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2.2 Linear Generators over Fields

In this section we consider the special case where R = K is a field and M a
finite dimensional vector space over K (hence a Noetherian K-module).

Then we have to find the minimal k with

dim(Kx0 + · · ·+Kxk) = dim(Kx0 + · · ·+Kxk�1)

and then to find the linear combination

xk = c1xk�1 + · · ·+ ckx0.

This is a standard exercise in linear algebra.
For a concrete calculation we chose a fixed basis (e1, . . . , em) of M . Let

xn =
mX

i=1

xinei

denote the corresponding basis representation. Since rank(x0, . . . , xk�1) = k,
there is a set I = {i1, . . . , ik} ✓ {1, . . . ,m} of indices with #I = k such that
the matrix

X = (xij)i2I,0j<k =

0

B@
xi10 . . . xi1k�1
...

...
xik0 . . . xikk�1

1

CA

is invertible. The coe�cients cj in the relation

xk =
k�1X

j=0

cjxj ,

are not yet known, we get them by substituting

mX

i=1

xikei =
k�1X

j=0

mX

i=1

cjxijei,

hence by the uniqueness of basis coe�cients

xik =
k�1X

j=0

xijcj for all i 2 I,

or, in matrix notation,
x̄ = (xik)i2I = X · c.

The solution for the coe�cients cj is

c = X�1 · x̄.

This proves the first two statements of the following proposition that extends
Proposition 4:
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Proposition 6 Under the assumptions of Proposition 4 let R = K be a
field and M be finite dimensional of dimension m. Then:

(i) The minimal k that fulfils the statements on r in Proposition 4 is the
smallest index with dim(Kx0 + · · ·+Kxk) = k, and k  m.

(ii) The coe�cients c1, . . . , ck are determined by a system of linear equa-
tions with an invertible square coe�cient matrix whose entries consist
of basis coe�cients of x0, . . . , xk�1.

(iii) If k = m, then A is uniquely determined by the basis coe�cients of
x0, . . . , xk.

Proof. (iii) Let

X1 = (xm, . . . , x1), X0 = (xm�1, . . . , x0) 2 Mm(K).

Then X1 = AX0 in matrix representation for the basis (e1, . . . , em) of M .
Since rankX0 = m the matrix X0 is invertible, and

A = X1X
�1
0 ,

as claimed. 3

If A is invertible, then we can determine the sequence (xn) also in back-
wards direction as soon as we have a subsequence xt, . . . , xt+m of length
m+ 1 with rank(xt, . . . , xt+m�1) = m at our disposition.

Example

For the special case of an r-step homogeneous linear congruential generator
xn = a1xn�1 + · · · + arxn�r over Fp = Z/pZ where p is prime we use the
companion matrix

A =

0

BBB@

0 1
. . .

. . .

0 1
ar . . . a2 a1

1

CCCA
, DetA = (�1)rar.

In this case A is invertible if and only if ar 6= 0, a condition we may assume
without loss of generality—otherwise the recursion depth would be < r.

For predicting the sequence we need at most r + 1 state vectors, or 2r
elements of the sequence:

Corollary 1 An r-step homogeneous linear congruential generator with
known prime module is predictable given the 2r elements x0, . . . , x2r�1 of
the output sequence.
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Corollary 2 An LFSR of length l is predictable from the first 2l output bits.

Corollary 3 A homogeneous linear congruential generator with known
prime module is predictable from x0, x1, an inhomogeneous one, from
x0, x1, x2, x3.

In the Section 2.4 we’ll see that even x0, x1, x2 su�ce.
These results knock o↵ LFSRs as sources of key bits for cryptological

applications. Keeping the length secret is useless since the attacker may
easily determine it by trial and error, putting up with a slight complication
of the attack.

For linear congruential generators we might hope that keeping the mod-
ulem secret (and maybe not choosing a prime) might erect a serious obstacle.
However we’ll also put this hope at rest in Section 2.5.


