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4.2 The BBS Generator and Quadratic Residuos-
ity

Given a seed s € M the BBS generator outputs a bit sequence
(b1(s),...,br(s))— by the way the same sequence as the seed s’ = v/s2 mod n
that is a quadratic residue. A probabilistic circuit (see Appendix B of
Part T1T)

C: Fg X Q — FQ

has an e-advantage for BBS extrapolation with respect to n if
1
P({(s,w) € My, x Q| C(by(s),...,b(s),w) =lsb(Vs2 mod n)}) > 5 Te

In other words: The algorithm implemented by C “predicts” (or extrapo-
lates) the bit preceding a given subsequence with e-advantage.

If we seed the generator with a quadratic residue s, then C out-
puts the parity of s (with e-advantage). If fed with a later seg-
ment (biy1,...,bi4r) (with i@ > 1) of a BBS output C extrapo-
lates the preceding bit b;.

In the following lemmas and proposition let 7, be the maximum expense
of the operation xy mod n where n is a t-bit integer and 0 < x,y < n. We
know that 7; = O(t?) (and even know an exact upper bound for the circuit
size).

Lemma 16 Let n be a BLUM integer < 2'. Assume the probabilistic cir-
cuit C: Fy x Q@ — Fo has an e-advantage for BBS extrapolation with re-
spect to n. Then there is a probabilistic circuit C': Fh x Q — Fy of size
#C' < #C + r1y + 4 that has an e-advantage for deciding quadratic residu-
osity for x € M.

Proof. First we compute the BBS sequence (b1, ..., b,) for the seed s € M\ at
an expense of r7;. Then C' computes the bit 1sb(v/'s2 mod n) with advantage
. Therefore setting

1 if C(by,...,br,w) =Isb(s),

0 otherwise,

C'(s,w) == {

we decide the quadratic residuosity of s with e-advantage by the corollary
of Proposition 24 in Appendix A.11 of Part III. The additional costs for
comparing bits are at most 4 additional nodes in the circuit. &

Now let C: Fb x 2 — Fy be an arbitrary probabilistic circuit. Then for
m > 1 we define the m-fold circuit by

O™ FL x Q™ — Fy,
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1 if #{i | C(s,w;) =1} > 2,

0 otherwise.

C(m)(s,wl,...7wm) = {

So this circuit represents the “majority decision”. Its implementation con-
sists of m parallel copies of C, one integer addition of m bits, and one
comparision of [?logm]-bit integers, hence by Appendix B.3 of Part III its
size is

#CM) <. HC + 2m2.

Lemma 17 (Amplification of advantage) Let A C FS, and let C be a circuit
that computes the Boolean function f : A — Fo with an e-advantage. Let
m = 2h+1 be odd.

Then C™) computes the function f with an error probability of

< (1-— 462)]1.
- 2
For each 6 > 0 there is an
m< 3+ L
- 20e2

such that C™ computes the function f with an error probability &.

Proof. The probability that C' gives a correct answer is
1
p:=P{(s,w) e Ax Q| C(s,w) = f(s)}) > 5Te

Since enlarging ¢ tightens the assertion we may assume that p = % + €.
The complementary value ¢ := 1 —p = % — ¢ equals the probability that
C gives a wrong answer. Hence the probability of getting exactly k correct
answers from m independent invocations of C' is (Tg) pFq™*. Thus the error
probability we search is

P{(s,w1,...,wm) € Ax Q™| CU(s,w1,...,w0m) = f(5)})
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which proves the first statement.
For an error probability § a sufficient condition is:

(1 -4 < 20,
h-In(1—-4¢?) < In2+1Ins,
In2+1nd
h > ————.
— In(1 — 4e?)
Therefore we choose
In2+1Iné
1 hi=|—m—%|.
1) [ln(l — 452)—‘

Then the error probability of C'™) is at most §, and

L In2+1Iné _ +ln%—ln?

In(1 — 4e2) In ——
coppizio2 g 1
- 4e2 - 462’

proving the second statement. <&

By the way the size of C'("™) is

1 e
#C __F+2&J #C +2 F+2&4.

Merging the two lemmas we get:

Proposition 13 Let n be a BLUM integer < 2'. Assume the probabilis-
tic circuit C': Fy x Q@ — Fo has an e-advantage for BBS extrapolation
with respect to n. Then for each § > 0 there is a probabilistic circuit
C'": T x Q' — Fy that decides quadratic residuosity in M with error prob-
ability & and has size

, 1 ’

1 1
» 50 g

Note that the size of C' is polynomial in r, #C
could make this polynomial explicit. Thus:

and ¢, and we even

From an efficient probabilistic BBS extrapolation algorithm for
the module n with e-advantage we can construct an efficient prob-
abilistic decision algorithm for quadratic residuosity for n with
arbitrary small error probability.
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This complexity bound becomes even more perspicuous, when we specify
dependencies from the input complexity, measured by the bit size t. Thus
we choose

e r < f(t) with a polynomial f € Q[T] (that is we generate only “poly-
nomially many” pseudorandom bits),

° % < g(t) (or 6 > 1/g(t)) with a polynomial g € Q[T] (that is we don’t
choose § “too small”, not like an ambitious § < 1/2¢),

o 1L < n(t) (or e > 1/h(t)) with a polynomial h € Q[T] (that is ¢ is
reasonably small, not only like a modest € ~ 1/log(t)).

Then

#C'

IN

{3 + %g(t) h(t)Q] [H#CO+ )T+ 4]+ 2 [3 + %g(t) h(t)z}
< () #CO+ ()

with polynomials ®, ¥ € Q[t]. In the following section we’ll see how this
statement makes BBS a “perfect” pseudorandom generator.

The hypothetical decision algorithm for s € M, from Proposition
runs like this (assuming that n is a public parameter):

1. Construct the BBS-sequence b;(s),...,br(s) (using the public param-
eter n).

2. Choose the desired error probability 9.
3. Choose m = 2h + 1 with h as in Equation[]

4. Choose random elements wi,...,w,; € Q and determine b; =
C(s,wij) €Fyfori=1,...,r.

5. Count z = #{i| b; = Isb(s)}.

6. If z > m/2 output 1 (“quadratic residue”), else output 0 (“quadratic
nonresidue”).



