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4.2 The BBS Generator and Quadratic Residuos-
ity

Given a seed s 2 M+
n the BBS generator outputs a bit sequence

(b1(s), . . . , br(s))—by the way the same sequence as the seed s0 =
p
s2 mod n

that is a quadratic residue. A probabilistic circuit (see Appendix B of
Part III)

C : Fr
2 ⇥ ⌦ �! F2

has an "-advantage for BBS extrapolation with respect to n if

P ({(s,!) 2 Mn ⇥ ⌦ | C(b1(s), . . . , br(s),!) = lsb(
p
s2 mod n)}) � 1

2
+ ".

In other words: The algorithm implemented by C “predicts” (or extrapo-
lates) the bit preceding a given subsequence with "-advantage.

If we seed the generator with a quadratic residue s, then C out-
puts the parity of s (with "-advantage). If fed with a later seg-
ment (bi+1, . . . , bi+r) (with i � 1) of a BBS output C extrapo-
lates the preceding bit bi.

In the following lemmas and proposition let ⌧t be the maximum expense
of the operation xy mod n where n is a t-bit integer and 0  x, y < n. We
know that ⌧t = O(t2) (and even know an exact upper bound for the circuit
size).

Lemma 16 Let n be a Blum integer < 2t. Assume the probabilistic cir-
cuit C : Fr

2 ⇥ ⌦ �! F2 has an "-advantage for BBS extrapolation with re-
spect to n. Then there is a probabilistic circuit C 0 : Ft

2 ⇥ ⌦ �! F2 of size
#C 0  #C + r⌧t + 4 that has an "-advantage for deciding quadratic residu-
osity for x 2 M+

n .

Proof. First we compute the BBS sequence (b1, . . . , br) for the seed s 2 M+
n at

an expense of r⌧t. Then C computes the bit lsb(
p
s2 mod n) with advantage

". Therefore setting

C 0(s,!) :=

(
1 if C(b1, . . . , br,!) = lsb(s),

0 otherwise,

we decide the quadratic residuosity of s with "-advantage by the corollary
of Proposition 24 in Appendix A.11 of Part III. The additional costs for
comparing bits are at most 4 additional nodes in the circuit. 3

Now let C: Ft
2 ⇥⌦ �! F2 be an arbitrary probabilistic circuit. Then for

m � 1 we define the m-fold circuit by

C(m) : Ft
2 ⇥ ⌦m �! F2,
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C(m)(s,!1, . . . ,!m) :=

(
1 if #{i | C(s,!i) = 1} � m

2 ,

0 otherwise.

So this circuit represents the “majority decision”. Its implementation con-
sists of m parallel copies of C, one integer addition of m bits, and one
comparision of d2logme-bit integers, hence by Appendix B.3 of Part III its
size is

#C(m)  r ·#C + 2m2.

Lemma 17 (Amplification of advantage) Let A ✓ Ft
2, and let C be a circuit

that computes the Boolean function f : A �! F2 with an "-advantage. Let
m = 2h+ 1 be odd.

Then C(m) computes the function f with an error probability of

 (1� 4"2)h

2
.

For each � > 0 there is an

m  3 +
1

2�"2

such that C(m) computes the function f with an error probability �.

Proof. The probability that C gives a correct answer is

p := P ({(s,!) 2 A⇥ ⌦ | C(s,!) = f(s)}) � 1

2
+ ".

Since enlarging " tightens the assertion we may assume that p = 1
2 + ".

The complementary value q := 1 � p = 1
2 � " equals the probability that

C gives a wrong answer. Hence the probability of getting exactly k correct
answers from m independent invocations of C is

�m
k

�
pkqm�k. Thus the error

probability we search is

P ({(s,!1, . . . ,!m) 2 A⇥ ⌦m | C(m)(s,!1, . . . ,!m) = f(s)})

=
hX

k=0

✓
m

k

◆
(
1

2
+ ")k(

1

2
� ")m�k

= (
1

2
+ ")h(

1

2
� ")h+1 ·

hX

k=0

✓
m

k

◆
(
1

2
+ ")k�h(

1

2
� ")h�k

= (
1

4
� "2)h · (1

2
� ") ·

hX

k=0

✓
m

k

◆ 1
2 � "
1
2 + "
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which proves the first statement.
For an error probability � a su�cient condition is:

(1� 4"2)h  2�,

h · ln(1� 4"2)  ln 2 + ln �,

h � ln 2 + ln �

ln(1� 4"2)
.

Therefore we choose

(1) h :=

⇠
ln 2 + ln �

ln(1� 4"2)

⇡
.

Then the error probability of C(m) is at most �, and

h  1 +
ln 2 + ln �

ln(1� 4"2)
= 1 +

ln 1
� � ln 2

ln 1
1�4"2

 1 +
1
� � 1� ln 2

4"2
 1 +

1

4�"2
,

proving the second statement. 3

By the way the size of C(m) is

#C(m) 

3 +

1

2�"2

�
·#C + 2 ·


3 +

1

2�"2

�2
.

Merging the two lemmas we get:

Proposition 13 Let n be a Blum integer < 2t. Assume the probabilis-
tic circuit C : Fr

2 ⇥ ⌦ �! F2 has an "-advantage for BBS extrapolation
with respect to n. Then for each � > 0 there is a probabilistic circuit
C 0 : Ft

2 ⇥ ⌦0 �! F2 that decides quadratic residuosity in M+
n with error prob-

ability � and has size

#C 0 

3 +

1

2�"2

�
· [#C + r⌧t + 4] + 2 ·


3 +

1

2�"2

�2
.

Note that the size of C 0 is polynomial in r, #C, 1
� ,

1
" , and t, and we even

could make this polynomial explicit. Thus:

From an e�cient probabilistic BBS extrapolation algorithm for
the module n with "-advantage we can construct an e�cient prob-
abilistic decision algorithm for quadratic residuosity for n with
arbitrary small error probability.
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This complexity bound becomes even more perspicuous, when we specify
dependencies from the input complexity, measured by the bit size t. Thus
we choose

• r  f(t) with a polynomial f 2 Q[T ] (that is we generate only “poly-
nomially many” pseudorandom bits),

• 1
�  g(t) (or � � 1/g(t)) with a polynomial g 2 Q[T ] (that is we don’t
choose � “too small”, not like an ambitious � < 1/2t),

• 1
"  h(t) (or " � 1/h(t)) with a polynomial h 2 Q[T ] (that is " is
reasonably small, not only like a modest " ⇡ 1/ log(t)).

Then

#C 0 

3 +

1

2
g(t)h(t)2

�
· [#C + f(t) ⌧t + 4] + 2 ·


3 +

1

2
g(t)h(t)2

�2

 �(t) ·#C + (t)

with polynomials �,  2 Q[t]. In the following section we’ll see how this
statement makes BBS a “perfect” pseudorandom generator.

The hypothetical decision algorithm for s 2 M+
n from Proposition 13

runs like this (assuming that n is a public parameter):

1. Construct the BBS-sequence b1(s), . . . , br(s) (using the public param-
eter n).

2. Choose the desired error probability �.

3. Choose m = 2h+ 1 with h as in Equation 1.

4. Choose random elements !1, . . . ,!m 2 ⌦ and determine bi =
C(s,!i) 2 F2 for i = 1, . . . , r.

5. Count z = #{i | bi = lsb(s)}.

6. If z � m/2 output 1 (“quadratic residue”), else output 0 (“quadratic
nonresidue”).


