4.2 The BBS Generator and Quadratic Residuosity

Given a seed $s \in \mathbb{M}_n^+$ the BBS generator outputs a bit sequence $(b_1(s), \ldots, b_r(s))$ —by the way the same sequence as the seed $s' = \sqrt{s^2} \mod n$ that is a quadratic residue. A probabilistic circuit (see Appendix B of Part III)

$$C: \mathbb{F}_2^r \times \Omega \longrightarrow \mathbb{F}_2$$

has an ε -advantage for **BBS extrapolation** with respect to *n* if

$$P(\{(s,\omega) \in \mathbb{M}_n \times \Omega \mid C(b_1(s),\ldots,b_r(s),\omega) = \operatorname{lsb}(\sqrt{s^2} \mod n)\}) \ge \frac{1}{2} + \varepsilon.$$

In other words: The algorithm implemented by C "predicts" (or extrapolates) the bit preceding a given subsequence with ε -advantage.

If we seed the generator with a quadratic residue s, then C outputs the parity of s (with ε -advantage). If fed with a later segment $(b_{i+1}, \ldots, b_{i+r})$ (with $i \ge 1$) of a BBS output C extrapolates the preceding bit b_i .

In the following lemmas and proposition let τ_t be the maximum expense of the operation $xy \mod n$ where n is a t-bit integer and $0 \le x, y < n$. We know that $\tau_t = O(t^2)$ (and even know an exact upper bound for the circuit size).

Lemma 16 Let n be a BLUM integer $< 2^t$. Assume the probabilistic circuit $C: \mathbb{F}_2^r \times \Omega \longrightarrow \mathbb{F}_2$ has an ε -advantage for BBS extrapolation with respect to n. Then there is a probabilistic circuit $C': \mathbb{F}_2^t \times \Omega \longrightarrow \mathbb{F}_2$ of size $\#C' \leq \#C + r\tau_t + 4$ that has an ε -advantage for deciding quadratic residuosity for $x \in \mathbb{M}_n^+$.

Proof. First we compute the BBS sequence (b_1, \ldots, b_r) for the seed $s \in \mathbb{M}_n^+$ at an expense of $r\tau_t$. Then C computes the bit $lsb(\sqrt{s^2} \mod n)$ with advantage ε . Therefore setting

$$C'(s,\omega) := \begin{cases} 1 & \text{if } C(b_1,\ldots,b_r,\omega) = \text{lsb}(s), \\ 0 & \text{otherwise,} \end{cases}$$

we decide the quadratic residuosity of s with ε -advantage by the corollary of Proposition 24 in Appendix A.11 of Part III. The additional costs for comparing bits are at most 4 additional nodes in the circuit. \diamond

Now let $C: \mathbb{F}_2^t \times \Omega \longrightarrow \mathbb{F}_2$ be an arbitrary probabilistic circuit. Then for $m \geq 1$ we define the *m*-fold circuit by

$$C^{(m)}: \mathbb{F}_2^t \times \Omega^m \longrightarrow \mathbb{F}_2,$$

K. Pommerening, Bitstream Ciphers

$$C^{(m)}(s,\omega_1,\ldots,\omega_m) := \begin{cases} 1 & \text{if } \#\{i \mid C(s,\omega_i) = 1\} \ge \frac{m}{2}, \\ 0 & \text{otherwise.} \end{cases}$$

So this circuit represents the "majority decision". Its implementation consists of m parallel copies of C, one integer addition of m bits, and one comparison of $\lceil 2 \log m \rceil$ -bit integers, hence by Appendix B.3 of Part III its size is

$$#C^{(m)} \le r \cdot #C + 2m^2.$$

Lemma 17 (Amplification of advantage) Let $A \subseteq \mathbb{F}_2^t$, and let C be a circuit that computes the Boolean function $f : A \longrightarrow \mathbb{F}_2$ with an ε -advantage. Let m = 2h + 1 be odd.

Then $C^{(m)}$ computes the function f with an error probability of

$$\leq \frac{(1-4\varepsilon^2)^h}{2}.$$

For each $\delta > 0$ there is an

$$m \le 3 + \frac{1}{2\delta\varepsilon^2}$$

such that $C^{(m)}$ computes the function f with an error probability δ .

Proof. The probability that C gives a correct answer is

$$p := P(\{(s,\omega) \in A \times \Omega \mid C(s,\omega) = f(s)\}) \ge \frac{1}{2} + \varepsilon.$$

Since enlarging ε tightens the assertion we may assume that $p = \frac{1}{2} + \varepsilon$. The complementary value $q := 1 - p = \frac{1}{2} - \varepsilon$ equals the probability that C gives a wrong answer. Hence the probability of getting exactly k correct answers from m independent invocations of C is $\binom{m}{k}p^kq^{m-k}$. Thus the error probability we search is

$$P(\{(s,\omega_1,\ldots,\omega_m)\in A\times\Omega^m\mid C^{(m)}(s,\omega_1,\ldots,\omega_m)=f(s)\})$$

$$= \sum_{k=0}^{h} {m \choose k} (\frac{1}{2} + \varepsilon)^{k} (\frac{1}{2} - \varepsilon)^{m-k}$$

$$= (\frac{1}{2} + \varepsilon)^{h} (\frac{1}{2} - \varepsilon)^{h+1} \cdot \sum_{k=0}^{h} {m \choose k} (\frac{1}{2} + \varepsilon)^{k-h} (\frac{1}{2} - \varepsilon)^{h-k}$$

$$= (\frac{1}{4} - \varepsilon^{2})^{h} \cdot (\frac{1}{2} - \varepsilon) \cdot \sum_{k=0}^{h} {m \choose k} \underbrace{\left(\frac{1}{2} - \varepsilon\right)^{h-k}}_{\leq 1}$$

$$\leq (1 - 4\varepsilon^{2})^{h}$$

which proves the first statement.

For an error probability δ a sufficient condition is:

$$(1 - 4\varepsilon^2)^h \leq 2\delta,$$

$$h \cdot \ln(1 - 4\varepsilon^2) \leq \ln 2 + \ln \delta,$$

$$h \geq \frac{\ln 2 + \ln \delta}{\ln(1 - 4\varepsilon^2)}.$$

Therefore we choose

(1)
$$h := \left\lceil \frac{\ln 2 + \ln \delta}{\ln(1 - 4\varepsilon^2)} \right\rceil.$$

Then the error probability of $C^{(m)}$ is at most δ , and

$$\begin{split} h &\leq 1 + \frac{\ln 2 + \ln \delta}{\ln(1 - 4\varepsilon^2)} = 1 + \frac{\ln \frac{1}{\delta} - \ln 2}{\ln \frac{1}{1 - 4\varepsilon^2}} \\ &\leq 1 + \frac{\frac{1}{\delta} - 1 - \ln 2}{4\varepsilon^2} \leq 1 + \frac{1}{4\delta\varepsilon^2} \,, \end{split}$$

proving the second statement. \diamond

By the way the size of $C^{(m)}$ is

$$\#C^{(m)} \le \left[3 + \frac{1}{2\delta\varepsilon^2}\right] \cdot \#C + 2 \cdot \left[3 + \frac{1}{2\delta\varepsilon^2}\right]^2.$$

Merging the two lemmas we get:

Proposition 13 Let n be a BLUM integer $< 2^t$. Assume the probabilistic circuit $C : \mathbb{F}_2^r \times \Omega \longrightarrow \mathbb{F}_2$ has an ε -advantage for BBS extrapolation with respect to n. Then for each $\delta > 0$ there is a probabilistic circuit $C' : \mathbb{F}_2^t \times \Omega' \longrightarrow \mathbb{F}_2$ that decides quadratic residuosity in \mathbb{M}_n^+ with error probability δ and has size

$$\#C' \le \left[3 + \frac{1}{2\delta\varepsilon^2}\right] \cdot \left[\#C + r\tau_t + 4\right] + 2 \cdot \left[3 + \frac{1}{2\delta\varepsilon^2}\right]^2.$$

Note that the size of C' is polynomial in r, #C, $\frac{1}{\delta}$, $\frac{1}{\varepsilon}$, and t, and we even could make this polynomial explicit. Thus:

From an efficient probabilistic BBS extrapolation algorithm for the module n with ε -advantage we can construct an efficient probabilistic decision algorithm for quadratic residuosity for n with arbitrary small error probability. This complexity bound becomes even more perspicuous, when we specify dependencies from the input complexity, measured by the bit size t. Thus we choose

- $r \leq f(t)$ with a polynomial $f \in \mathbb{Q}[T]$ (that is we generate only "polynomially many" pseudorandom bits),
- $\frac{1}{\delta} \leq g(t)$ (or $\delta \geq 1/g(t)$) with a polynomial $g \in \mathbb{Q}[T]$ (that is we don't choose δ "too small", not like an ambitious $\delta < 1/2^t$),
- $\frac{1}{\varepsilon} \leq h(t)$ (or $\varepsilon \geq 1/h(t)$) with a polynomial $h \in \mathbb{Q}[T]$ (that is ε is reasonably small, not only like a modest $\varepsilon \approx 1/\log(t)$).

Then

$$\#C' \leq \left[3 + \frac{1}{2} g(t) h(t)^2 \right] \cdot \left[\#C + f(t) \tau_t + 4 \right] + 2 \cdot \left[3 + \frac{1}{2} g(t) h(t)^2 \right]^2$$

$$\leq \Phi(t) \cdot \#C + \Psi(t)$$

with polynomials $\Phi, \Psi \in \mathbb{Q}[t]$. In the following section we'll see how this statement makes BBS a "perfect" pseudorandom generator.

The hypothetical decision algorithm for $s \in \mathbb{M}_n^+$ from Proposition 13 runs like this (assuming that *n* is a public parameter):

- 1. Construct the BBS-sequence $b_1(s), \ldots, b_r(s)$ (using the public parameter n).
- 2. Choose the desired error probability δ .
- 3. Choose m = 2h + 1 with h as in Equation 1.
- 4. Choose random elements $\omega_1, \ldots, \omega_m \in \Omega$ and determine $b_i = C(s, \omega_i) \in \mathbb{F}_2$ for $i = 1, \ldots, r$.
- 5. Count $z = \#\{i \mid b_i = \text{lsb}(s)\}.$
- 6. If $z \ge m/2$ output 1 ("quadratic residue"), else output 0 ("quadratic nonresidue").