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3.2 Synthesis of LFSRs

In this section we treat the problem of how to find an LFSR of shortest
length that generates a given finite bit sequence. In section 2.6 we described a
method of finding linear relations for sequence elements from a quite general
generator. This might result in an LFSR, but anyway the linear relations
might change from step to step and there appears no easy way of getting an
optimal LFSR.

Here we follow another approach that solves our problem in a surprisingly
easy way: the BM-algorithm, named after Berlekamp (1968 in a di↵erent
context) and Massey (1969).

We don’t use any special properties of the field F2, so we work over an
arbitrary field K. Our goal is to construct a homogeneous linear generator of
the smallest possible recursion depth l that generates a given finite sequence
u 2 KN .

We consider a homogeneous linear generator whose recursion formula is

(1) uk = a1uk�1 + · · ·+ aluk�l for k = l, . . . , N � 1.

Its coe�cient vector is (a1, . . . , al) 2 K l. The polynomial

' = 1� a1T � · · ·� alT
l 2 K[T ]

is called feedback polynomial.

Note Don’t confuse this polynomial with the feedback function

s(u0, . . . , ul�1) = a1ul�1 + · · ·+ alu0.

The feedback polynomial is the reciprocal polynomial of the characteristic
polynomial

� = Det(T · 1�A) = T l � a1T
l�1 � · · ·� al

of the companion matrix

A =

0

BBB@

0 1 . . . 0
. . .

. . .

1
al al�1 . . . a1

1

CCCA
.

These two polynomials are related by the formula

' = T l · �( 1
T
).

Lemma 12 Let the sequence u = (u0, . . . , un�1) 2 Kn be a seg-
ment of the output of the linear generator (1), but not the sequence
û = (u0, . . . , un) 2 Kn+1. Then every homogeneous linear generator of
length m � 1 that generates û has m � n+ 1� l.
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Proof. Case 1: l � n. Then obviously l +m � n+ 1.
Case 2: l  n� 1. Assume m  n� l. We have

uj = a1uj�1 + · · ·+ aluj�l for l  j  n� 1.

Let (b1, . . . , bm) be the coe�cient vector of a homogeneous linear generator
that produces û. Then

uj = b1uj�1 + · · ·+ bmuj�m for m  j  n.

We deduce

un 6= a1un�1 + · · ·+ alun�l

=
lX

i=1

ai ·
mX

k=1

bkun�i�k

| {z }
un�i

[since n� l � m]

=
mX

k=1

bk ·
lX

i=1

aiun�k�i

| {z }
un�k

= un,

contradiction. 3

Consider a sequence u 2 KN . For 0  n  N let �n(u) = �n be the
smallest recursion depth for which a homogeneous linear generator exists
that produces (u0, . . . , un�1).

Lemma 13 For every sequence u 2 KN we have:

(i) �n+1 � �n for all n.

(ii) There is a homogeneous linear generator of recursion depth �n that
produces (u0, . . . , un) if and only if �n+1 = �n.

(iii) If there is no such generator, then

�n+1 � n+ 1� �n.

Proof. (i) Every generator that produces (u0, . . . , un) a forteriori produces
(u0, . . . , un�1).

(ii) follows from (i).
(iii) The precondition of Lemma 12 is true for every generator of

(u0, . . . , un�1). 3
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Proposition 10 [Massey] Let u 2 KN and 0  n  N � 1. Let
�n+1(u) 6= �n(u). Then

�n(u) 
n

2
and �n+1(u) = n+ 1� �n(u).

Thus the linear complexity may jump only if �n (we often omit u in the no-
tation) is “below the diagonal,” and then it jumps to the symmetric position
“above the diagonal.” An illustration is in Figure 3.2.

Proof. First we consider the easy case �n = 0: Here u0 = . . . = un�1 = 0.
If un = 0, then �n+1 = �n = 0, leaving nothing to prove. Otherwise un 6= 0,
and then �n+1 = n+ 1 = n+ 1� �n by remark 5 in 3.1.

In general the first statement follows from the second one: We have
�n < �n+1, hence 2�n < �n + �n+1 = n+ 1.

Now we prove the second statement by induction on n. In the case n = 0
we have �0 = 0—this case is already settled.

Now let n � 1. We may assume l := �n � 1. Let

uj = a1uj�1 + · · ·+ aluj�l for j = l, . . . , n� 1;

hence the feedback polynomial is

' := 1� a1T � · · ·� alT
l 2 K[T ].

Let the “n-th discrepancy” be defined as

dn := un � a1un�1 � · · ·� alun�l.

If dn = 0, then the generator outputs un as the next element, and there is
nothing to prove. Otherwise let dn 6= 0. Let r be the length of the segment
before the last increase of linear complexity, thus

t := �r < l, �r+1 = l.

By induction l = r + 1� t. We have a relation

uj = b1uj�1 + · · ·+ btuj�t for j = t, . . . , r � 1,

the corresponding feedback polynomial is

 := 1� b1T � · · ·� btT
t 2 K[T ],

and the corresponding r-th discrepancy,

dr := ur � b1ur�1 � · · ·� btur�t 6= 0.

In the case t = 0 we have  = 1 and dr = ur. Now we form the polynomial

⌘ := '� dn
dr

· Tn�r ·  = 1� c1T � · · ·� cmTm 2 K[T ]
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with m = deg ⌘. What is the output of the corresponding homogeneous
linear generator? We have

uj �
mX

i=1

ciuj�i = uj �
lX

i=1

aiuj�i �
dn
dr

·
"
uj�n+r �

tX

i=1

biuj�n+r�i

#

= 0 for j = m, . . . , n;

for j = m, . . . , n � 1 this follows directly, for j = n via the intermediate
result dn � [dn/dr] · dr. Hence the output is (u0, . . . , un). Now we have

�n+1  m  max{l, n� r + t} = max{l, n+ 1� l}.

Since linear complexity grows monotonically we conclude m > l, and by
Lemma 12 we get m � n+ 1� l. Hence m = n+ 1� l and �n+1 = m. This
proves the proposition. 3

Corollary 1 If dn 6= 0 and �n  n
2 , then

�n+1 = n+ 1� �n > �n.

Proof. By Lemma 12 we have �n+1 � n+ 1� �n, thus �n+1 � n
2 + 1 > �n.

By Proposition 10 we conclude �n+1 = n+ 1� �n. 3

During the successive construction of a linear generator in the proof of
the proposition, in each iteration step one of two cases occurs:

• dn = 0: then �n+1 = �n.

• dn 6= 0: then

– �n+1 = �n if �n > n
2 ,

– �n+1 = n+ 1� �n if �n  n
2 .

In particular we always have:

• If �n > n
2 , then �n+1 = �n.

• If �n  n
2 , then �n+1 = �n or �n+1 = n+ 1� �n.

By the way we found an alternative method of predicting LFSRs:

Corollary 2 If u 2 FN
2 is generated by an LFSR of length  l, then one

such LFSR may be determined from u0, . . . , u2l�1.

Proof. Assume n is the first index � 2l such that dn 6= 0. Then �n  l  n
2 ,

thus �n+1 = n+ 1� �n � l + 1, contradiction. 3


