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4.5 The Prediction Test

The extrapolation test looks somewhat strange since it extrapolates the bit
sequence in reverse direction, a clear contrast with the usual cryptanalytic
procedures that try to predict forthcoming bits. We’ll immediately remedy
this quaint e↵ect:

Let C = (Cn)n2N be a polynomial family of circuits,
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is not sparse in M . The pseudorandom generator G passes the prediction

test if no polynomial family of circuits has an advantage for predicting G.
The proof of “(i) =) (ii)” in Theorem 4 directly adapts to this situation
yielding:

Corollary 1 Every perfect pseudorandom generator passes the prediction
test.

Corollary 2 If the quadratic residuosity conjecture is true, then the BBS
generator is perfect, in particular passes the prediction test.

Proof. Otherwise from Proposition 13 we could construct a polynomial fam-
ily of circuits that decides quadratic residuosity for a non-sparse subset of
Blum integers. 3

The paper

U.V. Vazirani, V.V. Vazirani: E�cient and secure pseudo-
random number generation, Crypto 84, 193–202

contains a stronger result: If the factoring conjecture is true, i. e. if factoring
large integers is hard, then the BBS generator is perfect.


