4.2 The BBS Generator and Quadratic Residuosity

Given a seed $s \in \mathbb{M}_{n}^{+}$the BBS generator outputs a bit sequence $\left(b_{1}(s), \ldots, b_{r}(s)\right)$-by the way the same sequence as the seed $s^{\prime}=\sqrt{s^{2}} \bmod n$ that is a quadratic residue. A probabilistic circuit (see Appendix B of Part III)

$$
C: \mathbb{F}_{2}^{r} \times \Omega \longrightarrow \mathbb{F}_{2}
$$

has an ε-advantage for BBS extrapolation with respect to n if

$$
P\left(\left\{(s, \omega) \in \mathbb{M}_{n} \times \Omega \mid C\left(b_{1}(s), \ldots, b_{r}(s), \omega\right)=\operatorname{lsb}\left(\sqrt{s^{2}} \bmod n\right)\right\}\right) \geq \frac{1}{2}+\varepsilon
$$

In other words: The algorithm implemented by C "predicts" (or extrapolates) the bit preceding a given subsequence with ε-advantage.

If we seed the generator with a quadratic residue s, then C outputs the parity of s (with ε-advantage). If fed with a later segment $\left(b_{i+1}, \ldots, b_{i+r}\right)$ (with $i \geq 1$) of a BBS output C extrapolates the preceding bit b_{i}.

In the following lemmas and proposition let τ_{t} be the maximum expense of the operation $x y \bmod n$ where n is a t-bit integer and $0 \leq x, y<n$. We know that $\tau_{t}=\mathrm{O}\left(t^{2}\right)$ (and even know an exact upper bound for the circuit size).

Lemma 16 Let n be a BLUM integer $<2^{t}$. Assume the probabilistic circuit $C: \mathbb{F}_{2}^{r} \times \Omega \longrightarrow \mathbb{F}_{2}$ has an ε-advantage for $B B S$ extrapolation with respect to n. Then there is a probabilistic circuit $C^{\prime}: \mathbb{F}_{2}^{t} \times \Omega \longrightarrow \mathbb{F}_{2}$ of size $\# C^{\prime} \leq \# C+r \tau_{t}+4$ that has an ε-advantage for deciding quadratic residuosity for $x \in \mathbb{M}_{n}^{+}$.

Proof. First we compute the BBS sequence $\left(b_{1}, \ldots, b_{r}\right)$ for the seed $s \in \mathbb{M}_{n}^{+}$at an expense of $r \tau_{t}$. Then C computes the $\operatorname{bit} \operatorname{lsb}\left(\sqrt{s^{2}} \bmod n\right)$ with advantage ε. Therefore setting

$$
C^{\prime}(s, \omega):= \begin{cases}1 & \text { if } C\left(b_{1}, \ldots, b_{r}, \omega\right)=\operatorname{lsb}(s) \\ 0 & \text { otherwise }\end{cases}
$$

we decide the quadratic residuosity of s with ε-advantage by the corollary of Proposition 24 in Appendix A. 11 of Part III. The additional costs for comparing bits are at most 4 additional nodes in the circuit.

Now let $C: \mathbb{F}_{2}^{t} \times \Omega \longrightarrow \mathbb{F}_{2}$ be an arbitrary probabilistic circuit. Then for $m \geq 1$ we define the m-fold circuit by

$$
C^{(m)}: \mathbb{F}_{2}^{t} \times \Omega^{m} \longrightarrow \mathbb{F}_{2},
$$

$$
C^{(m)}\left(s, \omega_{1}, \ldots, \omega_{m}\right):= \begin{cases}1 & \text { if } \#\left\{i \mid C\left(s, \omega_{i}\right)=1\right\} \geq \frac{m}{2} \\ 0 & \text { otherwise }\end{cases}
$$

So this circuit represents the "majority decision". Its implementation consists of m parallel copies of C, one integer addition of m bits, and one comparision of $\left.{ }^{2} \log m\right\rceil$-bit integers, hence by Appendix B. 3 of Part III its size is

$$
\# C^{(m)} \leq r \cdot \# C+2 m^{2}
$$

Lemma 17 (Amplification of advantage) Let $A \subseteq \mathbb{F}_{2}^{t}$, and let C be a circuit that computes the Boolean function $f: A \longrightarrow \mathbb{F}_{2}$ with an ε-advantage. Let $m=2 h+1$ be odd.

Then $C^{(m)}$ computes the function f with an error probability of

$$
\leq \frac{\left(1-4 \varepsilon^{2}\right)^{h}}{2}
$$

For each $\delta>0$ there is an

$$
m \leq 3+\frac{1}{2 \delta \varepsilon^{2}}
$$

such that $C^{(m)}$ computes the function f with an error probability δ.
Proof. The probability that C gives a correct answer is

$$
p:=P(\{(s, \omega) \in A \times \Omega \mid C(s, \omega)=f(s)\}) \geq \frac{1}{2}+\varepsilon
$$

Since enlarging ε tightens the assertion we may assume that $p=\frac{1}{2}+\varepsilon$. The complementary value $q:=1-p=\frac{1}{2}-\varepsilon$ equals the probability that C gives a wrong answer. Hence the probability of getting exactly k correct answers from m independent invocations of C is $\binom{m}{k} p^{k} q^{m-k}$. Thus the error probability we search is

$$
\begin{aligned}
P & \left(\left\{\left(s, \omega_{1}, \ldots, \omega_{m}\right) \in A \times \Omega^{m} \mid C^{(m)}\left(s, \omega_{1}, \ldots, \omega_{m}\right)=f(s)\right\}\right) \\
& =\sum_{k=0}^{h}\binom{m}{k}\left(\frac{1}{2}+\varepsilon\right)^{k}\left(\frac{1}{2}-\varepsilon\right)^{m-k} \\
& =\left(\frac{1}{2}+\varepsilon\right)^{h}\left(\frac{1}{2}-\varepsilon\right)^{h+1} \cdot \sum_{k=0}^{h}\binom{m}{k}\left(\frac{1}{2}+\varepsilon\right)^{k-h}\left(\frac{1}{2}-\varepsilon\right)^{h-k} \\
& =\left(\frac{1}{4}-\varepsilon^{2}\right)^{h} \cdot\left(\frac{1}{2}-\varepsilon\right) \cdot \underbrace{\sum_{k=0}^{h}\binom{m}{k} \underbrace{\left(\frac{1}{2}-\varepsilon\right.}_{\leq 1} \frac{1}{2}+\varepsilon}_{\leq 2^{m-1}=4^{h}})^{h-k} \\
& \leq\left(1-4 \varepsilon^{2}\right)^{h}
\end{aligned}
$$

which proves the first statement.
For an error probability δ a sufficient condition is:

$$
\begin{aligned}
\left(1-4 \varepsilon^{2}\right)^{h} & \leq 2 \delta \\
h \cdot \ln \left(1-4 \varepsilon^{2}\right) & \leq \ln 2+\ln \delta \\
h & \geq \frac{\ln 2+\ln \delta}{\ln \left(1-4 \varepsilon^{2}\right)} .
\end{aligned}
$$

Therefore we choose

$$
\begin{equation*}
h:=\left\lceil\frac{\ln 2+\ln \delta}{\ln \left(1-4 \varepsilon^{2}\right)}\right\rceil . \tag{1}
\end{equation*}
$$

Then the error probability of $C^{(m)}$ is at most δ, and

$$
\begin{aligned}
h & \leq 1+\frac{\ln 2+\ln \delta}{\ln \left(1-4 \varepsilon^{2}\right)}=1+\frac{\ln \frac{1}{\delta}-\ln 2}{\ln \frac{1}{1-4 \varepsilon^{2}}} \\
& \leq 1+\frac{\frac{1}{\delta}-1-\ln 2}{4 \varepsilon^{2}} \leq 1+\frac{1}{4 \delta \varepsilon^{2}}
\end{aligned}
$$

proving the second statement.
By the way the size of $C^{(m)}$ is

$$
\# C^{(m)} \leq\left[3+\frac{1}{2 \delta \varepsilon^{2}}\right] \cdot \# C+2 \cdot\left[3+\frac{1}{2 \delta \varepsilon^{2}}\right]^{2}
$$

Merging the two lemmas we get:
Proposition 13 Let n be a BLUM integer $<2^{t}$. Assume the probabilistic circuit $C: \mathbb{F}_{2}^{r} \times \Omega \longrightarrow \mathbb{F}_{2}$ has an ε-advantage for $B B S$ extrapolation with respect to n. Then for each $\delta>0$ there is a probabilistic circuit $C^{\prime}: \mathbb{F}_{2}^{t} \times \Omega^{\prime} \longrightarrow \mathbb{F}_{2}$ that decides quadratic residuosity in \mathbb{M}_{n}^{+}with error probability δ and has size

$$
\# C^{\prime} \leq\left[3+\frac{1}{2 \delta \varepsilon^{2}}\right] \cdot\left[\# C+r \tau_{t}+4\right]+2 \cdot\left[3+\frac{1}{2 \delta \varepsilon^{2}}\right]^{2}
$$

Note that the size of C^{\prime} is polynomial in $r, \# C, \frac{1}{\delta}, \frac{1}{\varepsilon}$, and t, and we even could make this polynomial explicit. Thus:

From an efficient probabilistic BBS extrapolation algorithm for the module n with ε-advantage we can construct an efficient probabilistic decision algorithm for quadratic residuosity for n with arbitrary small error probability.

This complexity bound becomes even more perspicuous, when we specify dependencies from the input complexity, measured by the bit size t. Thus we choose

- $r \leq f(t)$ with a polynomial $f \in \mathbb{Q}[T]$ (that is we generate only "polynomially many" pseudorandom bits),
- $\frac{1}{\delta} \leq g(t)$ (or $\left.\delta \geq 1 / g(t)\right)$ with a polynomial $g \in \mathbb{Q}[T]$ (that is we don't choose δ "too small", not like an ambitious $\delta<1 / 2^{t}$),
- $\frac{1}{\varepsilon} \leq h(t)$ (or $\varepsilon \geq 1 / h(t)$) with a polynomial $h \in \mathbb{Q}[T]$ (that is ε is reasonably small, not only like a modest $\varepsilon \approx 1 / \log (t)$).

Then

$$
\begin{aligned}
\# C^{\prime} & \leq\left[3+\frac{1}{2} g(t) h(t)^{2}\right] \cdot\left[\# C+f(t) \tau_{t}+4\right]+2 \cdot\left[3+\frac{1}{2} g(t) h(t)^{2}\right]^{2} \\
& \leq \Phi(t) \cdot \# C+\Psi(t)
\end{aligned}
$$

with polynomials $\Phi, \Psi \in \mathbb{Q}[t]$. In the following section we'll see how this statement makes BBS a "perfect" pseudorandom generator.

The hypothetical decision algorithm for $s \in \mathbb{M}_{n}^{+}$from Proposition 13 runs like this (assuming that n is a public parameter):

1. Construct the BBS-sequence $b_{1}(s), \ldots, b_{r}(s)$ (using the public parameter n).
2. Choose the desired error probability δ.
3. Choose $m=2 h+1$ with h as in Equation 1.
4. Choose random elements $\omega_{1}, \ldots, \omega_{m} \in \Omega$ and determine $b_{i}=$ $C\left(s, \omega_{i}\right) \in \mathbb{F}_{2}$ for $i=1, \ldots, r$.
5. Count $z=\#\left\{i \mid b_{i}=\operatorname{lsb}(s)\right\}$.
6. If $z \geq m / 2$ output 1 ("quadratic residue"), else output 0 ("quadratic nonresidue").
