know it is NP-complete. Building
on it Impagliazzo and Naor developed a pseudorandom generator:

Let k and n be (su�ciently large) integers with n < k < 3n
2 . As param-

eters we choose random a1, . . . , an 2 [1 . . . 2k].

Attention: quite a lot of big numbers.

The state space consists of the power set of {1, . . . , n}. So the states are
subsets S ✓ {1, . . . , n}. We represent them by bit sequences in Fn

2 in the
natural way. In each single step we form the sum

X

i2S
ai mod 2k.

This is a k-bit integer. Output the first k�n bits, and retain the last n bits
as the new state, see Figure 4.5.

Thus state transition and output function are:

T (S) =
X

i2S
ai mod 2n

(retain the rightmost n bits)

U(S) = b
P

i2S ai mod 2k

2n
c

output the leftmost k � n bits

If this pseudorandom generator is not perfect, then the knapsack problem
admits an e�cient solution. Here we omit the proof. See

• R. Impagliazzo, M. Naor: E�cient cryptographic schemes provably
as secure as subset sum. J. Cryptology 9 (1996), 199–216.
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S

�
output

S

a1 . . . . . . . . . an| {z }
X

i2S
ai mod 2k

0 k � n n k 3n/2

◆
◆

◆
◆

◆
◆

◆
◆

◆
◆
◆

Figure 4.5: The Impagliazzo-Naor generator



Appendix A

Statistical Distiguishers

As usual in these lecture notes we restrict ourselves to finite probability
spaces.

A.1 Distingishing Distributions by a Test

Let A be a finite probability space with two probability distributions P0 and
P1. Accordingly for a real valued function � : A �! R we have the mean
values (or expectations)

µi =
X

a2A
�(a) · Pi(a).

For " > 0 we call � an "-distinguisher of P0 and P1 if

|µ1 � µ0| � ".

That is, the expectations of � with respect to P0 and P1 di↵er considerably.

Note the analogy with the common statistical test scenario where
we decide whether a sample deviates from an assumed distribu-
tion by comparing mean values.

This notion has an obvious analogue for bit valued functions (or binary
attributes) � : A �! F2. Here

µi =
X

a2��1(1)

Pi(a) = Pi(�
�1(1))

is the probability that �(a) = 1 for a randomly chosen a 2 A. Thus

µ1 � µ0 = P1(�
�1(1))� P0(�

�1(1)).

The “test” � "-distinguishes between the distributions P1 and P0 if the
probabilities for �(a) = 1 with respect to these two distributions di↵er by
at least ".

131
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Note that the notion “test” just means “function”. However in
the present context it suggests a role that this function plays. A
similar remark also holds for the notion “randomize”.

We may “randomize” our test by more generally considering a function

� : A⇥ ⌦ �! F2

where ⌦ is a finite probability space from which we take an additional ran-
dom input !, and then consider the probabilities µi that �(a,!) = 1,

µi =
1

#A ·#⌦ ·#{(a,!) 2 A⇥ ⌦ |�(a,!) = 1}.

A.2 Testing Bitsequences

A statistical test for bitsequences of length r is simply a Boolean function
� : Fr

2 �! F2, a probabilistic statistical test is a function

� : Fr
2 ⇥ ⌦ �! F2

where ⌦ is a finite probability space.
We want to distinguish between random bitsequences u 2 Fr

2, and bitse-
quences that arise from a “generator map”

G : Fn
2 �! Fr

2

that transforms a randomly chosen x 2 Fn
2 (called “seed”) to a bitsequence

G(x) 2 Fr
2. This sequence G(x), if it passes our tests, may qualify as a

pseudorandom sequence. In this test scenario the reference distribution P0

is the uniform distribution on Fr
2,

P0(u) =
1

2r
for all u 2 Fr

2 .

We want to compare it with the induced distribution

P1(u) =
1

2n
·#{x 2 Fn

2 |G(x) = u} .

Or, somewhat more generally, if G is defined on a subset A ✓ Fn
2 only,

P1(u) =
1

#A
·#{x 2 A |G(x) = u} .

A probabilistic statistical test � : Fr
2 ⇥ ⌦ �! F2 "-distinguishes between

random bitsequences u 2 Fr
2 and sequences generated by G : Fn

2 �! Fr
2 if

|µ1 � µ0| � "
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where

µ0 =
1

2r ·#⌦ ·#{(u,!) 2 Fr
2 ⇥ ⌦ |�(u,!) = 1}

is the probability that the test assigns the value 1 to a random bitsequence
u 2 Fr

2, and

µ1 =
1

2n ·#⌦ ·#{(x,!) 2 A⇥ ⌦ |�(G(x)),!) = 1}

is the probability that the test yields the value 1 for a bitstring generated
by a random seed x 2 A.

Examples

We want to distinguish sequences generated by a map G : Fn
2 �! Fr

2 from
random sequences (by deterministic tests, that is #⌦ = 1).

Example 1

First an extremely simple example with the test function

� : Fr
2 �! F2, �(u) =

(
1 if #{i | ui = 1} � r

2 ,

0 otherwise,

That is � decides on the majority of ones in the sequence u. Then obviously
µ0 =

1
2 .

Case 1a: Let n = 1 and G : F2 �! Fr
2 be defined by

G(0) = (0, 0, 0, . . .),

G(1) = (1, 1, 1, . . .).

Then also µ1 = 1
2 , yielding µ1 � µ0 = 0. Thus � is not an "-distinguisher

for any " > 0.

Case 1b: We keep the definition of G(1) but change the definition of G(0)
to

G(0) = (1, 0, 1, 0, 1, . . .).

Then �(G(0)) = �(G(1)) = 1, hence µ1 = 1, yielding µ1 � µ0 =
1
2 . Thus �

is an "-distinguisher for 0 < "  1
2 .
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Example 2

For a serious example we consider sequences generated by a linear feedback
shift register G : Fn

2 �! Fr
2 of length n where 2n < r  2n � 1. We know

that the output of G is distinguished by a low linear complexity �(u)  n.
Therefore we use

� : Fr
2 �! F2, �(u) =

(
1 if �(u) < r

2 ,

0 if �(u) � r
2 ,

as test . Since n < r
2 this yields

µ1 =
1

2n
·#{x 2 Fn

2 |�(G(x)) = 1} = 1.

For arbitrary sequences u 2 Fr
2 we know from Theorem 3 that we may expect

�(u) ⇡ r
2 . A more precise statement follows from the frequency count in

Proposition 11:

k := #{u 2 Fr
2 | �(u)) 

r � 1

2
} = 1 +

b r�1
2 cX

l=1

22l�1 =
1

2
+

1

2
·
b r�1

2 cX

l=0

4l.

Case 2a: Let r be even. Then b r�1
2 c = r

2 � 1, and

k =
1

2
+

1

2
· 4

r/2 � 1

3
=

1

2
+

1

6
· (2r � 1) =

1

3
+

1

6
· 2r,

µ0 =
1

2r
· k =

1

6
+

1

3 · 2r  1

3
for r � 1.

Case 2b: Let r be odd. Then b r�1
2 c = r�1

2 , and

k =
1

2
+

1

2
· 4

(r+1)/2 � 1

3
=

1

2
+

1

6
· (2r+1 � 1) =

1

3
+

1

3
· 2r,

µ0 =
1

2r
· k =

1

3
+

1

3 · 2r  1

2
for r � 1.

Hence in any case we have

µ1 � µ0 � 1

2
for r � 1.

Thus � is an "-distinguisher for 0 < "  1
2 , distinguishing between LFSR

sequences and random sequences.


