
K. Pommerening, Bitstream Ciphers 93

3.7 Approaches to Nonlinearity for Feedback Shift
Registers

LFSRs are popular—in particular among electrical engineers and military—
for several reasons:

• very easy implementation,

• extreme e�ciency in hardware,

• good qualification as random generators for statistical applications and
simulations,

• unproblematic operation in parallel even in large quantities.

But unfortunately from a cryptological view they are completely insecure
if used naively. To capitalize their positive properties while escaping their
cryptological weakness there are several approaches.

Approach 1, Nonlinear Feedback

Nonlinear feedback follows the scheme from Figure 1.7 with a nonlinear
Boolean function f . There is a general proof that in realistic use cases
NLFSRs are cryptographically useless if used in the direct naive way [6].
We won’t pursue this approach here.

Approach 2, Nonlinear Output Filter

The nonlinear ouput filter (nonlinear feedforward) realizes the scheme from
Figure 3.7. The shift register itself is linear, the Boolean function f , nonlin-
ear.

The nonlinear ouput filter is a special case of a nonlinear combiner.

Approach 3, Nonlinear Combiner

The nonlinear combiner uses a “battery” of n LFSRs—preferably of di↵erent
lengths—operated in parallel. The output sequences of the LFSRs serve as
input of a Boolean function f : Fn

2 �! F2, see Figure 3.8. (Sometimes also
called “nonlinear feedforward.”) We’ll see in Section 3.8 how to cryptanalyze
this random generator.

Approach 4, Output Selection/Decimation/Clocking

There are di↵erent ways of controlling a battery of n parallel LFSRs by
another LFSR:

K. Pommerening, Bitstream Ciphers 94

��
�⌧

f

.-

6

�
�
�
�
�
��

⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠:
- -

Figure 3.7: Nonlinear ouput filter for an LFSR

.-

.-

...
...

...
...

-

-

�

⇢

⇠

⇡

-f

Figure 3.8: Nonlinear combiner

K. Pommerening, Bitstream Ciphers 95

• Output selection takes the current output bit of exactly one of the
LFSRs from the “battery”, depending on the state of the auxiliary
register, and outputs it as the next pseudorandom bit. More generally
we could choose “r from n”.

• For decimation one usually takes n = 1, and outputs the current bit
of the one battery register only if the auxiliary register is in a certain
state, for example its own current output is 1. Of course this kind of
decimation applies to arbitrary bit sequences in an analogous way.

• For clocking we look at the state of the auxiliary register and depend-
ing on it decide which of the battery registers to step in the current
cycle (and by how many positions), leaving the other registers in their
current states (this mimics the control logic of rotor machines in clas-
sical cryptography).

These methods turn out to be special cases of nonlinear combiners if properly
rewritten. Thus approach 3 represents the most important method of making
the best of LFSRs.

The encryption standard A5/1 for mobile communications uses three
LFSRs of lengths 19, 22 und 23, each with maximum possible period, and
slightly di↵erently clocked. It linearly (by simple binary addition) combines
the three output streams. The—even weaker—algorithm A5/2 controls the
clocking by an auxiliary register. Both variants can be broken on a standard
PC in real-time.

The Bluetooth encryption standard E0 uses four LFSRs and combines
them in a nonlinear way. This method is somewhat stronger than A5, but
also too weak for real security [7].

Example: The Geffe generator

The Geffe generator provides a simple example of output selection. Its
description is in Figure 3.9. The output is x, if z = 0, and y, if z = 1.
Expressed by a formula:

u =

(
x, if z = 0,

y, if z = 1

= (1� z)x+ zy = x+ zx+ zy.

This formula shows how to interpret the Geffe generator as a nonlinear
combiner with a Boolean function f: F3

2 �! F2 of degree 2. For later use we
implement f in Sage sample 3.2.

For a concrete example we first choose three LFSRs of lengths 15, 16,
17, whose periods are 215 � 1 = 32767, 216 � 1 = 65535, and 217 � 1 =
131071. These are pairwise coprime. Combining their outputs (in each step)

K. Pommerening, Bitstream Ciphers 96

.-

.-

.-

z

?
-x

-y

�

⇢

⇠

⇡
�

�
�

-

Figure 3.9: Geffe generator

Sage Example 3.2 The Ge↵e function

sage: geff = BoolF(str2bbl("00011100"),method="ANF")

sage: geff.printTT()

Value at 000 is 0

Value at 001 is 0

Value at 010 is 0

Value at 011 is 1

Value at 100 is 1

Value at 101 is 0

Value at 110 is 1

Value at 111 is 1

as bitblocks of length 3 yields a sequence with a period that has an impressive
length of 281459944554495, about 300 ⇥ 1012 (300 European billions, for
Americans this are 300 trillions).

Register 1 recursive formula un = un�1 + un�15, taps 100000000000001,
initial state 011010110001001.

Register 2 recursive formula un = un�2 + un�3 + un�5 + un�16, taps
0110100000000001, initial state 0110101100010011.

Register 3 recursive formula un = un�3+un�17, taps 00100000000000001,
initial state 01101011000100111.

K. Pommerening, Bitstream Ciphers 97

Sage sample 3.3 defines the three LFSRs. We let each of the LFSRs generate
a sequence of length 100, see Sage sample 3.4.

Sage Example 3.3 Three LFSRs

sage: reg15 = LFSR([1,0,0,0,0,0,0,0,0,0,0,0,0,0,1])

sage: reg15.setState([0,1,1,0,1,0,1,1,0,0,0,1,0,0,1])

sage: print(reg15)

Length: 15 | Taps: 100000000000001 | State: 011010110001001

sage: reg16 = LFSR([0,1,1,0,1,0,0,0,0,0,0,0,0,0,0,1])

sage: reg16.setState([0,1,1,0,1,0,1,1,0,0,0,1,0,0,1,1])

sage: print(reg16)

Length: 16 | Taps: 0110100000000001 | State: 0110101100010011

sage: reg17 = LFSR([0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1])

sage: reg17.setState([0,1,1,0,1,0,1,1,0,0,0,1,0,0,1,1,1])

sage: print(reg17)

Length: 17 | Taps: 00100000000000001 | State: 01101011000100111

Sage Example 3.4 Three LFSR sequences

sage: nofBits = 100

sage: outlist15 = reg15.nextBits(nofBits)

sage: print(outlist15)

[1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0,

0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1,

0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0,

1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1,

0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1]

sage: outlist16 = reg16.nextBits(nofBits)

sage: print(outlist16)

[1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1,

0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1,

1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0,

1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1,

1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1]

sage: outlist17 = reg17.nextBits(nofBits)

sage: print(outlist17)

[1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1,

0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0,

1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0,

0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1,

0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0]

K. Pommerening, Bitstream Ciphers 98

The three sequences of length 100 are:

10010 00110 10110 11100 00100 11011 01000 00111 01101 10000

00101 10110 11111 11001 00100 10101 01110 00111 00110 01011

11001 00011 01011 00011 00111 10000 00001 11011 10001 11000

00100 01110 11110 10010 01111 00101 10111 10010 11100 10001

11100 10001 10101 10001 00000 01100 11111 10110 11000 00111

00001 10000 00001 11111 10010 01001 01010 10110 01011 00110

In Sage sample 3.5 the Geffe function combines them to the output se-
quence

11010 00111 00011 01101 00100 10011 00001 10011 10101 10000

00100 00110 11110 10010 00110 10101 00110 10011 01100 01001

Sage Example 3.5 The combined sequence

sage: outlist = []

sage: for i in range(0,nofBits):

....: x = [outlist15[i],outlist16[i],outlist17[i]]

....: outlist.append(geff.valueAt(x))

....:

sage: print(outlist)

[1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1,

0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1,

1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0,

1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1,

0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1]

