3.3 The Berlekamp-Massey Algorithm

The proof of Proposition 10 is constructive: It contains an algorithm that successively builds a linear generator. For the step from length n to length $n+1$ three cases ($1,2 \mathrm{a}, 2 \mathrm{~b}$) are possible:

Case $1 d_{n}=0$, hence the generator with feedback polynomial φ next outputs u_{n} : Then φ and l remain unchanged, and so remain ψ, t, r, d_{r}.

Case $2 d_{n} \neq 0$, hence the generator with feedback polynomial φ doesn't output u_{n} as next element: Then we form a new feedback polynomial η whose corresponding generator outputs $\left(u_{0}, \ldots, u_{n}\right)$. We distinguish between:
a) $l>\frac{n}{2}$: Then $\lambda_{n+1}=\lambda_{n}$. We replace φ by η and leave l, ψ, t, r, d_{r} unchanged.
b) $l \leq \frac{n}{2}$: Then $\lambda_{n+1}=n+1-\lambda_{n}$. We replace φ by η, l by $n+1-l$, ψ by φ, t by l, r by n, d_{r} by d_{n}.

So a semi-formal description of the Berlekamp-Massey algorithm (or BM algorithm) is:

Input: A sequence $u=\left(u_{0}, \ldots, u_{N-1}\right) \in K^{N}$.
Output: The linear complexity $\lambda_{N}(u)$,
the feedback polynomial φ of a linear generator of length $\lambda_{N}(u)$ that produces u.

Auxiliary variables: $n=$ current index, initialized by $n:=0$,
$l=$ current linear complexity, initialized by $l:=0$,
$\varphi=$ current feedback polynomial $=1-a_{1} T-\cdots-a_{l} T^{l}$, initialized by $\varphi:=1$,
invariant condition: $u_{i}=a_{1} u_{i-1}+\cdots+a_{l} u_{i-l}$ for $l \leq i<n$,
$d=$ current discrepancy $=u_{n}-a_{1} u_{n-1}-\cdots-a_{l} u_{n-l}$,
$r=$ previous index, initialized by $r:=-1$,
$t=$ previous linear complexity,
$\psi=$ previous feedback polynomial $=1-b_{1} T-\cdots-b_{t} T^{t}$, initialized by $\psi:=1$,
invariant condition: $u_{i}=b_{1} u_{i-1}+\cdots+b_{t} u_{i-t}$ for $t \leq i<r$,
$d^{\prime}=$ previous discrepancy $=u_{r}-b_{1} u_{r-1}-\cdots-b_{t} u_{r-t}$, initialized by $d^{\prime}:=1$,
$\eta=$ new feedback polynomial,
$m=$ new linear complexity.

Iteration steps: For $n=0, \ldots, N-1$:

$$
\begin{gathered}
d:=u_{n}-a_{1} u_{n-1}-\cdots-a_{l} u_{n-l} \\
\text { If } d \neq 0 \\
\eta:=\varphi-\frac{d}{d^{\prime}} \cdot T^{n-r} \cdot \psi \\
\text { If } l \leq \frac{n}{2} \text { [linear complexity increases] } \\
m:=n+1-l \\
t:=l \\
l:=m \\
\psi:=\varphi \\
r:=n \\
d^{\prime}:=d \\
\varphi:=\eta \\
\text { Output: } \lambda_{N}(u):=l \text { and } \varphi
\end{gathered}
$$

Of course we may output also the complete sequence $\left(\lambda_{n}\right)$.
As an example we apply the algorithm to the sequence 001101110. The steps where $d \neq 0, l \leq \frac{n}{2}$, are tagged by "[!]".

preconditions of the step			actions	
$n=0$	$u_{0}=0$	$l=0$	$\varphi=1$	$d:=u_{0}=0$
$r=-1$	$d^{\prime}=1$	$t=$	$\psi=1$	$d:=u_{1}=0$
$n=1$	$u_{1}=0$	$l=0$	$\varphi=1$	
$r=-1$	$d^{\prime}=1$	$t=$	$\psi=1$	$d:=u_{2}=1[!]$
$n=2$	$u_{2}=1$	$l=0$	$\varphi=1$	$\eta:=1-T^{3}$
$r=-1$	$d^{\prime}=1$	$t=$	$\psi=1$	$m:=3$
				$d:=u_{3}-u_{0}=1$
$n=3$	$u_{3}=1$	$l=3$	$\varphi=1-T^{3}$	$\eta:=1-T-T^{3}$
$r=2$	$d^{\prime}=1$	$t=0$	$\psi=1$	$\eta:=u_{4}-u_{3}-u_{1}=-1$
$n=4$	$u_{4}=0$	$l=3$	$\varphi=1-T-T^{3}$	$\eta:=1-T+T^{2}-T^{3}$
$r=2$	$d^{\prime}=1$	$t=0$	$\psi=1$	$d:=u_{5}-u_{4}+u_{3}-u_{2}=1$
$n=5$	$u_{5}=1$	$l=3$	$\varphi=1-T+T^{2}-T^{3}$	$\eta:=1-T+T^{2}-2 T^{3}$
$r=2$	$d^{\prime}=1$	$t=0$	$\psi=1$	

From now on the results differ depending on the characteristic of the base field K. First assume char $K \neq 2$. Then the procedure continues as follows:

preconditions of the step	actions
$n=6 \quad u_{6}=1 \quad l=3$	$d:=u_{6}-u_{5}+u_{4}-2 u_{3}=-2[!]$
$\varphi=1-T+T^{2}-2 T^{3}$	$\eta=1-T+T^{2}-2 T^{3}+2 T^{4}$
$r=2 \quad d^{\prime}=1 \quad t=0 \quad \psi=1$	$m:=4$
$n=7 \quad u_{7}=1 \quad l=4$	$d:=u_{7}-u_{6}+u_{5}-2 u_{4}+2 u_{3}=3$
$\varphi=1-T+T^{2}-2 T^{3}+2 T^{4}$	$\eta=1+\frac{1}{2} T-\frac{1}{2} T^{2}-\frac{1}{2} T^{3}-T^{4}$
$r=6 \quad d^{\prime}=-2 \quad t=3$	
$\psi=1-T+T^{2}-2 T^{3}$	
$n=8 \quad u_{8}=0 \quad l=4$	$d:=u_{8}+\frac{1}{2} u_{7}-\frac{1}{2} u_{6}-\frac{1}{2} u_{5}-u_{4}=-\frac{1}{2}[!]$
$\varphi=1+\frac{1}{2} T-\frac{1}{2} T^{2}-\frac{1}{2} T^{3}-T^{4}$	$\eta:=1+\frac{1}{2} T-\frac{3}{4} T^{2}-\frac{1}{4} T^{3}-\frac{5}{4} T^{4}+\frac{1}{2} T^{5}$
$r=6 \quad d^{\prime}=-2 \quad t=3$	$m:=5$
$\psi=1-T+T^{2}-2 T^{3}$	

The resulting sequence of linear complexities is
$\lambda_{0}=0, \lambda_{1}=0, \lambda_{2}=0, \lambda_{3}=3, \lambda_{4}=3, \lambda_{5}=3, \lambda_{6}=3, \lambda_{7}=4, \lambda_{8}=4, \lambda_{9}=5$,
and the generating formula is

$$
u_{i}=-\frac{1}{2} u_{i-1}+\frac{3}{4} u_{i-2}+\frac{1}{4} u_{i-3}+\frac{5}{4} u_{i-4}-\frac{1}{2} u_{i-5} \quad \text { for } i=5, \ldots, 8
$$

For char $K=2$ the last three iteration steps look differently:

preconditions of the step		actions
$n=6 \quad u_{6}=1 \quad l=3$	$d:=u_{6}-u_{5}-u_{4}=0$	
$\varphi=1-T-T^{2}$		
$r=2 \quad d^{\prime}=1 \quad t=0 \quad \psi=1$	$d:=u_{7}-u_{6}-u_{5}=1[!]$	
$n=7 \quad u_{7}=1 \quad l=3$	$\eta=1-T-T^{2}-T^{5}$	
$\varphi=1-T-T^{2}$		$m:=5$
$r=2 \quad d^{\prime}=1 \quad t=0 \quad \psi=1$	$d:=u_{8}-u_{7}-u_{6}-u_{3}=1$	
$n=8 \quad u_{8}=0 \quad l=5$	$\eta:=1-T^{3}-T^{5}$	
$\varphi=1-T-T^{2}-T^{5}$		
$r=7 \quad d^{\prime}=1 \quad t=3 \quad \psi=1-T-T^{2}$		

In this case the sequence of linear complexities is
$\lambda_{0}=0, \lambda_{1}=0, \lambda_{2}=0, \lambda_{3}=3, \lambda_{4}=3, \lambda_{5}=3, \lambda_{6}=3, \lambda_{7}=3, \lambda_{8}=5, \lambda_{9}=5$,
and the generating formula is

$$
u_{i}=u_{i-3}+u_{i-5} \quad \text { for } i=5, \ldots, 8
$$

A Sage program for the char 2 case is in Sage Example 3.1. It uses the function bmAlg from Appendix B. 2

Figure 3.2 shows the growth of the linear complexities.

```
Sage Example 3.1 Applying the BM-algorithm
sage: \(u=[0,0,1,1,0,1,1,1,0]\)
sage: res \(=\) bmAlg(u)
sage: res
\(\left[[0,0,0,3,3,3,3,3,5,5], T^{\wedge} 5+T^{\wedge} 3+1\right]\)
```


Figure 3.2: The sequence of linear complexities. The red line is for char $K \neq$ 2.

The cost of the BM algorithm is $\mathrm{O}\left(N^{2} \log N\right)$.
The sequence $\left(\lambda_{n}\right)_{n \in \mathbb{N}}$ or (for finite output sequences) $\left(\lambda_{n}\right)_{0 \leq n \leq N}$ is called the linearity profile of the sequence u.

Here is the linearity profile of the first 128 bits of the sequence that we generated by an LFSR in Section 1.10:

$$
\begin{gathered}
(0,1,1,2,2,3,3,4,4,4,4,7,7,7,7,8,8,9,9,10,10,11,11,12 \\
12,13,13,13,13,16,16,16,16, \ldots)
\end{gathered}
$$

its graphic representation is in Figure 3.3:
In Section 4.1 we'll generate a "perfect" pseudorandom sequence. The linearity profile of its first 128 bits is:
$(0,1,1,1,1,4,4,4,4,5,5,5,5,8,8,8,8,8,8,8,12,12,12,12$,
$12,12,12,12,12,17,17,17,17,17,17,18,18,18,20,20,20,21,21$,
$22,22,22,24,24,24,24,24,24,28,28,28,28,28,29,29,30,30,31$,

Figure 3.3: Linearity profile of an LFSR sequence
$31,32,32,32,34,34,34,34,36,36,36,37,37,38,38,39,39,40,40$,
$41,41,41,41,41,41,46,46,46,46,46,46,47,47,48,48,49,49,50$, $50,50,52,52,52,53,53,54,54,54,54,54,54,54,54,61,61,61,61$, $61,61,61,61,61,63,63,63,64,64)$,
graphically illustrated by Figure 3.4.

Figure 3.4: Linearity profile of a perfect pseudorandom sequence
In the second example we see a somewhat irregular oscillation around the diagonal, as should be expected for a "good" random sequence. The first example also shows a similar behaviour, but only until the linear complexity of the sequence is reached.

