4.8 The Impagliazzo-Naor Generator

Recall the knapsack problem (or subset sum problem):
Given positive integers $a_{1}, \ldots, a_{n} \in \mathbb{N}$ and $T \in \mathbb{N}$.
Wanted a subset $S \subseteq\{1, \ldots, n\}$ with

$$
\sum_{i \in S} a_{i}=T
$$

This problem is believed to be hard. We know it is NP-complete. Building on it Impagliazzo and NaOr developed a pseudorandom generator:

Let k and n be (sufficiently large) integers with $n<k<\frac{3 n}{2}$. As parameters we choose random $a_{1}, \ldots, a_{n} \in\left[1 \ldots 2^{k}\right]$.

Attention: quite a lot of big numbers.
The state space consists of the power set of $\{1, \ldots, n\}$. So the states are subsets $S \subseteq\{1, \ldots, n\}$. We represent them by bit sequences in \mathbb{F}_{2}^{n} in the natural way. In each single step we form the sum

$$
\sum_{i \in S} a_{i} \bmod 2^{k}
$$

This is a k-bit integer. Output the first $k-n$ bits, and retain the last n bits as the new state, see Figure 4.5

Thus state transition and output function are:

$$
\begin{aligned}
T(S)= & \sum_{i \in S} a_{i} \bmod 2^{n} \\
& \text { (retain the rightmost } n \text { bits) } \\
U(S)= & \left\lfloor\frac{\sum_{i \in S} a_{i} \bmod 2^{k}}{2^{n}}\right\rfloor \\
& \text { output the leftmost } k-n \text { bits }
\end{aligned}
$$

If this pseudorandom generator is not perfect, then the knapsack problem admits an efficient solution. Here we omit the proof. See

- R. Impagliazzo, M. Naor: Efficient cryptographic schemes provably as secure as subset sum. J. Cryptology 9 (1996), 199-216.

Figure 4.5: The Impagliazzo-Naor generator

