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2.1 The General Linear Generator

Remember that a general linear generator is characterized by
e aring R and an R-module M as external parameters,
e a linear map A: M — M as internal parameter,
e a sequence of vectors x, € M as states and output elements,
e a vector xog € M as initial state,

e a recursive formula z,, = Ax,_1 for n > 1 as state transition.

Remark (the trivial case): If A is known, then from each member x, of the
output sequence we may predict all of the following members ()5
Therefore this case lacks cryptological relevance. Note that calculating
the sequence backwards, that is x,, for 0 < n < r, is uniquely possible
only if A is injective. But this effect doesn’t rescue the cryptologic
value of the generator. For simplicity in the following we usually treat
forwards prediction only, assuming that an initial chunk xg,...,zr_1
of the output sequence is known. However we should bear in mind that
also backwards “prediction” might be an issue.

Assumption for the following considerations: R and M are known, A is
unknown, and an initial segment xg,...,x,_1 is given. To avoid triv-
ialities we assume xg # 0. The prediction problem for this scenario is:
Can the attacker determine g, xgy1,...7

Yes she can, provided she somehow finds a linear combination
T = C1Tk—1 + -+ + CkZo
with known coefficients c1, ..., ck. For then

Tyl = Axy = ctAxp_1 + - + e Axg

= T+ -+ cpxy

Tp = ClTp—1+ -+ Ty foralln >k,

and by this formula she gets the complete remaining sequence—without
determining A (!). But how to find such a linear combination?

A simple example is periodicity: x,, = x,,_i for all n > k. Linear algebra
provides a more general solution. In the present abstract framework it is
natural to assume M as Noetherian (usually the “proper” generalization of
a finite-dimensional vector space). Then the ascending chain of submodules

Rxg CRxg+ Rx1 C...C M
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is stationary: there is an r with z, € Rxg + --- + Rx,—1. And this yields

the linear relation we need; of course it is useful only when we succeed with

explicitly determining the involved coefficients. Note that a finite module

M—that we usually consider for random generation—is trivially Noetherian.
By this consideration we have shown:

Proposition 4 (Noetherian principle for linear generators) Let R be a ring,
M, an R-module, A: M — M linear, and (xn)nen @ sequence in M with
Tp = Axp_q1 for n > 1. Then for r > 1 the following statements are equiva-
lent:

(i) z, € Rxo+ -+ Rxp_q.

(ii) There exist cy,...,c, € R such that x, = c1xp—1 + -+ + crxp—k for all
r>k.

If M is Noetherian, then an r with (i) and (ii) exists.

But how to explicitly determine the index k£ and the coefficients

C1y...,cx? Of course this can work only for rings R and modules M that
admit explicit arithmetic operations.
In the following our main examples are: R = K a finite field, or

R = Z/mZ a residue class ring of integers. In both cases we have a-priori
knowledge on the number of true increments in the chain of submodules;
that is, an explicit bound for r. If for example R is a field, then the number
of proper steps is bounded by the vector space dimension dim M. In the
general case we have:

Proposition 5 (KRAWCZYK) Let M be an R-module, and 0 C M; C ... C
M; C M be a properly increasing chain of submodules. Then 2! < #M.

This result is useful only for a finite module M. However this is the case
we are mainly interested in when treating congruential generators. Then we
may express it also as | < logy(#M). This is not too bad compared with the
case field/vector space, both finite: [ < Dim(M) < logy(#M)/log,(#R).

Proof. Let b; € M; — M;_4 for i = 1,...,1 (where My = 0). Then the
subset

U={citbi+---+¢gb|ale¢=00rl} C M

consists of 2! distinct elements. For if two of these expressions would repre-
sent the same element, their difference would have the form

e1by + -+ +eby =0 withe; € {0,£1}, e, # 0,

for some ¢t with 1 < ¢t < [. From ¢; = 1 € R* we would derive the con-
tradiction b; = —et_l(elbl + - 4e—1bi—1) € My_1. Hence #M > #U = 2!
O



