
K. Pommerening, Bitstream Ciphers 99

3.8 Correlation Attacks—the Achilles Heels of
Combiners

Let f : Fn
2 �! F2 be the combining function of a nonlinear combiner. The

number
Kf := #{x = (x1, . . . , xn) 2 Fn

2 | f(x) = x1}

counts the coincidences of the value of the function with its first argument.
If it is > 2n�1, then the probability of a coincidence,

p =
1

2n
·Kf >

1

2
,

is above average, and the combined output sequence “correlates” with the
output of the first LFSR more then expected by random. If p < 1

2 , then the
correlation deviates from the expected value in the other direction.

The cryptanalyst can exploit this e↵ect in an attack with known plain-
text. We suppose that she knows the “hardware”, that is the taps of the
registers, and also the combining function f . She seeks the initial states of
all the LFSRs. We assume she knows the bits k0, . . . , kr�1 of the key stream.
For each of the 2l1 initial states of the first LFSR she generates the sequence
u0, . . . , ur�1, and counts the coincidences. The expected values are

1

r
·#{i | ui = ki} ⇡

(
p for the correct initial state of LFSR 1,
1
2 otherwise.

If r is large enough, she can determine the true initial state of LFSR 1 (with
high probability) for a cost of ⇠ 2l1 . She continues with the other registers,
and finally identifies the complete key with a cost of ⇠ 2l1 + · · ·+ 2ln . Note
that the cost is exponential, but significantly lower than the cost ⇠ 2l1 · · · 2ln
of the naive exhaustion of the key space.

In the language of linear cryptanalysis from Part II she made use of the
linear relation

f(x1, . . . , xn)
p
⇡ x1

for f . Clearly she could use any linear relation as well to reduce the com-
plexity of key search. (A more in-depth analysis of the situation leads to the
notion of correlation immunity that is related with the linear potential.)

Correlations from the Geffe generator

From the truth table 3.2 we get the correlations produced by the Geffe

generator. Thus the probabilities of coincidences are

p =

8
><

>:

3
4 for register 1 (x),
3
4 for register 2 (y),
1
2 for register 3 (z = control bit).



K. Pommerening, Bitstream Ciphers 100

x 0 0 0 0 1 1 1 1
y 0 1 0 1 0 1 0 1
z 0 0 1 1 0 0 1 1

f(x, y, z) 0 0 0 1 1 1 0 1

Table 3.2: Truth table of the Geffe function

linear form 0 z y y + z x x+ z x+ y x+ y + z
representation 000 001 010 011 100 101 110 111
potential � 0 0 1/4 1/4 1/4 1/4 0 0
probability p 1/2 1/2 3/4 1/4 3/4 3/4 1/2 1/2

Table 3.3: Coincidence probabilities of the Geffe function

A correlation attack easily detects the initial states of registers 1 and 2—the
battery registers—given only a short piece of an output sequence. Afterwards
exhaustion finds the initial state of register 3, the control register.

We exploit this weakness of the Geffe generator for an attack in Sage
sample 3.6 that continues Sage sample 3.2. Since we defined the linear pro-
file for objects of the class BoolMap only, we first of all have to interpret the
function geff as a Boolean map, that is a one-element list of Boolean func-
tions. Then the linear profile is represented by a matrix of 2 columns and 8
rows. The first column [64, 0, 0, 0, 0, 0, 0, 0] shows the coincidences
with the linear form 0 in the range. So it contains no useful information, ex-
cept the denominator 64 that applies to all entries. The second row [0, 0,

16, 16, 16, 16, 0, 0] yields the list of coincidence probabilities p (after
dividing it by 64) in Table 3.3, using the formula

p =
1

2
· (±

p
�+ 1).

If � = 0, then p = 1/2. If � = 1/4, then p = 1/4 or 3/4. For deciding between
these two values for p we use Table 3.2.

Sage Example 3.6 Linear profile of the Ge↵e function

sage: g = BoolMap([geff])

sage: linProf = g.linProf(); linProf

[[64,0], [0,0], [0,16], [0,16], [0,16], [0,16], [0,0], [0,0]]

In Sage sample 3.7 we apply this finding to the 100 element sequence from
Sage sample 3.5. The function coinc from the Sage module Bitblock.sage
in Appendix E.1 of Part II counts the coincidences. For the first register we



K. Pommerening, Bitstream Ciphers 101

find 73 coincidences, for the second one 76, for the third one only 41. This
confirms the values 75, 75, 50 predicted by our theory.

Sage Example 3.7 Coincidences for the Ge↵e generator

sage: coinc(outlist15,outlist)

73

sage: coinc(outlist16,outlist)

76

sage: coinc(outlist17,outlist)

41

Cryptanalysis of the Ge↵e Generator

These results promise an e↵ortless analysis of our sample sequence. For an
assessment of the success probability we consider a bitblock b 2 Fr

2 and first
ask how large is the probability that a random bitblock u 2 Fr

2 coincides with
b at exactly t positions. For an answer we have to look at the symmetric
binomial distribution (where p = 1

2 is the probability of coincidence at a
single position): The probability of exactly t coincidences is

Br, 12
(t) =

�r
t

�

2r
.

Hence the cumulated probability of up to T coincidences is

TX

t=0

Br, 12
(t) =

1

2r
·

TX

t=0

✓
r

t

◆
.

If r is not too large, then we may explicitly calculate this value for a given
bound T . If on the other hand r is not too small, then we approximate
the value using the normal distribution. The mean value of the number of
coincidences is r/2, the variance, r/4, and the standard deviation,

p
r/2.

In any case for r = 100 the probability of finding at most (say) 65 co-
incidences is 0.999, the probability of surpassing this number is 1‰. For
the initial state of register 1 we have to try 215 = 32786 possibilities (gener-
ously including the zero state 0 2 F15

2 into the count). So we expect about
33 oversteppings with at least 66 coincidences. One of these should occur
for the true initial state of register 1 that we expect to produce about 75
coincidences. Maybe it even produces the maximum number of coincidences.

Sage sample 3.8 shows that this really happens. However the max-
imum number of coincidences, 73, occurs twice in the histogram. The
first occurrence happens at index 13705, corresponding to the initial state
011010110001001, the correct solution. The second occurrence, at index



K. Pommerening, Bitstream Ciphers 102

Sage Example 3.8 Analysis of the Ge↵e generator—register 1

sage: clist = []

sage: histogr = [0] * (nofBits + 1)

sage: for i in range(0,2**15):

....: start = int2bbl(i,15)

....: reg15.setState(start)

....: testlist = reg15.nextBits(nofBits)

....: c = coinc(outlist,testlist)

....: histogr[c] += 1

....: clist.append(c)

....:

sage: print(histogr)

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 12, 12, 37, 78, 116, 216,

329, 472, 722, 1003, 1369, 1746, 1976, 2266, 2472, 2531, 2600,

2483, 2355, 2149, 1836, 1574, 1218, 928, 726, 521, 343, 228, 164,

102, 60, 47, 36, 13, 8, 7, 4, 2, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

sage: mm = max(clist)

sage: ix = clist.index(mm)

sage: block = int2bbl(ix,15)

sage: print("Maximum =", mm, "at index", ix, ", start value", block)

Maximum = 73 at index 13705 , start value\

[0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1]

Sage Example 3.9 Analysis of the Ge↵e generator—continued

sage: ix = clist.index(mm,13706); ix

31115

sage: print(int2bbl(ix,15))

[1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1]

31115, see Sage sample 3.9, yields the false solution 111100110001011 that
eventually leads to a contradiction.

Sage sample 3.10 shows the analogous analysis of register 2. Here the
maximum of coincidences, 76, is unique, occurs at index 27411 corresponding
to the initial state 0110101100010011, and provides the correct solution.

To complete the analysis we must yet determine the initial state of reg-
ister 3, the control register. The obvious idea is to exhaust the 217 di↵erent
possibilities. There is a shortcut since we already know 51 of the first 100
bits of the control register: At a position where the values of registers 1 and



K. Pommerening, Bitstream Ciphers 103

Sage Example 3.10 Analysis of the Ge↵e generator—register 2

sage: clist = []

sage: histogr = [0] * (nofBits + 1)

sage: for i in range(0,2**16):

....: start = int2bbl(i,16)

....: reg16.setState(start)

....: testlist = reg16.nextBits(nofBits)

....: c = coinc(outlist,testlist)

....: histogr[c] += 1

....: clist.append(c)

....:

sage: print(histogr)

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 3, 4, 8, 17, 25, 51, 92, 171,

309, 477, 750, 1014, 1423, 1977, 2578, 3174, 3721, 4452, 4821,

5061, 5215, 5074, 4882, 4344, 3797, 3228, 2602, 1974, 1419,

1054, 669, 434, 306, 174, 99, 62, 38, 19, 10, 3, 0, 1, 0, 0,

0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0]

sage: mm = max(clist)

sage: ix = clist.index(mm)

sage: block = int2bbl(ix,16)

sage: print("Maximum =", mm, "at index", ix, ", start value", block)

Maximum = 76 at index 27411 , start value\

[0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1]

2 di↵er, the control bit is necessarily 0 if the final output coincides with reg-
ister 1, and 1 otherwise. Only at positions where registers 1 and 2 coincide
the corresponding bit of register 3 is undetermined.

register 1: 10010001101011011100001001101101000001110110110000

register 2: 11001000110101100011001111000000001110111000111000

register 3: -1-00--0-1101-110001---00-1-00-1--1101--110---0---

bitsequence: 11010001110001101101001001001100001100111010110000

... 00101101101111111001001001010101110001110011001011

... 00100011101111010010011110010110111100101110010001

... ----110-------1-1-11-0-100----01--01-1-001-1-00-1-

... 00100001101111010010001101010100110100110110001001

In particular we already know 11 of the 17 initial bits, and are left with only
26 = 64 possibilities to try.



K. Pommerening, Bitstream Ciphers 104

u17 = u14 + u0 0 = 1 + u0 u0 = 1
u19 = u16 + u2 1 = 0 + u2 u2 = 1
u20 = u17 + u3 u20 = 0 + 0 u20 = 0
u22 = u19 + u5 u22 = u5 + 1 u5 = u22 + 1
u23 = u20 + u6 0 = u20 + u6 u6 = u20 u6 = 0
u25 = u22 + u8 u25 = u22 + u8 u8 = u22 + u25 u8 = u22
u27 = u24 + u10 u27 = 0 + 1 u27 = 1
u28 = u25 + u11 0 = u25 + 0 u25 = 0
u30 = u27 + u13 u30 = u27 + u13 u13 = u27 + u30 u13 = u30 + 1
u33 = u30 + u16 u33 = u30 + 0 u30 = u33 u30 = 1
u36 = u33 + u19 0 = u33 + 1 u33 = 1
u39 = u36 + u22 u39 = 0 + u22 u22 = u39
u42 = u39 + u25 0 = u39 + u25 u39 = u25 u39 = 0

Table 3.4: Determination of the control register’s initial state

But even this may be further simplified, since the known and the un-
known bits obey linear relations of the type un = un�3+un�17. The unknown
bits of the initial state are u0, u2, u5, u6, u8, u13. The solution follows the
columns of Table 3.4, that immediately give

u0 = 1, u2 = 1, u6 = 0.

The remaining solutions are

u8 = u22 = u39 = 0, u5 = u22 + 1 = u8 + 1 = 1, u13 = u30 + 1 = 0.

Hence the initial state of the control register is 01101011000100111, and we
know this is the correct solution. We don’t need to bother with the second
possible solution for register 1 since we already found a constellation that
correctly reproduces the sequence.


