
K. Pommerening, Bitstream Ciphers 59

2.8 A General Congruential Generator

The prediction procedure becomes somewhat more involved when the mod-
ule of a congruential generator is unknown. We abandon the general setting
of commutative algebra and use special properties of the rings Z and Z/mZ,
in particular the “canonical” representation of the residue classes of Z/mZ
by the subset {0, . . . ,m� 1} ✓ Z.

Let X = Zr, X̄ = (Z/mZ)r, Z = Zk, Z̄ = (Z/mZ)k. The generator uses
maps

�(i) : Xi �! Z for i � h,

↵ : Z̄ �! X̄ linear,

where ↵ and m are unknown to the cryptanalyst. Identifying the residue
classes with their canonical representants we consider X̄ as the subset
{0, . . . ,m � 1}r of X. Then we generate a sequence by the same algorithm
as in the previous Section 2.6, and call this procedure a general congru-

ential generator, if the evaluation of the maps �(i) is e�cient with costs
that depend at most polynomially on r, k, and log(m). In particular there
is a bound M for the values of the �(i) on {0, . . . ,m� 1}ri that is at most
polynomial in r, k, and log(m).

The cryptanalysis proceeds in two phases. In phase one we work over
the ring Z and its quotient field Q, and we determine a multiple m̂ of the
module m. In phase two we work over the ring Z/m̂Z. Predicting xn in this
situation can trigger three di↵erent events:

• zn 62 Zn�1. Then the module Zn�1 (over Q or Z/m̂Z) must be enlarged
to Zn, and no prediction is possible for xn. The cryptanalyst needs
some more plaintext.

• The prediction of xn is correct.

• The prediction of xn is false. Then the module m̂ has to be adjusted.

In phase one Zn�1 is the vector space over Q that is spanned by zh, . . . , zn�1

(omitting redundant zi’s).
Case 1: zn 62 Zn�1. Then set Zn = Zn�1 +Qzn. This case can occur at

most k times.
Case 2: [Linear relation] zn = thzh + · · · + tn�1zn�1. Then predict

xn = thxh + · · ·+ tn�1xn�1 (as element of Qr).
Case 3: We have an analogous linear relation, but x̂n = thxh + · · · +

tn�1xn�1 di↵ers from xn. Let d 2 N be the common denominator of
th, . . . , tn�1. Then

dx̂n = ↵(dthzh + · · ·+ dtn�1zn�1) = ↵(dzn) = dxn

in X̄, that is modm. This shows:

K. Pommerening, Bitstream Ciphers 60

Lemma 8 (Boyar) The greatest common divisor m̂ of the components of
dx̂n � dxn in case 3 is a multiple of the module m.

The result of phase one is a multiple m̂ 6= 0 of the true module m. The
expense is:

• at most k+ 1 trials of solving a system of linear equations for up to k
unknowns over Q,

• one determination of the greatest common divisor of r integers.

Along the way the procedure correctly predicts a certain number of elements
xn, each time solving a system of linear equations of the same type.

How large can m̂ be? For an estimate we need an upper bound M for
all components of all �(i) on {0, . . . ,m � 1}ri ✓ Xi. We use Hadamard’s
inequality: For arbitrary vectors x1, . . . , xk 2 Rk we have

|Det(x1, . . . , xk)|  kx1k2 · · · kxkk2

where k • k2 is the Euclidean norm.

Lemma 9 m̂  (k + 1) ·m ·
p
kk ·Mk. In particular log(m̂) is bounded by

a polynomial in k, log(m), log(M).

Proof. The coe�cient vector t is the solution of a system of at most k
linear equations for the same number of unknowns. The coe�cients zi of
this system are bounded by M . By Hadamard’s inequality and Cramer’s
rule the numerators dti and denominators d of the solution are bounded by

kY

i=1

vuut
kX

j=1

M2 =
kY

i=1

p
kM2 =

p
kk ·Mk.

Hence the components of dx̂n are bounded by

kdx̂nk1 = k
X

dtixik1 
p
kk ·Mk ·

X
kxik1  km ·

p
kk ·Mk

because m bounds the components of the xi. We conclude

kdx̂n � dxnk1  km ·
p
kk ·Mk +

p
kk ·Mk ·m = (k + 1) ·m ·

p
kk ·Mk,

as claimed. 3

How does this procedure look in the example of an ordinary linear con-
gruential generator? Here we have

z1 =

✓
x0
1

◆
, z2 =

✓
x1
1

◆
, z3 =

✓
x2
1

◆
, . . .

K. Pommerening, Bitstream Ciphers 61

If x1 = x0, then we have the trivial case of a constant sequence. Otherwise
z3 is a rational linear combination t1z1 + t2z2. Solving the system

x0t1 + x1t2 = x2,

t1 + t2 = 1

yields

t =
1

d
·
✓

�x2 + x1
x2 � x0

◆
with d = x1 � x0.

From this we derive the prediction

x̂3 = t1x1 + t2x2 =
�x2x1 + x21 + x22 � x2x0

x1 � x0
=

(x2 � x1)2

x1 � x0
+ x2.

Hence d(x̂3 � x3) = (x2 � x1)2 � (x1 � x0)(x3 � x2) = y22 � y1y3 where (yi)
is the sequence of di↵erences. If x̂3 = x3, then we must continue this way.
Otherwise we get, see Lemma 6,

m|m̂ = |y1y3 � y22|.

For our concrete standard example, where x0 = 2134, x1 = 2160,
x2 = 6905, x3 = 3778, y1 = 26, y2 = 4745, y3 = �3127, this general ap-
proach gives

m̂ = 47452 + 26 · 3127 = 22596327.

A closer look, using Lemma 8 directly, even yields

t1 = �365

2
, t2 =

367

2
, x̂3 =

1745735

2
, m̂ = 2 · (x̂3 � x3) = 1738179.

In phase two of the algorithm we execute the same procedure but over
the ring R̂ = Z/m̂Z. However we can’t simply reduce mod m̂ the rational
numbers from phase one. Hence we restart at zh. Again we distinguish three
cases for each single step:

Case 1: zn 62 Ẑn�1 = R̂zh + · · · + R̂zn�1. Then set Ẑn = Ẑn�1 + R̂zn
(and represent this R̂-module by a non-redundant system {zj1 , . . . , zjl} of
generators where zjl = zn). We can’t predict xn (but have to get it from
somewhere else).

Case 2: zn = thzh + · · · + tn�1zn�1. Then predict xn = thxh + · · · +
tn�1xn�1 (as an element of X̂ = (Z/m̂Z)r). The prediction turns out to be
correct.

Case 3: The same, but now the predicted value
x̂n = thxh + · · ·+ tn�1xn�1 di↵ers from xn in X̂. Then considering
x̂n � xn as an element of Zr we show:

Lemma 10 In case 3 the greatest common divisor d of the coe�cients of
x̂n � xn is a multiple of m, but not a multiple of m̂.

K. Pommerening, Bitstream Ciphers 62

Proof. It is a multiple of m since x̂n mod m = xn. It is not a multiple of m̂
since otherwise x̂n = xn in X̂. 3

In case 3 we replace m̂ by the greatest common divisor of d and m̂
and reduce mod m̂ all the former zj . The lemma tells us that the new m̂ is
properly smaller than the old one.

By Lemma 9 case 3 can’t occur too often, the number of occurences is
polynomially in k, log(m), and log(M). If we already hit the true m this
case can’t occur any more. Case 1 may occur at most log2(#(Z/m̂Z)k) =
k · log2(m̂) times in phase 2 by Proposition 5, and this bound is polynomial
in k, log(m), and log(M).

Note. There is a common aspect of phases one and two: In both
cases we use the full quotient ring. The full quotient ring of Z is
the quotient field Q. In a residue class ring Z/mZ the non-zero-
divisors are exactly the elements that are coprime with m, hence
the units. Thus Z/mZ is its own full quotient ring.

For the concrete standard example we had m̂ = 1738179 after phase one,
and now have to solve mod m̂ the system (1) of linear equations. Since the
determinant �26 is coprime with m̂ we already have Z2 = R̂2, and know
that case 1 will never occur. The inverse of �26 is 66853 (in Z/m̂Z), so
from �26 t1 = 4745 we get t1 = 868907. Hence t2 = 1 � t1 = 869273, and
x̂3 = 11x1 + t2x2 = 3778 is a correct prediction.

In the next step we calculate new coe�cients t1 and t2 for the linear
combination z4 = t1z1 + t2z2. We solve (in Z/m̂Z)

2134 t1 + 2160 t2 = 3778,

t1 + t2 = 1.

Eliminating t2 yields �26 t1 = 1618, hence t1 = 401056, and thus
t2 = 1337124, as well as x̂4 = 11x1 + t2x2 = 302190. Since x4 = 8295 we are
in case 3 and must adjust m̂:

gcd(x̂4 � x4, m̂) = gcd(293895, 1738179) = 8397.

Now m̂ < 2x2. Thus from now on only case 2 will occur. This means that
we’ll predict all subsequent elements correctly.

A prediction method for a general congruential generator is an algo-
rithm that gets the initial values x0, . . . , xh�1 as input, then successively
produces predictions of xh, xh+1, . . ., and compares them with the true val-
ues; in the case of a mistake it adjusts the parameters using the respective
true value.

A prediction method is e�cient if

1. the cost of predicting each single xn is polynomial in r, k, and log(m),

K. Pommerening, Bitstream Ciphers 63

2. the number of false predictions is bounded by a polynomial in r, k,
and log(m), as is the cost of adjusting the parameters in the case of a
mistake.

The Boyar/Krawczyk algorithm that we considered in this section fulfils
requirement 2. It also fulfils requirement 1 since solving systems of linear
equations over residue class rings Z/mZ is e�cient (as shown in Section 9.2
of Part I). Thus we have shown:

Theorem 2 For an arbitrary (e�cient) general congruential generator the
Boyar/Krawczyk algorithm is an e�cient prediction method.

A simple concrete example shows the application to a non-linear congru-
ential generator. Suppose a quadratic generator of the form

xn = ax2n�1 + bxn�1 + c mod m

outputs the sequence

x0 = 63, x1 = 96, x2 = 17, x3 = 32, x4 = 37, x5 = 72.

We set X = Z, Z = Z3, h = 1. In phase one the vectors

z1 =

0

@
3969
63
1

1

A z2 =

0

@
9216
96
1

1

A z3 =

0

@
289
17
1

1

A

span Q3 since the coe�cient matrix is the Vandermonde matrix with de-
terminant 119922. Solving

z4 =

0

@
1024
32
1

1

A = t1z1 + t2z2 + t3z3

yields

t1 =
160

253
, t2 = �155

869
, t3 =

992

1817
,

with common denominator d = 11 · 23 · 79 = 19987. The algorithm predicts

x̂4 =
1502019

19987
6= x4.

Hence the first guessed module is

m̂ = dx̂4 � dx4 = 762500,

and phase one is completed. Now we have to solve the same system of linear
equations over Z/m̂Z. Here the determinant is a zero divisor. We get two
solutions, one of them being

t1 = 156720 , t2 = 719505 , t3 = 648776 .

K. Pommerening, Bitstream Ciphers 64

Thus we predict the correct value

x̂4 = 156720 · 96 + 719505 · 17 + 648776 · 32 mod 763500 = 37.

We are in case 2, and continue with predicting x5: The system

z5 =

0

@
1369
37
1

1

A = t1z1 + t2z2 + t3z3

has two solutions, one of them being

t1 = 2010 , t2 = 558640 , t3 = 201851 ,

hence
x̂5 = 136572 , x̂5 � x5 = 136500 .

We are in case 3 and adjust m̂ to

gcd(762500, 136500) = 500.

This exhausts the known values. Because all zi are elements of
Ẑ3 = R̂z1 + R̂z2 + R̂z3 6= R̂3 case 1 remains a possibility for the following
steps. Since x0, . . . , x5 are smaller than half the current module m̂ also case
3 remains possible. In particular maybe we have to adjust the module fur-
thermore.

Trying to predict x6 we get (mod 500)

t1 = 240 , t2 = 285 , t3 = 476 , x6 = 117 .

Exercise. What happens in the concrete standard example if after phase 1
we continue with the value m̂ = 22596327?

