2.2 Linear Generators over Fields

In this section we consider the special case where $R=K$ is a field and M a finite dimensional vector space over K (hence a Noetherian K-module).

Then we have to find the minimal k with

$$
\operatorname{dim}\left(K x_{0}+\cdots+K x_{k}\right)=\operatorname{dim}\left(K x_{0}+\cdots+K x_{k-1}\right)
$$

and then to find the linear combination

$$
x_{k}=c_{1} x_{k-1}+\cdots+c_{k} x_{0} .
$$

This is a standard exercise in linear algebra.
For a concrete calculation we chose a fixed basis $\left(e_{1}, \ldots, e_{m}\right)$ of M. Let

$$
x_{n}=\sum_{i=1}^{m} x_{i n} e_{i}
$$

denote the corresponding basis representation. Since $\operatorname{rank}\left(x_{0}, \ldots, x_{k-1}\right)=k$, there is a set $I=\left\{i_{1}, \ldots, i_{k}\right\} \subseteq\{1, \ldots, m\}$ of indices with $\# I=k$ such that the matrix

$$
X=\left(x_{i j}\right)_{i \in I, 0 \leq j<k}=\left(\begin{array}{ccc}
x_{i_{1} 0} & \ldots & x_{i_{1} k-1} \\
\vdots & & \vdots \\
x_{i_{k} 0} & \ldots & x_{i_{k} k-1}
\end{array}\right)
$$

is invertible. The coefficients c_{j} in the relation

$$
x_{k}=\sum_{j=0}^{k-1} c_{j} x_{j}
$$

are not yet known, we get them by substituting

$$
\sum_{i=1}^{m} x_{i k} e_{i}=\sum_{j=0}^{k-1} \sum_{i=1}^{m} c_{j} x_{i j} e_{i},
$$

hence by the uniqueness of basis coefficients

$$
x_{i k}=\sum_{j=0}^{k-1} x_{i j} c_{j} \quad \text { for all } i \in I
$$

or, in matrix notation,

$$
\bar{x}=\left(x_{i k}\right)_{i \in I}=X \cdot c .
$$

The solution for the coefficients c_{j} is

$$
c=X^{-1} \cdot \bar{x} .
$$

This proves the first two statements of the following proposition that extends Proposition 4:

Proposition 6 Under the assumptions of Proposition 4 let $R=K$ be a field and M be finite dimensional of dimension m. Then:
(i) The minimal k that fulfils the statements on r in Proposition 4 is the smallest index with $\operatorname{dim}\left(K x_{0}+\cdots+K x_{k}\right)=k$, and $k \leq m$.
(ii) The coefficients c_{1}, \ldots, c_{k} are determined by a system of linear equations with an invertible square coefficient matrix whose entries consist of basis coefficients of x_{0}, \ldots, x_{k-1}.
(iii) If $k=m$, then A is uniquely determined by the basis coefficients of x_{0}, \ldots, x_{k}.

Proof. (iii) Let

$$
X_{1}=\left(x_{m}, \ldots, x_{1}\right), X_{0}=\left(x_{m-1}, \ldots, x_{0}\right) \in M_{m}(K) .
$$

Then $X_{1}=A X_{0}$ in matrix representation for the basis $\left(e_{1}, \ldots, e_{m}\right)$ of M. Since rank $X_{0}=m$ the matrix X_{0} is invertible, and

$$
A=X_{1} X_{0}^{-1}
$$

as claimed.

If A is invertible, then we can determine the sequence $\left(x_{n}\right)$ also in backwards direction as soon as we have a subsequence x_{t}, \ldots, x_{t+m} of length $m+1$ with $\operatorname{rank}\left(x_{t}, \ldots, x_{t+m-1}\right)=m$ at our disposition.

Example

For the special case of an r-step homogeneous linear congruential generator $x_{n}=a_{1} x_{n-1}+\cdots+a_{r} x_{n-r}$ over $\mathbb{F}_{p}=\mathbb{Z} / p \mathbb{Z}$ where p is prime we use the companion matrix

$$
A=\left(\begin{array}{cccc}
0 & 1 & & \\
& \ddots & \ddots & \\
& & 0 & 1 \\
a_{r} & \ldots & a_{2} & a_{1}
\end{array}\right), \quad \operatorname{Det} A=(-1)^{r} a_{r}
$$

In this case A is invertible if and only if $a_{r} \neq 0$, a condition we may assume without loss of generality-otherwise the recursion depth would be $<r$.

For predicting the sequence we need at most $r+1$ state vectors, or $2 r$ elements of the sequence:

Corollary 1 An r-step homogeneous linear congruential generator with known prime module is predictable given the $2 r$ elements $x_{0}, \ldots, x_{2 r-1}$ of the output sequence.

Corollary 2 An LFSR of length l is predictable from the first $2 l$ output bits.
Corollary 3 A homogeneous linear congruential generator with known prime module is predictable from x_{0}, x_{1}, an inhomogeneous one, from $x_{0}, x_{1}, x_{2}, x_{3}$.

In the Section 2.4 we'll see that even x_{0}, x_{1}, x_{2} suffice.
These results knock off LFSRs as sources of key bits for cryptological applications. Keeping the length secret is useless since the attacker may easily determine it by trial and error, putting up with a slight complication of the attack.

For linear congruential generators we might hope that keeping the module m secret (and maybe not choosing a prime) might erect a serious obstacle. However we'll also put this hope at rest in Section 2.5

