K. Pommerening, Bitstream Ciphers 51

2.6 A General Prediction Method

The method of BOYAR (née PLUMSTEAD) admits a broad generalization
by the BK algorithm (named after BOYAR and KRAWCZYK): It applies
to recursive formulas that have an expression in terms of (unknown) linear
combinations of known functions. A suitable language for its description is
commutative algebra, that is, rings and modules.

So let R be a commutative ring (with 1 # 0), and X, Z be R-modules.
Let

oW . X' —Z fori>h
be a family of maps that we consider as known, and
a:Z —X

be a linear map considered as secret. From these data we generate a sequence
(zn)nen in X by the following algorithm, see Figure

e Set xg,...,xp_1 € X as initial values.
e After generating xg,...,x,—1 for some n > h let
2z, = <I>(")(x0, ceyTp—1) € Z,
T, = a(zy) € X.
@
output
o |] e s sequence

Figure 2.2: A very general generator

Here, in greater generality as before, we allow that each element of the
sequence depends on all of its predecessors, that is, on the complete “past”.
A reasonable use for pseudorandom generation of course supposes that the
®() are efficiently computable. In the sample case R = Z/mZ, X = RF, the
cost should grow at most polynomially with log(m), h, and k.

Examples

1. The linear congruential generator: R = Z/mZ = X, Z = R?>, h = 1,
Ty = aTp_1 + b,

@(i)(xo,...,xifﬁ = (5Uz‘1—1) ,

K. Pommerening, Bitstream Ciphers 52

a(i)zas—kbt.

2. The linear-inversive congruential generator: R, X, Z, h, a as above,
-1
T, =ax,_; +0,
-1

(I)(i)(l‘o, . ,Iifl) = (Ti1 TOd m) .

(Set the first component to 0 if x;_; is not invertible mod m.)

3. Congruential generators of higher degree: R = Z/mZ = X, Z = R4
h=1, 2, =agx® | +---+ ao,

Ti—1
<I>(i)(x0,...,xi,1) = : 5
Ti—1
1
to
a = aqgto + - + aoty.
tq

4. Arbitrary congruential generators: R = Z/mZ, x, = s(xp—1), h = 1.
If m is prime, then each function s: R — R has an expression as a
polynomial of degree < m, as in Example 3. For a more general module

m we may use the basis {eg,...,em—1} with e;(j) = d;; of RE. The
basis representation is s = Y.7°" s(i)e;. Thus we set X = R, Z = R™,
and
eo(wi—1)
q)(i)(an"'axifl) =)
em—1(wi—1)
to
a : =5(0)to + -+ s(m — D)tp_1.
tm—1

5. For multistep congruential generators set h equal the recursion depth.

6. For nonlinear feedback shift registers see the next section

For cryptanalysis we assume that the ®() are known, but « is unknown.
(Later on, in the case R = Z/mZ, we’ll also treat m as unknown.) The
question is: Given an initial segment zg,...,z,—1 (n > h) of the output
sequence, is there a method to predict the next element x,,7

K. Pommerening, Bitstream Ciphers 53

To this end we consider the ascending chain Z, C Z41 C ... C Z of
submodules with
Zp=Rzp+ -+ Rzy.

If Z, =27, 1, then 2z, = tpzp, + -+ tn_12n_1 with t5,...,t,1 € R, and
applying a we get the formula

Ty =tpap + - +th—1Tp—1

that predicts z,, from xg,...,z,_1 without using knowledge of .

If Z is a Noetherian R-module, then we encounter a stationary situation
after finitely many steps: Z,, = Z; for n > [. Beginning with this index the
complete sequence x,, is predictable by the following “algorithm?”:

1. Calculate z, = ®™ (xq, ..., 2, 1).
2. Find a linear combination z, = tpzp + -+ + tn—12n—1.

3. Set x, = tpxp + -+ tn_1Tn_1-

The Noetherian principle allows the prediction by a linear
relation (that however might change from step to step).

To transform the “algorithm” into a true algorithm we need a procedure
that explicitly finds a linear combination in step 2, solving a system of linear
equations in Z.

For our standard example of a congruential generator with module
m = 8397 (here assumed to be known), xg = 2134, 1 = 2160, zo = 6905,
we calculate

[2134 [2160 [6905
21 = 1 9 29 = 1 9 z3 = 1 .

Trying to write z3 as a linear combination t121 + toz9 we get the system

(1) 2134t + 2160ty = 6905
t1+t2 = 1

of linear equations in R = Z/mZ. By elimination we find
26t; = —4745 = 3652.

The inverse of 26 mod 8397 is 323, and thus we get t; = 4016, to = 4382.
This result correctly predicts x3 = 3778.

Proceeding in this way we correctly predict the complete output se-
quence. The reason is that Zo = Z:

26 1 0
2’2—2’12(0), 61=<0)€ZQ, 622(1)221—2134~61€ZQ.

K. Pommerening, Bitstream Ciphers 54

This example contains a partial answer to the question of when the chain
of submodules Z,, becomes stationary: At least when Z; = Z. But in a more
general case this might never happen. Note also that from Z; = Z;11 we
can’t conclude that the chain is stationary at Z;—later on it could ascend
again. For a bound on the number of proper increments see Proposition

In each single loop of the prediction algorithm there are two possible
alternative events:

e 2, & Z,_1. Then predicting x,, is impossible, and Z,,_1 properly ex-
tends to Z, = Z,_1 + Rz,.

® 2, € Z,_1. Then the algorithm correctly predicts z,,.

By Propositionthe first of these two events may happen at most log,(#72)
times (or Dim Z times if R is a field). For each of these events we need ac-
cess to the next element x, of the output sequence to get ahead. On first
sight this looks disappointing, but some thought brings to mind that it is a
realistic situtation for cryptanalysis: In the process of breaking a cipher the
cryptanalyst works with a supposed key until she gets nonsense “plaintext”.
Then she tries to guess the following plaintext characters by context knowl-
edge, corrects the supposed key and goes on with deciphering. Remember
that we already encountered this effect in the last section. And note that the
present algorithm is fairly simple but contents itself with predicting elements
instead of determining the unknown parameters of the random generator.

