2.1 The General Linear Generator

Remember that a general linear generator is characterized by

- a ring R and an R-module M as external parameters,
- a linear map $A: M \longrightarrow M$ as internal parameter,
- a sequence of vectors $x_{n} \in M$ as states and output elements,
- a vector $x_{0} \in M$ as initial state,
- a recursive formula $x_{n}=A x_{n-1}$ for $n \geq 1$ as state transition.

Remark (the trivial case): If A is known, then from each member x_{r} of the output sequence we may predict all of the following members $\left(x_{n}\right)_{n>r}$. Therefore this case lacks cryptological relevance. Note that calculating the sequence backwards, that is x_{n} for $0 \leq n<r$, is uniquely possible only if A is injective. But this effect doesn't rescue the cryptologic value of the generator. For simplicity in the following we usually treat forwards prediction only, assuming that an initial chunk x_{0}, \ldots, x_{k-1} of the output sequence is known. However we should bear in mind that also backwards "prediction" might be an issue.

Assumption for the following considerations: R and M are known, A is unknown, and an initial segment x_{0}, \ldots, x_{k-1} is given. To avoid trivialities we assume $x_{0} \neq 0$. The prediction problem for this scenario is: Can the attacker determine x_{k}, x_{k+1}, \ldots ?

Yes she can, provided she somehow finds a linear combination

$$
x_{k}=c_{1} x_{k-1}+\cdots+c_{k} x_{0}
$$

with known coefficients c_{1}, \ldots, c_{k}. For then

$$
\begin{aligned}
x_{k+1} & =A x_{k}=c_{1} A x_{k-1}+\cdots+c_{k} A x_{0} \\
& =c_{1} x_{k}+\cdots+c_{k} x_{1} \\
& \vdots \\
x_{n} & =c_{1} x_{n-1}+\cdots+c_{k} x_{n-k} \quad \text { for all } n \geq k,
\end{aligned}
$$

and by this formula she gets the complete remaining sequence-without determining $A(!)$. But how to find such a linear combination?

A simple example is periodicity: $x_{n}=x_{n-k}$ for all $n \geq k$. Linear algebra provides a more general solution. In the present abstract framework it is natural to assume M as Noetherian (usually the "proper" generalization of a finite-dimensional vector space). Then the ascending chain of submodules

$$
R x_{0} \subseteq R x_{0}+R x_{1} \subseteq \ldots \subseteq M
$$

is stationary: there is an r with $x_{r} \in R x_{0}+\cdots+R x_{r-1}$. And this yields the linear relation we need; of course it is useful only when we succeed with explicitly determining the involved coefficients. Note that a finite module M - that we usually consider for random generation-is trivially Noetherian.

By this consideration we have shown:
Proposition 4 (Noetherian principle for linear generators) Let R be a ring, M, an R-module, $A: M \longrightarrow M$ linear, and $\left(x_{n}\right)_{n \in \mathbb{N}}$ a sequence in M with $x_{n}=A x_{n-1}$ for $n \geq 1$. Then for $r \geq 1$ the following statements are equivalent:
(i) $x_{r} \in R x_{0}+\cdots+R x_{r-1}$.
(ii) There exist $c_{1}, \ldots, c_{k} \in R$ such that $x_{n}=c_{1} x_{n-1}+\cdots+c_{r} x_{n-k}$ for all $r \geq k$.

If M is Noetherian, then an r with (i) and (ii) exists.
But how to explicitly determine the index k and the coefficients c_{1}, \ldots, c_{k} ? Of course this can work only for rings R and modules M that admit explicit arithmetic operations.

In the following our main examples are: $R=K$ a finite field, or $R=\mathbb{Z} / m \mathbb{Z}$ a residue class ring of integers. In both cases we have a-priori knowledge on the number of true increments in the chain of submodules; that is, an explicit bound for r. If for example R is a field, then the number of proper steps is bounded by the vector space $\operatorname{dimension} \operatorname{dim} M$. In the general case we have:

Proposition 5 (Krawczyk) Let M be an R-module, and $0 \subset M_{1} \subset \ldots \subset$ $M_{l} \subseteq M$ be a properly increasing chain of submodules. Then $2^{l} \leq \# M$.

This result is useful only for a finite module M. However this is the case we are mainly interested in when treating congruential generators. Then we may express it also as $l \leq \log _{2}(\# M)$. This is not too bad compared with the case field/vector space, both finite: $l \leq \operatorname{Dim}(M) \leq \log _{2}(\# M) / \log _{2}(\# R)$.

Proof. Let $b_{i} \in M_{i}-M_{i-1}$ for $i=1, \ldots, l$ (where $M_{0}=0$). Then the subset

$$
U=\left\{c_{1} b_{1}+\cdots+c_{l} b_{l} \mid \text { all } c_{i}=0 \text { or } 1\right\} \subseteq M
$$

consists of 2^{l} distinct elements. For if two of these expressions would represent the same element, their difference would have the form

$$
e_{1} b_{1}+\cdots+e_{t} b_{t}=0 \quad \text { with } e_{i} \in\{0, \pm 1\}, e_{t} \neq 0
$$

for some t with $1 \leq t \leq l$. From $e_{t}= \pm 1 \in R^{\times}$we would derive the contradiction $b_{t}=-e_{t}^{-1}\left(e_{1} b_{1}+\cdots+e_{t-1} b_{t-1}\right) \in M_{t-1}$. Hence $\# M \geq \# U=2^{l}$. \diamond

