
K. Pommerening, Bitstream Ciphers 76

3.3 The Berlekamp-Massey Algorithm

The proof of Proposition 10 is constructive: It contains an algorithm that
successively builds a linear generator. For the step from length n to length
n+ 1 three cases (1, 2a, 2b) are possible:

Case 1 dn = 0, hence the generator with feedback polynomial ' next out-
puts un: Then ' and l remain unchanged, and so remain , t, r, dr.

Case 2 dn 6= 0, hence the generator with feedback polynomial ' doesn’t
output un as next element: Then we form a new feedback polynomial
⌘ whose corresponding generator outputs (u0, . . . , un). We distinguish
between:

a) l > n
2 : Then �n+1 = �n. We replace ' by ⌘ and leave l, , t, r, dr

unchanged.

b) l n
2 : Then �n+1 = n+ 1� �n. We replace ' by ⌘, l by n+ 1� l,

 by ', t by l, r by n, dr by dn.

So a semi-formal description of the Berlekamp-Massey algorithm (or
BM algorithm) is:

Input: A sequence u = (u0, . . . , uN�1) 2 KN .

Output: The linear complexity �N (u),

the feedback polynomial ' of a linear generator of length �N (u) that
produces u.

Auxiliary variables: n = current index, initialized by n := 0,

l = current linear complexity, initialized by l := 0,

' = current feedback polynomial = 1� a1T � · · ·� alT l, initialized by
' := 1,

invariant condition: ui = a1ui�1 + · · ·+ alui�l for l i < n,

d = current discrepancy = un � a1un�1 � · · ·� alun�l,

r = previous index, initialized by r := �1,

t = previous linear complexity,

 = previous feedback polynomial = 1 � b1T � · · · � btT t, initialized
by := 1,

invariant condition: ui = b1ui�1 + · · ·+ btui�t for t i < r,

d0 = previous discrepancy = ur � b1ur�1 � · · ·� btur�t, initialized by
d0 := 1,

⌘ = new feedback polynomial,

m = new linear complexity.

K. Pommerening, Bitstream Ciphers 77

Iteration steps: For n = 0, . . . , N � 1:

d := un � a1un�1 � · · ·� alun�l

If d 6= 0
⌘ := '� d

d0 · T
n�r ·

If l n
2 [linear complexity increases]

m := n+ 1� l
t := l
l := m
 := '
r := n
d0 := d

' := ⌘
Output: �N (u) := l and '

Of course we may output also the complete sequence (�n).
As an example we apply the algorithm to the sequence 001101110. The

steps where d 6= 0, l n
2 , are tagged by “[!]”.

preconditions of the step actions

n = 0 u0 = 0 l = 0 ' = 1 d := u0 = 0
r = �1 d0 = 1 t = = 1
n = 1 u1 = 0 l = 0 ' = 1 d := u1 = 0
r = �1 d0 = 1 t = = 1
n = 2 u2 = 1 l = 0 ' = 1 d := u2 = 1 [!]
r = �1 d0 = 1 t = = 1 ⌘ := 1� T 3

m := 3
n = 3 u3 = 1 l = 3 ' = 1� T 3 d := u3 � u0 = 1
r = 2 d0 = 1 t = 0 = 1 ⌘ := 1� T � T 3

n = 4 u4 = 0 l = 3 ' = 1� T � T 3 d := u4 � u3 � u1 = �1
r = 2 d0 = 1 t = 0 = 1 ⌘ := 1� T + T 2 � T 3

n = 5 u5 = 1 l = 3 ' = 1� T + T 2 � T 3 d := u5 � u4 + u3 � u2 = 1
r = 2 d0 = 1 t = 0 = 1 ⌘ := 1� T + T 2 � 2T 3

From now on the results di↵er depending on the characteristic of the
base field K. First assume charK 6= 2. Then the procedure continues as
follows:

K. Pommerening, Bitstream Ciphers 78

preconditions of the step actions

n = 6 u6 = 1 l = 3 d := u6 � u5 + u4 � 2u3 = �2 [!]
' = 1� T + T 2 � 2T 3 ⌘ = 1� T + T 2 � 2T 3 + 2T 4

r = 2 d0 = 1 t = 0 = 1 m := 4
n = 7 u7 = 1 l = 4 d := u7 � u6 + u5 � 2u4 + 2u3 = 3
' = 1� T + T 2 � 2T 3 + 2T 4 ⌘ = 1 + 1

2T � 1
2T

2 � 1
2T

3 � T 4

r = 6 d0 = �2 t = 3
 = 1� T + T 2 � 2T 3

n = 8 u8 = 0 l = 4 d := u8 +
1
2u7 �

1
2u6 �

1
2u5 � u4 = �1

2 [!]
' = 1 + 1

2T � 1
2T

2 � 1
2T

3 � T 4 ⌘ := 1 + 1
2T � 3

4T
2 � 1

4T
3 � 5

4T
4 + 1

2T
5

r = 6 d0 = �2 t = 3 m := 5
 = 1� T + T 2 � 2T 3

The resulting sequence of linear complexities is

�0 = 0,�1 = 0,�2 = 0,�3 = 3,�4 = 3,�5 = 3,�6 = 3,�7 = 4,�8 = 4,�9 = 5,

and the generating formula is

ui = �1

2
ui�1 +

3

4
ui�2 +

1

4
ui�3 +

5

4
ui�4 �

1

2
ui�5 for i = 5, . . . , 8.

For charK = 2 the last three iteration steps look di↵erently:

preconditions of the step actions

n = 6 u6 = 1 l = 3 d := u6 � u5 � u4 = 0
' = 1� T � T 2

r = 2 d0 = 1 t = 0 = 1
n = 7 u7 = 1 l = 3 d := u7 � u6 � u5 = 1 [!]
' = 1� T � T 2 ⌘ = 1� T � T 2 � T 5

r = 2 d0 = 1 t = 0 = 1 m := 5
n = 8 u8 = 0 l = 5 d := u8 � u7 � u6 � u3 = 1
' = 1� T � T 2 � T 5 ⌘ := 1� T 3 � T 5

r = 7 d0 = 1 t = 3 = 1� T � T 2

In this case the sequence of linear complexities is

�0 = 0,�1 = 0,�2 = 0,�3 = 3,�4 = 3,�5 = 3,�6 = 3,�7 = 3,�8 = 5,�9 = 5,

and the generating formula is

ui = ui�3 + ui�5 for i = 5, . . . , 8.

A Sage program for the char 2 case is in Sage Example 3.1. It uses the
function bmAlg from Appendix B.2.

Figure 3.2 shows the growth of the linear complexities.

K. Pommerening, Bitstream Ciphers 79

Sage Example 3.1 Applying the BM-algorithm

sage: u = [0,0,1,1,0,1,1,1,0]

sage: res = bmAlg(u)

sage: res

[[0, 0, 0, 3, 3, 3, 3, 3, 5, 5], T^5 + T^3 + 1]

- n
0 1 2 3 4 5 6 7 8 9

6
�n

1

2

3

4

5

������������������������
n
2

s s s

s s s s s
s s

q

q
s s q

Figure 3.2: The sequence of linear complexities. The red line is for charK 6=
2.

The cost of the BM algorithm is O(N2 logN).
The sequence (�n)n2N or (for finite output sequences) (�n)0nN is called

the linearity profile of the sequence u.
Here is the linearity profile of the first 128 bits of the sequence that we

generated by an LFSR in Section 1.10:

(0, 1, 1, 2, 2, 3, 3, 4, 4, 4, 4, 7, 7, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12,

12, 13, 13, 13, 13, 16, 16, 16, 16, . . .),

its graphic representation is in Figure 3.3:
In Section 4.1 we’ll generate a “perfect” pseudorandom sequence. The

linearity profile of its first 128 bits is:

(0, 1, 1, 1, 1, 4, 4, 4, 4, 5, 5, 5, 5, 8, 8, 8, 8, 8, 8, 8, 12, 12, 12, 12,

12, 12, 12, 12, 12, 17, 17, 17, 17, 17, 17, 18, 18, 18, 20, 20, 20, 21, 21,

22, 22, 22, 24, 24, 24, 24, 24, 24, 28, 28, 28, 28, 28, 29, 29, 30, 30, 31,

K. Pommerening, Bitstream Ciphers 80

20 40 60 80 100 120

2

4

6

8

10

12

14

16

Figure 3.3: Linearity profile of an LFSR sequence

31, 32, 32, 32, 34, 34, 34, 34, 36, 36, 36, 37, 37, 38, 38, 39, 39, 40, 40,

41, 41, 41, 41, 41, 41, 46, 46, 46, 46, 46, 46, 47, 47, 48, 48, 49, 49, 50,

50, 50, 52, 52, 52, 53, 53, 54, 54, 54, 54, 54, 54, 54, 54, 61, 61, 61, 61,

61, 61, 61, 61, 61, 63, 63, 63, 64, 64),

graphically illustrated by Figure 3.4.

20 40 60 80 100 120

10

20

30

40

50

60

Figure 3.4: Linearity profile of a perfect pseudorandom sequence

In the second example we see a somewhat irregular oscillation around
the diagonal, as should be expected for a “good” random sequence. The first
example also shows a similar behaviour, but only until the linear complexity
of the sequence is reached.

