
K. Pommerening, Bitstream Ciphers 114

4.2 The BBS Generator and Quadratic Residuos-
ity

Given a seed s 2 M+
n the BBS generator outputs a bit sequence

(b1(s), . . . , br(s))—by the way the same sequence as the seed s0 =
p
s2 mod n

that is a quadratic residue. A probabilistic circuit (see Appendix B of
Part III)

C : Fr
2 ⇥ ⌦ �! F2

has an "-advantage for BBS extrapolation with respect to n if

P ({(s,!) 2 Mn ⇥ ⌦ | C(b1(s), . . . , br(s),!) = lsb(
p
s2 mod n)}) � 1

2
+ ".

In other words: The algorithm implemented by C “predicts” (or extrapo-
lates) the bit preceding a given subsequence with "-advantage.

If we seed the generator with a quadratic residue s, then C out-
puts the parity of s (with "-advantage). If fed with a later seg-
ment (bi+1, . . . , bi+r) (with i � 1) of a BBS output C extrapo-
lates the preceding bit bi.

In the following lemmas and proposition let ⌧t be the maximum expense
of the operation xy mod n where n is a t-bit integer and 0 x, y < n. We
know that ⌧t = O(t2) (and even know an exact upper bound for the circuit
size).

Lemma 16 Let n be a Blum integer < 2t. Assume the probabilistic cir-
cuit C : Fr

2 ⇥ ⌦ �! F2 has an "-advantage for BBS extrapolation with re-
spect to n. Then there is a probabilistic circuit C 0 : Ft

2 ⇥ ⌦ �! F2 of size
#C 0 #C + r⌧t + 4 that has an "-advantage for deciding quadratic residu-
osity for x 2 M+

n .

Proof. First we compute the BBS sequence (b1, . . . , br) for the seed s 2 M+
n at

an expense of r⌧t. Then C computes the bit lsb(
p
s2 mod n) with advantage

". Therefore setting

C 0(s,!) :=

(
1 if C(b1, . . . , br,!) = lsb(s),

0 otherwise,

we decide the quadratic residuosity of s with "-advantage by the corollary
of Proposition 24 in Appendix A.11 of Part III. The additional costs for
comparing bits are at most 4 additional nodes in the circuit. 3

Now let C: Ft
2 ⇥⌦ �! F2 be an arbitrary probabilistic circuit. Then for

m � 1 we define the m-fold circuit by

C(m) : Ft
2 ⇥ ⌦m �! F2,

K. Pommerening, Bitstream Ciphers 115

C(m)(s,!1, . . . ,!m) :=

(
1 if #{i | C(s,!i) = 1} � m

2 ,

0 otherwise.

So this circuit represents the “majority decision”. Its implementation con-
sists of m parallel copies of C, one integer addition of m bits, and one
comparision of d2logme-bit integers, hence by Appendix B.3 of Part III its
size is

#C(m) r ·#C + 2m2.

Lemma 17 (Amplification of advantage) Let A ✓ Ft
2, and let C be a circuit

that computes the Boolean function f : A �! F2 with an "-advantage. Let
m = 2h+ 1 be odd.

Then C(m) computes the function f with an error probability of

 (1� 4"2)h

2
.

For each � > 0 there is an

m 3 +
1

2�"2

such that C(m) computes the function f with an error probability �.

Proof. The probability that C gives a correct answer is

p := P ({(s,!) 2 A⇥ ⌦ | C(s,!) = f(s)}) � 1

2
+ ".

Since enlarging " tightens the assertion we may assume that p = 1
2 + ".

The complementary value q := 1 � p = 1
2 � " equals the probability that

C gives a wrong answer. Hence the probability of getting exactly k correct
answers from m independent invocations of C is

�m
k

�
pkqm�k. Thus the error

probability we search is

P ({(s,!1, . . . ,!m) 2 A⇥ ⌦m | C(m)(s,!1, . . . ,!m) = f(s)})

=
hX

k=0

✓
m

k

◆
(
1

2
+ ")k(

1

2
� ")m�k

= (
1

2
+ ")h(

1

2
� ")h+1 ·

hX

k=0

✓
m

k

◆
(
1

2
+ ")k�h(

1

2
� ")h�k

= (
1

4
� "2)h · (1

2
� ") ·

hX

k=0

✓
m

k

◆ 1
2 � "
1
2 + "

!h�k

| {z }
1| {z }

2m�1=4h

 (1� 4"2)h

K. Pommerening, Bitstream Ciphers 116

which proves the first statement.
For an error probability � a su�cient condition is:

(1� 4"2)h 2�,

h · ln(1� 4"2) ln 2 + ln �,

h � ln 2 + ln �

ln(1� 4"2)
.

Therefore we choose

(1) h :=

⇠
ln 2 + ln �

ln(1� 4"2)

⇡
.

Then the error probability of C(m) is at most �, and

h 1 +
ln 2 + ln �

ln(1� 4"2)
= 1 +

ln 1
� � ln 2

ln 1
1�4"2

 1 +
1
� � 1� ln 2

4"2
 1 +

1

4�"2
,

proving the second statement. 3

By the way the size of C(m) is

#C(m)

3 +

1

2�"2

�
·#C + 2 ·

3 +

1

2�"2

�2
.

Merging the two lemmas we get:

Proposition 13 Let n be a Blum integer < 2t. Assume the probabilis-
tic circuit C : Fr

2 ⇥ ⌦ �! F2 has an "-advantage for BBS extrapolation
with respect to n. Then for each � > 0 there is a probabilistic circuit
C 0 : Ft

2 ⇥ ⌦0 �! F2 that decides quadratic residuosity in M+
n with error prob-

ability � and has size

#C 0

3 +

1

2�"2

�
· [#C + r⌧t + 4] + 2 ·

3 +

1

2�"2

�2
.

Note that the size of C 0 is polynomial in r, #C, 1
� ,

1
" , and t, and we even

could make this polynomial explicit. Thus:

From an e�cient probabilistic BBS extrapolation algorithm for
the module n with "-advantage we can construct an e�cient prob-
abilistic decision algorithm for quadratic residuosity for n with
arbitrary small error probability.

K. Pommerening, Bitstream Ciphers 117

This complexity bound becomes even more perspicuous, when we specify
dependencies from the input complexity, measured by the bit size t. Thus
we choose

• r f(t) with a polynomial f 2 Q[T] (that is we generate only “poly-
nomially many” pseudorandom bits),

• 1
� g(t) (or � � 1/g(t)) with a polynomial g 2 Q[T] (that is we don’t
choose � “too small”, not like an ambitious � < 1/2t),

• 1
" h(t) (or " � 1/h(t)) with a polynomial h 2 Q[T] (that is " is
reasonably small, not only like a modest " ⇡ 1/ log(t)).

Then

#C 0

3 +

1

2
g(t)h(t)2

�
· [#C + f(t) ⌧t + 4] + 2 ·

3 +

1

2
g(t)h(t)2

�2

 �(t) ·#C + (t)

with polynomials �, 2 Q[t]. In the following section we’ll see how this
statement makes BBS a “perfect” pseudorandom generator.

The hypothetical decision algorithm for s 2 M+
n from Proposition 13

runs like this (assuming that n is a public parameter):

1. Construct the BBS-sequence b1(s), . . . , br(s) (using the public param-
eter n).

2. Choose the desired error probability �.

3. Choose m = 2h+ 1 with h as in Equation 1.

4. Choose random elements !1, . . . ,!m 2 ⌦ and determine bi =
C(s,!i) 2 F2 for i = 1, . . . , r.

5. Count z = #{i | bi = lsb(s)}.

6. If z � m/2 output 1 (“quadratic residue”), else output 0 (“quadratic
nonresidue”).

