2.8 A General Congruential Generator

The prediction procedure becomes somewhat more involved when the module of a congruential generator is unknown. We abandon the general setting of commutative algebra and use special properties of the rings \mathbb{Z} and $\mathbb{Z} / m \mathbb{Z}$, in particular the "canonical" representation of the residue classes of $\mathbb{Z} / m \mathbb{Z}$ by the subset $\{0, \ldots, m-1\} \subseteq \mathbb{Z}$.

Let $X=\mathbb{Z}^{r}, \bar{X}=(\mathbb{Z} / m \mathbb{Z})^{r}, Z=\mathbb{Z}^{k}, \bar{Z}=(\mathbb{Z} / m \mathbb{Z})^{k}$. The generator uses maps

$$
\begin{aligned}
\Phi^{(i)}: X^{i} \longrightarrow Z & \text { for } i \geq h, \\
\alpha: \bar{Z} \longrightarrow \bar{X} & \text { linear },
\end{aligned}
$$

where α and m are unknown to the cryptanalyst. Identifying the residue classes with their canonical representants we consider \bar{X} as the subset $\{0, \ldots, m-1\}^{r}$ of X. Then we generate a sequence by the same algorithm as in the previous Section 2.6, and call this procedure a general congruential generator, if the evaluation of the maps $\Phi^{(i)}$ is efficient with costs that depend at most polynomially on r, k, and $\log (m)$. In particular there is a bound M for the values of the $\Phi^{(i)}$ on $\{0, \ldots, m-1\}^{r i}$ that is at most polynomial in r, k, and $\log (m)$.

The cryptanalysis proceeds in two phases. In phase one we work over the ring \mathbb{Z} and its quotient field \mathbb{Q}, and we determine a multiple \hat{m} of the module m. In phase two we work over the ring $\mathbb{Z} / \hat{m} \mathbb{Z}$. Predicting x_{n} in this situation can trigger three different events:

- $z_{n} \notin Z_{n-1}$. Then the module Z_{n-1} (over \mathbb{Q} or $\mathbb{Z} / \hat{m} \mathbb{Z}$) must be enlarged to Z_{n}, and no prediction is possible for x_{n}. The cryptanalyst needs some more plaintext.
- The prediction of x_{n} is correct.
- The prediction of x_{n} is false. Then the module \hat{m} has to be adjusted.

In phase one Z_{n-1} is the vector space over \mathbb{Q} that is spanned by z_{h}, \ldots, z_{n-1} (omitting redundant z_{i} 's).

Case 1: $z_{n} \notin Z_{n-1}$. Then set $Z_{n}=Z_{n-1}+\mathbb{Q} z_{n}$. This case can occur at most k times.

Case 2: [Linear relation] $z_{n}=t_{h} z_{h}+\cdots+t_{n-1} z_{n-1}$. Then predict $x_{n}=t_{h} x_{h}+\cdots+t_{n-1} x_{n-1}\left(\right.$ as element of $\left.\mathbb{Q}^{r}\right)$.

Case 3: We have an analogous linear relation, but $\hat{x}_{n}=t_{h} x_{h}+\cdots+$ $t_{n-1} x_{n-1}$ differs from x_{n}. Let $d \in \mathbb{N}$ be the common denominator of t_{h}, \ldots, t_{n-1}. Then

$$
d \hat{x}_{n}=\alpha\left(d t_{h} z_{h}+\cdots+d t_{n-1} z_{n-1}\right)=\alpha\left(d z_{n}\right)=d x_{n}
$$

in \bar{X}, that is $\bmod m$. This shows:

Lemma 8 (BOYAR) The greatest common divisor \hat{m} of the components of $d \hat{x}_{n}-d x_{n}$ in case 3 is a multiple of the module m.

The result of phase one is a multiple $\hat{m} \neq 0$ of the true module m. The expense is:

- at most $k+1$ trials of solving a system of linear equations for up to k unknowns over \mathbb{Q},
- one determination of the greatest common divisor of r integers.

Along the way the procedure correctly predicts a certain number of elements x_{n}, each time solving a system of linear equations of the same type.

How large can \hat{m} be? For an estimate we need an upper bound M for all components of all $\Phi^{(i)}$ on $\{0, \ldots, m-1\}^{r i} \subseteq X^{i}$. We use HADAMARD's inequality: For arbitrary vectors $x_{1}, \ldots, x_{k} \in \mathbb{R}^{k}$ we have

$$
\left|\operatorname{Det}\left(x_{1}, \ldots, x_{k}\right)\right| \leq\left\|x_{1}\right\|_{2} \cdots\left\|x_{k}\right\|_{2}
$$

where $\|\bullet\|_{2}$ is the Euclidean norm.
Lemma $9 \hat{m} \leq(k+1) \cdot m \cdot \sqrt{k^{k}} \cdot M^{k}$. In particular $\log (\hat{m})$ is bounded by a polynomial in $k, \log (m), \log (M)$.

Proof. The coefficient vector t is the solution of a system of at most k linear equations for the same number of unknowns. The coefficients z_{i} of this system are bounded by M. By Hadamard's inequality and Cramer's rule the numerators $d t_{i}$ and denominators d of the solution are bounded by

$$
\prod_{i=1}^{k} \sqrt{\sum_{j=1}^{k} M^{2}}=\prod_{i=1}^{k} \sqrt{k M^{2}}=\sqrt{k^{k}} \cdot M^{k}
$$

Hence the components of $d \hat{x}_{n}$ are bounded by

$$
\left\|d \hat{x}_{n}\right\|_{\infty}=\left\|\sum d t_{i} x_{i}\right\|_{\infty} \leq \sqrt{k^{k}} \cdot M^{k} \cdot \sum\left\|x_{i}\right\|_{\infty} \leq k m \cdot \sqrt{k^{k}} \cdot M^{k}
$$

because m bounds the components of the x_{i}. We conclude

$$
\left\|d \hat{x}_{n}-d x_{n}\right\|_{\infty} \leq k m \cdot \sqrt{k^{k}} \cdot M^{k}+\sqrt{k^{k}} \cdot M^{k} \cdot m=(k+1) \cdot m \cdot \sqrt{k^{k}} \cdot M^{k}
$$

as claimed.

How does this procedure look in the example of an ordinary linear congruential generator? Here we have

$$
z_{1}=\binom{x_{0}}{1}, z_{2}=\binom{x_{1}}{1}, z_{3}=\binom{x_{2}}{1}, \ldots
$$

If $x_{1}=x_{0}$, then we have the trivial case of a constant sequence. Otherwise z_{3} is a rational linear combination $t_{1} z_{1}+t_{2} z_{2}$. Solving the system

$$
\begin{aligned}
x_{0} t_{1}+x_{1} t_{2} & =x_{2} \\
t_{1}+t_{2} & =1
\end{aligned}
$$

yields

$$
t=\frac{1}{d} \cdot\binom{-x_{2}+x_{1}}{x_{2}-x_{0}} \quad \text { with } d=x_{1}-x_{0}
$$

From this we derive the prediction

$$
\hat{x}_{3}=t_{1} x_{1}+t_{2} x_{2}=\frac{-x_{2} x_{1}+x_{1}^{2}+x_{2}^{2}-x_{2} x_{0}}{x_{1}-x_{0}}=\frac{\left(x_{2}-x_{1}\right)^{2}}{x_{1}-x_{0}}+x_{2}
$$

Hence $d\left(\hat{x}_{3}-x_{3}\right)=\left(x_{2}-x_{1}\right)^{2}-\left(x_{1}-x_{0}\right)\left(x_{3}-x_{2}\right)=y_{2}^{2}-y_{1} y_{3}$ where $\left(y_{i}\right)$ is the sequence of differences. If $\hat{x}_{3}=x_{3}$, then we must continue this way. Otherwise we get, see Lemma 6,

$$
m\left|\hat{m}=\left|y_{1} y_{3}-y_{2}^{2}\right|\right.
$$

For our concrete standard example, where $x_{0}=2134, x_{1}=2160$, $x_{2}=6905, x_{3}=3778, y_{1}=26, y_{2}=4745, y_{3}=-3127$, this general approach gives

$$
\hat{m}=4745^{2}+26 \cdot 3127=22596327
$$

A closer look, using Lemma 8 directly, even yields

$$
t_{1}=-\frac{365}{2}, t_{2}=\frac{367}{2}, \hat{x}_{3}=\frac{1745735}{2}, \hat{m}=2 \cdot\left(\hat{x}_{3}-x_{3}\right)=1738179
$$

In phase two of the algorithm we execute the same procedure but over the $\operatorname{ring} \hat{R}=\mathbb{Z} / \hat{m} \mathbb{Z}$. However we can't simply reduce $\bmod \hat{m}$ the rational numbers from phase one. Hence we restart at z_{h}. Again we distinguish three cases for each single step:

Case 1: $z_{n} \notin \hat{Z}_{n-1}=\hat{R} z_{h}+\cdots+\hat{R} z_{n-1}$. Then set $\hat{Z}_{n}=\hat{Z}_{n-1}+\hat{R} z_{n}$ (and represent this \hat{R}-module by a non-redundant system $\left\{z_{j_{1}}, \ldots, z_{j_{l}}\right\}$ of generators where $z_{j_{l}}=z_{n}$). We can't predict x_{n} (but have to get it from somewhere else).

Case 2: $z_{n}=t_{h} z_{h}+\cdots+t_{n-1} z_{n-1}$. Then predict $x_{n}=t_{h} x_{h}+\cdots+$ $t_{n-1} x_{n-1}\left(\right.$ as an element of $\left.\hat{X}=(\mathbb{Z} / \hat{m} \mathbb{Z})^{r}\right)$. The prediction turns out to be correct.

Case 3: The same, but now the predicted value $\hat{x}_{n}=t_{h} x_{h}+\cdots+t_{n-1} x_{n-1}$ differs from x_{n} in \hat{X}. Then considering $\hat{x}_{n}-x_{n}$ as an element of \mathbb{Z}^{r} we show:

Lemma 10 In case 3 the greatest common divisor d of the coefficients of $\hat{x}_{n}-x_{n}$ is a multiple of m, but not a multiple of \hat{m}.

Proof. It is a multiple of m since $\hat{x}_{n} \bmod m=x_{n}$. It is not a multiple of \hat{m} since otherwise $\hat{x}_{n}=x_{n}$ in \hat{X}.

In case 3 we replace \hat{m} by the greatest common divisor of d and \hat{m} and reduce $\bmod \hat{m}$ all the former z_{j}. The lemma tells us that the new \hat{m} is properly smaller than the old one.

By Lemma 9 case 3 can't occur too often, the number of occurences is polynomially in $k, \log (m)$, and $\log (M)$. If we already hit the true m this case can't occur any more. Case 1 may occur at $\operatorname{most} \log _{2}\left(\#(\mathbb{Z} / \hat{m} \mathbb{Z})^{k}\right)=$ $k \cdot \log _{2}(\hat{m})$ times in phase 2 by Proposition 5, and this bound is polynomial in $k, \log (m)$, and $\log (M)$.

Note. There is a common aspect of phases one and two: In both cases we use the full quotient ring. The full quotient ring of \mathbb{Z} is the quotient field \mathbb{Q}. In a residue class ring $\mathbb{Z} / m \mathbb{Z}$ the non-zerodivisors are exactly the elements that are coprime with m, hence the units. Thus $\mathbb{Z} / m \mathbb{Z}$ is its own full quotient ring.

For the concrete standard example we had $\hat{m}=1738179$ after phase one, and now have to solve $\bmod \hat{m}$ the system (1) of linear equations. Since the determinant -26 is coprime with \hat{m} we already have $Z_{2}=\hat{R}^{2}$, and know that case 1 will never occur. The inverse of -26 is 66853 (in $\mathbb{Z} / \hat{m} \mathbb{Z}$), so from $-26 t_{1}=4745$ we get $t_{1}=868907$. Hence $t_{2}=1-t_{1}=869273$, and $\hat{x}_{3}=1_{1} x_{1}+t_{2} x_{2}=3778$ is a correct prediction.

In the next step we calculate new coefficients t_{1} and t_{2} for the linear combination $z_{4}=t_{1} z_{1}+t_{2} z_{2}$. We solve (in $\mathbb{Z} / \hat{m} \mathbb{Z}$)

$$
\begin{aligned}
2134 t_{1}+2160 t_{2} & =3778 \\
t_{1}+t_{2} & =1
\end{aligned}
$$

Eliminating t_{2} yields $-26 t_{1}=1618$, hence $t_{1}=401056$, and thus $t_{2}=1337124$, as well as $\hat{x}_{4}=1_{1} x_{1}+t_{2} x_{2}=302190$. Since $x_{4}=8295$ we are in case 3 and must adjust \hat{m} :

$$
\operatorname{gcd}\left(\hat{x}_{4}-x_{4}, \hat{m}\right)=\operatorname{gcd}(293895,1738179)=8397 .
$$

Now $\hat{m}<2 x_{2}$. Thus from now on only case 2 will occur. This means that we'll predict all subsequent elements correctly.

A prediction method for a general congruential generator is an algorithm that gets the initial values x_{0}, \ldots, x_{h-1} as input, then successively produces predictions of x_{h}, x_{h+1}, \ldots, and compares them with the true values; in the case of a mistake it adjusts the parameters using the respective true value.

A prediction method is efficient if

1. the cost of predicting each single x_{n} is polynomial in r, k, and $\log (m)$,
2. the number of false predictions is bounded by a polynomial in r, k, and $\log (m)$, as is the cost of adjusting the parameters in the case of a mistake.

The Boyar/Krawczyk algorithm that we considered in this section fulfils requirement 2. It also fulfils requirement 1 since solving systems of linear equations over residue class rings $\mathbb{Z} / m \mathbb{Z}$ is efficient (as shown in Section 9.2 of Part I). Thus we have shown:

Theorem 2 For an arbitrary (efficient) general congruential generator the Boyar/Krawczyk algorithm is an efficient prediction method.

A simple concrete example shows the application to a non-linear congruential generator. Suppose a quadratic generator of the form

$$
x_{n}=a x_{n-1}^{2}+b x_{n-1}+c \bmod m
$$

outputs the sequence

$$
x_{0}=63, x_{1}=96, x_{2}=17, x_{3}=32, x_{4}=37, x_{5}=72 .
$$

We set $X=\mathbb{Z}, Z=\mathbb{Z}^{3}, h=1$. In phase one the vectors

$$
z_{1}=\left(\begin{array}{c}
3969 \\
63 \\
1
\end{array}\right) z_{2}=\left(\begin{array}{c}
9216 \\
96 \\
1
\end{array}\right) z_{3}=\left(\begin{array}{c}
289 \\
17 \\
1
\end{array}\right)
$$

span \mathbb{Q}^{3} since the coefficient matrix is the VANDERMONDE matrix with determinant 119922. Solving

$$
z_{4}=\left(\begin{array}{c}
1024 \\
32 \\
1
\end{array}\right)=t_{1} z_{1}+t_{2} z_{2}+t_{3} z_{3}
$$

yields

$$
t_{1}=\frac{160}{253}, \quad t_{2}=-\frac{155}{869}, \quad t_{3}=\frac{992}{1817}
$$

with common denominator $d=11 \cdot 23 \cdot 79=19987$. The algorithm predicts

$$
\hat{x}_{4}=\frac{1502019}{19987} \neq x_{4} .
$$

Hence the first guessed module is

$$
\hat{m}=d \hat{x}_{4}-d x_{4}=762500,
$$

and phase one is completed. Now we have to solve the same system of linear equations over $\mathbb{Z} / \hat{m} \mathbb{Z}$. Here the determinant is a zero divisor. We get two solutions, one of them being

$$
t_{1}=156720, \quad t_{2}=719505, \quad t_{3}=648776
$$

Thus we predict the correct value

$$
\hat{x}_{4}=156720 \cdot 96+719505 \cdot 17+648776 \cdot 32 \bmod 763500=37 .
$$

We are in case 2 , and continue with predicting x_{5} : The system

$$
z_{5}=\left(\begin{array}{c}
1369 \\
37 \\
1
\end{array}\right)=t_{1} z_{1}+t_{2} z_{2}+t_{3} z_{3}
$$

has two solutions, one of them being

$$
t_{1}=2010, \quad t_{2}=558640, \quad t_{3}=201851
$$

hence

$$
\hat{x}_{5}=136572, \quad \hat{x}_{5}-x_{5}=136500
$$

We are in case 3 and adjust \hat{m} to

$$
\operatorname{gcd}(762500,136500)=500
$$

This exhausts the known values. Because all z_{i} are elements of $\hat{Z}_{3}=\hat{R} z_{1}+\hat{R} z_{2}+\hat{R} z_{3} \neq \hat{R}^{3}$ case 1 remains a possibility for the following steps. Since x_{0}, \ldots, x_{5} are smaller than half the current module \hat{m} also case 3 remains possible. In particular maybe we have to adjust the module furthermore.

Trying to predict x_{6} we get $(\bmod 500)$

$$
t_{1}=240, \quad t_{2}=285, \quad t_{3}=476, \quad x_{6}=117
$$

Exercise. What happens in the concrete standard example if after phase 1 we continue with the value $\hat{m}=22596327$?

