
K. Pommerening, Bitstream Ciphers 47

2.5 Linear Congruential Generators with Un-
known Module

The attack on linear congruential generators surely becomes harder if the
modulem is kept secret and cannot be guessed in an obvious way. We assume
that the attacker has a (short) subsequence x0, x1, . . . of the output sequence
at her disposal.

Surprisingly it is easier to attack the multiplier first. The following propo-
sition yields a “surrogate” value a0 in a few steps. Note the Noetherian ap-
proach via the (implicit) formula yt+1 2 Zy1 + · · ·+ Zyt, the principal ideal
generated by the integer gcd(y1, . . . , yt).

Proposition 8 (Plumstead-Boyar) Let (yi) be the sequence of dif-
ferences of the linear congruential generator with generating function
s(x) = ax+ b mod m, m � 2, and initial value x0. Let y1 6= 0 and t be
the smallest index such that e = gcd(y1, . . . , yt) | yt+1. Then:

(i) t < 1 + log2m.

(ii) If e = c1y1 + · · · + ctyt with ci 2 Z and a0 = (c1y2 + · · · + ctyt+1)/e,
then a0 2 Z and

yi+1 ⌘ a0yi (mod m) for all i.

(iii) If b0 = x1 � a0x0, then

xi = a0xi�1 + b0 mod m for all i.

Proof. (i) If ej = gcd(y1, . . . , yj) doesn’t divide yj+1, then ej+1  ej/2. Since
e1 = |y1| < m we conclude e = et < m/2t�1, hence t� 1 < log2m.

(ii) We have

ae = c1ay1 + · · ·+ ctayt ⌘ c1y2 + · · ·+ ctyt+1 = a0e (mod m).

The greatest common divisor d of m and y1 divides e by Lemma 6, hence
also d = gcd(m, e). We divide the congruence first by d:

a
e

d
⌘ a0

e

d
(mod m̄)

with the reduced module m̄ = m/d. Since e/d and m̄ are coprime we may
divide by e/d:

a ⌘ a0 (mod m̄), a = a0 + km̄.

Hence yi+1 ⌘ ayi = a0yi+kyim̄ (mod m). From d | yi follows yim̄ ⌘ 0, hence
yi+1 ⌘ a0yi (mod m).

(iii) is an immediate consequence of Lemma 6 (viii). 3

K. Pommerening, Bitstream Ciphers 48

Examples

1. Let m = 8397, a = 4381, b = 7364 [Reeds 1977]. Generate

x0 = 2134
x1 = 2160 y1 = 26 e1 = 26
x2 = 6905 y2 = 4745 e2 = 13
x3 = 3778 y3 = �3127 e3 = 1
x4 = 8295 y4 = 4517

We get c1 = 87542, c2 = �481, c3 = �1, and a0 = 416881843.

2. Let m = 2q + 1, a = 2q�1, b = 2q, and x0 = 0. By the corollary of the
following Lemma 7 we have yi = (�1)i�1 · 2q�i+1 for i = 1, . . . , q + 1,
and thus ei = 2q�i+1. Hence t = q + 1. Thus the upper bound for t in
Proposition 8 is sharp, and indeed we need the q + 3 elements x0 to
xq+2 of the output sequence to determine the surrogate multiplier a0.

Lemma 7 Let the sequence (ci) in Z be defined by c0 = 0, ci = 2i�1 � ci�1

for i � 1. Then

(i) ci =
1
3 · [2i � (�1)i] for all i,

(ii) ci � 2ci�1 = (�1)i�1 for all i � 1.

Proof. (i) follows by induction, (ii) by a direct calculation. 3

Corollary 1 Let (xi) be the output sequence of the linear congruential gen-
erator with module m = 2q + 1, multiplier a = 2q�1, increment b = 2q, and
initial value x0 = 0. Let (yi) be the sequence of di↵erences. Then

(i) xi = ci · 2q�i+1 for i = 0, . . . , q + 1,

(ii) yi = (�1)i�1 · 2q�i+1 for i = 1, . . . , q + 1.

Proposition 8 provides a surrogate multiplier in an e�cient way. Now
we need a procedure for determining the module m. We close in on it by
“successive correcting”. In step j we determine a new surrogate module mj

and a new surrogate multiplier aj as follows:

• In the first step set m1 = 1 and a1 = a0. [Calculating mod1 simply
means calculating with integers, and gcd(c,1) = c for c 6= 0, but = 1
for c = 0.]

• In step j, j � 2, let y0j := aj�1yj�1 mod mj�1. Then set mj =
gcd(mj�1, y0j � yj) and aj = aj�1 mod mj .

K. Pommerening, Bitstream Ciphers 49

Thus in iteration step j we use the current surrogate values mj�1 and aj�1

for m and a and predict a value y0j for yj that we compare with the real
(known) value yj . If these two numbers di↵er, then their di↵erence is a
multiple of m. In this case we correct the surrogate values. We always have
m |mj . The corrected values don’t invalidate the former calculations since
yi ⌘ ajyi�1 (mod mj) for i = 2, . . . , j, and also yi ⌘ ajyi�1 (mod m) for all
i � 2. Also the true sequence (xi) always fulfils xi ⌘ ajxi�1 + bj (mod mj)
for i = 1, . . . , j with bj = x1 � ajx0 by Lemma 6 (viii).

In Example 1 above we have

m1 = 1 a1 = 416881843
y02 = 10838927918 m2 = 10838923173 a2 = 416881843
y03 = 5420327549 m3 = 8397 a3 = 4381

The calculation for m3 is

gcd(10838923173, 5420330676) = 8397.

Since m3  2x2 we conclude that necessarily m = m3, a = a3, and
b = x1 � ax0 mod m = 7364. Thus we found the true values after two correc-
tion steps, and we didn’t need any further elements of the output sequence
than the five we used for determining a0. Note the large intermediate results
that suggest that in general the procedure relies on multi-precision integer
arithmetic.

Does the procedure always terminate? At the latest when we reach the
period of the sequence, that is after at most m steps, the complete sequence
is predictable. However this bound is practically useless. Unfortunately it is
tight: For arbitrary m let a = 1, b = 1, and x0 = 0. Then xi = i and yi = 1
for i = 0, . . . ,m� 1. The initial value for the surrogate multiplier is a0 = 1.
The first false prediction is y0m = 1 instead of the correct value ym = 1�m.
The end is reached only after evaluating xm. Although this worst case is
easily recognized and might be treated separately it nevertheless hints at
the di�culty of finding good general results. And indeed we don’t know of
any.

From a slightly di↵erent point of view we count the number of necessary
correction steps where the surrogate module changes. For if mj 6= mj�1,
then mj  mj�1/2. Let m(0) = 1 > m(1) > . . . be the sequence of distinct
surrogate modules. Then

m(1) = mj1 = |y0j1 � yj1 | < a0|yj1�1|+m < m(a0 + 1),

m  m(j) <
m(a0 + 1)

2j�1
,

hence always j < 1+ log2(a
0+1). This gives an upper bound for the number

of necessary corrections. Joan Plumstead-Boyar described a variant of the

K. Pommerening, Bitstream Ciphers 50

algorithm that results in a potentially smaller value of a0, and eventually in
the upper bound 2 + log2m for the number of correction steps. However
in general the algorithm doesn’t involve that many corrections making this
bound obsolete as a terminating criterion.

It seems that the search for theoretical results is a worthwile task. Could
we exclude a (maybe small) class of (maybe bad anyway) linear congruential
generators such that the majority of the remaining (interesting) generators
obey a practically useful terminating criterion? I would expect such a result.
Is there a way to control the distribution of the number of steps? Or at least
the mean value?

Anyway the known results su�ce to disqualify linear congruential gen-
erators for direct cryptographic application.

For an implementation of this algorithm in C see
https://www.staff.uni-mainz.de/pommeren/Cryptology/Bitstream

/2 Analysis/LCGcrack.html.

