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2.8 A General Congruential Generator

The prediction procedure becomes somewhat more involved when the mod-
ule of a congruential generator is unknown. We abandon the general setting
of commutative algebra and use special properties of the rings Z and Z/mZ,
in particular the “canonical” representation of the residue classes of Z/mZ
by the subset {0, . . . ,m� 1} ✓ Z.

Let X = Zr, X̄ = (Z/mZ)r, Z = Zk, Z̄ = (Z/mZ)k. The generator uses
maps

�(i) : Xi �! Z for i � h,

↵ : Z̄ �! X̄ linear,

where ↵ and m are unknown to the cryptanalyst. Identifying the residue
classes with their canonical representants we consider X̄ as the subset
{0, . . . ,m � 1}r of X. Then we generate a sequence by the same algorithm
as in the previous Section 2.6, and call this procedure a general congru-

ential generator, if the evaluation of the maps �(i) is e�cient with costs
that depend at most polynomially on r, k, and log(m). In particular there
is a bound M for the values of the �(i) on {0, . . . ,m� 1}ri that is at most
polynomial in r, k, and log(m).

The cryptanalysis proceeds in two phases. In phase one we work over
the ring Z and its quotient field Q, and we determine a multiple m̂ of the
module m. In phase two we work over the ring Z/m̂Z. Predicting xn in this
situation can trigger three di↵erent events:

• zn 62 Zn�1. Then the module Zn�1 (over Q or Z/m̂Z) must be enlarged
to Zn, and no prediction is possible for xn. The cryptanalyst needs
some more plaintext.

• The prediction of xn is correct.

• The prediction of xn is false. Then the module m̂ has to be adjusted.

In phase one Zn�1 is the vector space over Q that is spanned by zh, . . . , zn�1

(omitting redundant zi’s).
Case 1: zn 62 Zn�1. Then set Zn = Zn�1 +Qzn. This case can occur at

most k times.
Case 2: [Linear relation] zn = thzh + · · · + tn�1zn�1. Then predict

xn = thxh + · · ·+ tn�1xn�1 (as element of Qr).
Case 3: We have an analogous linear relation, but x̂n = thxh + · · · +

tn�1xn�1 di↵ers from xn. Let d 2 N be the common denominator of
th, . . . , tn�1. Then

dx̂n = ↵(dthzh + · · ·+ dtn�1zn�1) = ↵(dzn) = dxn

in X̄, that is modm. This shows:
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Lemma 8 (Boyar) The greatest common divisor m̂ of the components of
dx̂n � dxn in case 3 is a multiple of the module m.

The result of phase one is a multiple m̂ 6= 0 of the true module m. The
expense is:

• at most k+ 1 trials of solving a system of linear equations for up to k
unknowns over Q,

• one determination of the greatest common divisor of r integers.

Along the way the procedure correctly predicts a certain number of elements
xn, each time solving a system of linear equations of the same type.

How large can m̂ be? For an estimate we need an upper bound M for
all components of all �(i) on {0, . . . ,m � 1}ri ✓ Xi. We use Hadamard’s
inequality: For arbitrary vectors x1, . . . , xk 2 Rk we have

|Det(x1, . . . , xk)|  kx1k2 · · · kxkk2

where k • k2 is the Euclidean norm.

Lemma 9 m̂  (k + 1) ·m ·
p
kk ·Mk. In particular log(m̂) is bounded by

a polynomial in k, log(m), log(M).

Proof. The coe�cient vector t is the solution of a system of at most k
linear equations for the same number of unknowns. The coe�cients zi of
this system are bounded by M . By Hadamard’s inequality and Cramer’s
rule the numerators dti and denominators d of the solution are bounded by

kY

i=1

vuut
kX

j=1

M2 =
kY

i=1

p
kM2 =

p
kk ·Mk.

Hence the components of dx̂n are bounded by

kdx̂nk1 = k
X

dtixik1 
p
kk ·Mk ·

X
kxik1  km ·

p
kk ·Mk

because m bounds the components of the xi. We conclude

kdx̂n � dxnk1  km ·
p
kk ·Mk +

p
kk ·Mk ·m = (k + 1) ·m ·

p
kk ·Mk,

as claimed. 3

How does this procedure look in the example of an ordinary linear con-
gruential generator? Here we have

z1 =

✓
x0
1

◆
, z2 =

✓
x1
1

◆
, z3 =

✓
x2
1

◆
, . . .
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If x1 = x0, then we have the trivial case of a constant sequence. Otherwise
z3 is a rational linear combination t1z1 + t2z2. Solving the system

x0t1 + x1t2 = x2,

t1 + t2 = 1

yields

t =
1

d
·
✓

�x2 + x1
x2 � x0

◆
with d = x1 � x0.

From this we derive the prediction

x̂3 = t1x1 + t2x2 =
�x2x1 + x21 + x22 � x2x0

x1 � x0
=

(x2 � x1)2

x1 � x0
+ x2.

Hence d(x̂3 � x3) = (x2 � x1)2 � (x1 � x0)(x3 � x2) = y22 � y1y3 where (yi)
is the sequence of di↵erences. If x̂3 = x3, then we must continue this way.
Otherwise we get, see Lemma 6,

m|m̂ = |y1y3 � y22|.

For our concrete standard example, where x0 = 2134, x1 = 2160,
x2 = 6905, x3 = 3778, y1 = 26, y2 = 4745, y3 = �3127, this general ap-
proach gives

m̂ = 47452 + 26 · 3127 = 22596327.

A closer look, using Lemma 8 directly, even yields

t1 = �365

2
, t2 =

367

2
, x̂3 =

1745735

2
, m̂ = 2 · (x̂3 � x3) = 1738179.

In phase two of the algorithm we execute the same procedure but over
the ring R̂ = Z/m̂Z. However we can’t simply reduce mod m̂ the rational
numbers from phase one. Hence we restart at zh. Again we distinguish three
cases for each single step:

Case 1: zn 62 Ẑn�1 = R̂zh + · · · + R̂zn�1. Then set Ẑn = Ẑn�1 + R̂zn
(and represent this R̂-module by a non-redundant system {zj1 , . . . , zjl} of
generators where zjl = zn). We can’t predict xn (but have to get it from
somewhere else).

Case 2: zn = thzh + · · · + tn�1zn�1. Then predict xn = thxh + · · · +
tn�1xn�1 (as an element of X̂ = (Z/m̂Z)r). The prediction turns out to be
correct.

Case 3: The same, but now the predicted value
x̂n = thxh + · · ·+ tn�1xn�1 di↵ers from xn in X̂. Then considering
x̂n � xn as an element of Zr we show:

Lemma 10 In case 3 the greatest common divisor d of the coe�cients of
x̂n � xn is a multiple of m, but not a multiple of m̂.
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Proof. It is a multiple of m since x̂n mod m = xn. It is not a multiple of m̂
since otherwise x̂n = xn in X̂. 3

In case 3 we replace m̂ by the greatest common divisor of d and m̂
and reduce mod m̂ all the former zj . The lemma tells us that the new m̂ is
properly smaller than the old one.

By Lemma 9 case 3 can’t occur too often, the number of occurences is
polynomially in k, log(m), and log(M). If we already hit the true m this
case can’t occur any more. Case 1 may occur at most log2(#(Z/m̂Z)k) =
k · log2(m̂) times in phase 2 by Proposition 5, and this bound is polynomial
in k, log(m), and log(M).

Note. There is a common aspect of phases one and two: In both
cases we use the full quotient ring. The full quotient ring of Z is
the quotient field Q. In a residue class ring Z/mZ the non-zero-
divisors are exactly the elements that are coprime with m, hence
the units. Thus Z/mZ is its own full quotient ring.

For the concrete standard example we had m̂ = 1738179 after phase one,
and now have to solve mod m̂ the system (1) of linear equations. Since the
determinant �26 is coprime with m̂ we already have Z2 = R̂2, and know
that case 1 will never occur. The inverse of �26 is 66853 (in Z/m̂Z), so
from �26 t1 = 4745 we get t1 = 868907. Hence t2 = 1 � t1 = 869273, and
x̂3 = 11x1 + t2x2 = 3778 is a correct prediction.

In the next step we calculate new coe�cients t1 and t2 for the linear
combination z4 = t1z1 + t2z2. We solve (in Z/m̂Z)

2134 t1 + 2160 t2 = 3778,

t1 + t2 = 1.

Eliminating t2 yields �26 t1 = 1618, hence t1 = 401056, and thus
t2 = 1337124, as well as x̂4 = 11x1 + t2x2 = 302190. Since x4 = 8295 we are
in case 3 and must adjust m̂:

gcd(x̂4 � x4, m̂) = gcd(293895, 1738179) = 8397.

Now m̂ < 2x2. Thus from now on only case 2 will occur. This means that
we’ll predict all subsequent elements correctly.

A prediction method for a general congruential generator is an algo-
rithm that gets the initial values x0, . . . , xh�1 as input, then successively
produces predictions of xh, xh+1, . . ., and compares them with the true val-
ues; in the case of a mistake it adjusts the parameters using the respective
true value.

A prediction method is e�cient if

1. the cost of predicting each single xn is polynomial in r, k, and log(m),
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2. the number of false predictions is bounded by a polynomial in r, k,
and log(m), as is the cost of adjusting the parameters in the case of a
mistake.

The Boyar/Krawczyk algorithm that we considered in this section fulfils
requirement 2. It also fulfils requirement 1 since solving systems of linear
equations over residue class rings Z/mZ is e�cient (as shown in Section 9.2
of Part I). Thus we have shown:

Theorem 2 For an arbitrary (e�cient) general congruential generator the
Boyar/Krawczyk algorithm is an e�cient prediction method.

A simple concrete example shows the application to a non-linear congru-
ential generator. Suppose a quadratic generator of the form

xn = ax2n�1 + bxn�1 + c mod m

outputs the sequence

x0 = 63, x1 = 96, x2 = 17, x3 = 32, x4 = 37, x5 = 72.

We set X = Z, Z = Z3, h = 1. In phase one the vectors

z1 =

0

@
3969
63
1

1

A z2 =

0

@
9216
96
1

1

A z3 =

0

@
289
17
1

1

A

span Q3 since the coe�cient matrix is the Vandermonde matrix with de-
terminant 119922. Solving

z4 =

0

@
1024
32
1

1

A = t1z1 + t2z2 + t3z3

yields

t1 =
160

253
, t2 = �155

869
, t3 =

992

1817
,

with common denominator d = 11 · 23 · 79 = 19987. The algorithm predicts

x̂4 =
1502019

19987
6= x4.

Hence the first guessed module is

m̂ = dx̂4 � dx4 = 762500,

and phase one is completed. Now we have to solve the same system of linear
equations over Z/m̂Z. Here the determinant is a zero divisor. We get two
solutions, one of them being

t1 = 156720 , t2 = 719505 , t3 = 648776 .
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Thus we predict the correct value

x̂4 = 156720 · 96 + 719505 · 17 + 648776 · 32 mod 763500 = 37.

We are in case 2, and continue with predicting x5: The system

z5 =

0

@
1369
37
1

1

A = t1z1 + t2z2 + t3z3

has two solutions, one of them being

t1 = 2010 , t2 = 558640 , t3 = 201851 ,

hence
x̂5 = 136572 , x̂5 � x5 = 136500 .

We are in case 3 and adjust m̂ to

gcd(762500, 136500) = 500.

This exhausts the known values. Because all zi are elements of
Ẑ3 = R̂z1 + R̂z2 + R̂z3 6= R̂3 case 1 remains a possibility for the following
steps. Since x0, . . . , x5 are smaller than half the current module m̂ also case
3 remains possible. In particular maybe we have to adjust the module fur-
thermore.

Trying to predict x6 we get (mod 500)

t1 = 240 , t2 = 285 , t3 = 476 , x6 = 117 .

Exercise. What happens in the concrete standard example if after phase 1
we continue with the value m̂ = 22596327?


