
Chapter 2

Cryptanalysis of
Pseudorandom Generators

We slightly enlarge the black box model of a pseudorandom generator, cf.
Figure 1.5, to distinguish between secret and public parameters:

Figure 2.1: Pseudorandom generator (one element per state to be used as
pseudorandom sequence

The black box hides an inner state that changes with each step by a given
algorithm. This algorithm is controlled by parameters some of which are
“public”, but some of which are secret and serve as components of the key.
The initial state (= start value) is a true random value and likewise secret.
With each step the pseudorandom generator outputs a value, depending on
its current inner state, until an exterior intervention stops it.

Cryptanalysis of pseudorandom generators assumes a known-plaintext
attack. Thus the attacker is supposed to observe (or correctly guess) some
elements of the output sequence. Her potential targets are the following

33



K. Pommerening, Bitstream Ciphers 34

data:

• the secret internal parameters,

• the initial state,

• further elements of the output (“prediction problem”).



K. Pommerening, Bitstream Ciphers 35

2.1 The General Linear Generator

Remember that a general linear generator is characterized by

• a ring R and an R-module M as external parameters,

• a linear map A : M �! M as internal parameter,

• a sequence of vectors xn 2 M as states and output elements,

• a vector x0 2 M as initial state,

• a recursive formula xn = Axn�1 for n � 1 as state transition.

Remark (the trivial case): If A is known, then from each member xr of the
output sequence we may predict all of the following members (xn)n>r.
Therefore this case lacks cryptological relevance. Note that calculating
the sequence backwards, that is xn for 0  n < r, is uniquely possible
only if A is injective. But this e↵ect doesn’t rescue the cryptologic
value of the generator. For simplicity in the following we usually treat
forwards prediction only, assuming that an initial chunk x0, . . . , xk�1

of the output sequence is known. However we should bear in mind that
also backwards “prediction” might be an issue.

Assumption for the following considerations: R and M are known, A is
unknown, and an initial segment x0, . . . , xk�1 is given. To avoid triv-
ialities we assume x0 6= 0. The prediction problem for this scenario is:
Can the attacker determine xk, xk+1, . . .?

Yes she can, provided she somehow finds a linear combination

xk = c1xk�1 + · · ·+ ckx0

with known coe�cients c1, . . . , ck. For then

xk+1 = Axk = c1Axk�1 + · · ·+ ckAx0

= c1xk + · · ·+ ckx1
...

xn = c1xn�1 + · · ·+ ckxn�k for all n � k,

and by this formula she gets the complete remaining sequence—without
determining A (!). But how to find such a linear combination?

A simple example is periodicity: xn = xn�k for all n � k. Linear algebra
provides a more general solution. In the present abstract framework it is
natural to assume M as Noetherian (usually the “proper” generalization of
a finite-dimensional vector space). Then the ascending chain of submodules

Rx0 ✓ Rx0 +Rx1 ✓ . . . ✓ M



K. Pommerening, Bitstream Ciphers 36

is stationary: there is an r with xr 2 Rx0 + · · · + Rxr�1. And this yields
the linear relation we need; of course it is useful only when we succeed with
explicitly determining the involved coe�cients. Note that a finite module
M—that we usually consider for random generation—is trivially Noetherian.

By this consideration we have shown:

Proposition 4 (Noetherian principle for linear generators) Let R be a ring,
M , an R-module, A : M �! M linear, and (xn)n2N a sequence in M with
xn = Axn�1 for n � 1. Then for r � 1 the following statements are equiva-
lent:

(i) xr 2 Rx0 + · · ·+Rxr�1.

(ii) There exist c1, . . . , ck 2 R such that xn = c1xn�1 + · · ·+ crxn�k for all
r � k.

If M is Noetherian, then an r with (i) and (ii) exists.

But how to explicitly determine the index k and the coe�cients
c1, . . . , ck? Of course this can work only for rings R and modules M that
admit explicit arithmetic operations.

In the following our main examples are: R = K a finite field, or
R = Z/mZ a residue class ring of integers. In both cases we have a-priori
knowledge on the number of true increments in the chain of submodules;
that is, an explicit bound for r. If for example R is a field, then the number
of proper steps is bounded by the vector space dimension dimM . In the
general case we have:

Proposition 5 (Krawczyk) Let M be an R-module, and 0 ⇢ M1 ⇢ . . . ⇢
Ml ✓ M be a properly increasing chain of submodules. Then 2l  #M .

This result is useful only for a finite module M . However this is the case
we are mainly interested in when treating congruential generators. Then we
may express it also as l  log2(#M). This is not too bad compared with the
case field/vector space, both finite: l  Dim(M)  log2(#M)/ log2(#R).

Proof. Let bi 2 Mi � Mi�1 for i = 1, . . . , l (where M0 = 0). Then the
subset

U = {c1b1 + · · ·+ clbl | all ci = 0 or 1} ✓ M

consists of 2l distinct elements. For if two of these expressions would repre-
sent the same element, their di↵erence would have the form

e1b1 + · · ·+ etbt = 0 with ei 2 {0,±1}, et 6= 0,

for some t with 1  t  l. From et = ±1 2 R⇥ we would derive the con-
tradiction bt = �e�1

t (e1b1 + · · ·+ et�1bt�1) 2 Mt�1. Hence #M � #U = 2l.
3



K. Pommerening, Bitstream Ciphers 37

2.2 Linear Generators over Fields

In this section we consider the special case where R = K is a field and M a
finite dimensional vector space over K (hence a Noetherian K-module).

Then we have to find the minimal k with

dim(Kx0 + · · ·+Kxk) = dim(Kx0 + · · ·+Kxk�1)

and then to find the linear combination

xk = c1xk�1 + · · ·+ ckx0.

This is a standard exercise in linear algebra.
For a concrete calculation we chose a fixed basis (e1, . . . , em) of M . Let

xn =
mX

i=1

xinei

denote the corresponding basis representation. Since rank(x0, . . . , xk�1) = k,
there is a set I = {i1, . . . , ik} ✓ {1, . . . ,m} of indices with #I = k such that
the matrix

X = (xij)i2I,0j<k =

0

B@
xi10 . . . xi1k�1
...

...
xik0 . . . xikk�1

1

CA

is invertible. The coe�cients cj in the relation

xk =
k�1X

j=0

cjxj ,

are not yet known, we get them by substituting

mX

i=1

xikei =
k�1X

j=0

mX

i=1

cjxijei,

hence by the uniqueness of basis coe�cients

xik =
k�1X

j=0

xijcj for all i 2 I,

or, in matrix notation,
x̄ = (xik)i2I = X · c.

The solution for the coe�cients cj is

c = X�1 · x̄.

This proves the first two statements of the following proposition that extends
Proposition 4:



K. Pommerening, Bitstream Ciphers 38

Proposition 6 Under the assumptions of Proposition 4 let R = K be a
field and M be finite dimensional of dimension m. Then:

(i) The minimal k that fulfils the statements on r in Proposition 4 is the
smallest index with dim(Kx0 + · · ·+Kxk) = k, and k  m.

(ii) The coe�cients c1, . . . , ck are determined by a system of linear equa-
tions with an invertible square coe�cient matrix whose entries consist
of basis coe�cients of x0, . . . , xk�1.

(iii) If k = m, then A is uniquely determined by the basis coe�cients of
x0, . . . , xk.

Proof. (iii) Let

X1 = (xm, . . . , x1), X0 = (xm�1, . . . , x0) 2 Mm(K).

Then X1 = AX0 in matrix representation for the basis (e1, . . . , em) of M .
Since rankX0 = m the matrix X0 is invertible, and

A = X1X
�1
0 ,

as claimed. 3

If A is invertible, then we can determine the sequence (xn) also in back-
wards direction as soon as we have a subsequence xt, . . . , xt+m of length
m+ 1 with rank(xt, . . . , xt+m�1) = m at our disposition.

Example

For the special case of an r-step homogeneous linear congruential generator
xn = a1xn�1 + · · · + arxn�r over Fp = Z/pZ where p is prime we use the
companion matrix

A =

0

BBB@

0 1
. . .

. . .

0 1
ar . . . a2 a1

1

CCCA
, DetA = (�1)rar.

In this case A is invertible if and only if ar 6= 0, a condition we may assume
without loss of generality—otherwise the recursion depth would be < r.

For predicting the sequence we need at most r + 1 state vectors, or 2r
elements of the sequence:

Corollary 1 An r-step homogeneous linear congruential generator with
known prime module is predictable given the 2r elements x0, . . . , x2r�1 of
the output sequence.



K. Pommerening, Bitstream Ciphers 39

Corollary 2 An LFSR of length l is predictable from the first 2l output bits.

Corollary 3 A homogeneous linear congruential generator with known
prime module is predictable from x0, x1, an inhomogeneous one, from
x0, x1, x2, x3.

In the Section 2.4 we’ll see that even x0, x1, x2 su�ce.
These results knock o↵ LFSRs as sources of key bits for cryptological

applications. Keeping the length secret is useless since the attacker may
easily determine it by trial and error, putting up with a slight complication
of the attack.

For linear congruential generators we might hope that keeping the mod-
ulem secret (and maybe not choosing a prime) might erect a serious obstacle.
However we’ll also put this hope at rest in Section 2.5.



K. Pommerening, Bitstream Ciphers 40

2.3 Cracking an LFSR Stream XOR Encryption

Let us break down the abstract setting of Section 2.2 to an explicit procedure
for cracking an XOR cipher that uses an LFSR sequence as keystream. (This
section doesn’t depend on 2.1 or 2.2 but contains a direct approach.)

Consider a key bitstream u0, u1, . . . generated by an LFSR by the formula
un = s1un�1+· · ·+slun�l. Assume a plaintext a is XOR encrypted using this
key stream, resulting in the ciphertext c, where ci = ai + ui for i = 0, 1, . . .
What are the prospects of an attacker who knows a chunk of the plaintext?

Well, assume she knows the first l+1 bits a0, . . . , al of the plaintext. She
immediately derives the corresponding bits u0, . . . , ul of the key stream, in
particular the initial state of the LFSR. For the yet unknown coe�cients si
she knows a linear relation:

s1ul�1 + · · ·+ slu0 = ul.

Each additional known plaintext bit yields one more relation, and having l
relations, from 2l bits of known plaintext, the easy linear algebra over the
field F2 finds a unique solution (in non-degenerate cases).

So assume we know the first 2l bits u0, . . . , u2l�1 from an LFSR of length
l. The state vector

u(i) = (ui, . . . , ui+l�1) for i = 0, 1, . . .

is the register content for step i (in reversed order compared with Figure 1.7).
Thus the analysis focusses on the states, not directly on the output. The
recursion in matrix form (for n � l) is

0

BBB@

un�l+1
...

un�1

un

1

CCCA
=

0

BBB@

0 1 . . . 0
...

...
. . .

...
0 0 . . . 1
sl sl�1 . . . s1

1

CCCA

0

BBB@

un�l
...

un�2

un�1

1

CCCA

or more parsimoniously (the indices being substituted by m = n� l + 1)

u(m) = S · u(m�1) for m � 1

where S is the companion matrix. As a further step we collect l consecutive
state vectors u(i), . . . , u(i+l�1) in a state matrix

U(i) =

0

BBB@

ui ui+1 . . . ui+l�1

ui+1 ui+2 . . . ui+l
...

...
. . .

...
ui+l�1 ui+l . . . u2l�2

1

CCCA



K. Pommerening, Bitstream Ciphers 41

and set U = U(0), V = U(1). This yields the formula

V = S · U

that expresses the unknown coe�cients s1, . . . , sl by the known plaintext
bits u0, . . . , u2l�1. Most notably it allows us to write down the solution
immediately—provided that the matrix U is invertible:

S = V · U�1.

The matrix S explicitly displays the coe�cients s1, . . . , sl. We’ll discuss the
invertibility later on.

Example

Assume we are given a ciphertext:

10011100 10100100 01010110 10100110 01011101 10101110

01100101 10000000 00111011 10000010 11011001 11010111

00110010 11111110 01010011 10000010 10101100 00010010

11000110 01010101 00001011 11010011 01111011 10110000

10011111 00100100 00001111 01010011 11111101

We suspect that the cipher is XOR with a key stream from an LFSR of
length l = 16. The context suggest that the text is in German and begins
with the word “Tre↵punkt” (meeting point). To solve the cryptogram we
need 32 bits of plaintext, that is the first four letters only, presupposed that
the theory applies. This gives 32 bits of the key stream:

01010100 01110010 01100101 01100110 = T r e f

10011100 10100100 01010110 10100110 cipher bits

-------- -------- -------- --------

11001000 11010110 00110011 11000000 key bits

Sage sample 2.1 determines the coe�cient matrix. Its last row tells us that
all si = 0 except s16 = s5 = s3 = s2 = 1.

Now we know the LFSR and the initial state, and can reconstruct the
complete key stream—yes, it is the same as in Section 1.10—and write down
the plaintext (that by the way begins a bit di↵erently from our guess).

We have shown that the co�cients are uniquely determined assuming
the state matrix U = U(0) is invertible. As a consequence in this case the
LFSR is completely known, and all output bits are predictable. We have yet
to discuss the case where the matrix U is singular.

If one of the first l state vectors (= rows of the matrix U) is zero, then
all following state vectors are zero too, and prediction is trivial.

Thus we may assume that none of these vectors are zero, but that they
are linearly dependent (reinventing the Noetherian principle for this special



K. Pommerening, Bitstream Ciphers 42

Sage Example 2.1 Determining a coe�cient matrix

sage: l = 16

sage: kbits =

[1,1,0,0,1,0,0,0,1,1,0,1,0,1,1,0,0,0,1,1,0,0,1,1,1,1,0,0,0,0,0,0]

sage: ulist = []

sage: for i in range(0,l):

state = kbits[i:(l+i)]

ulist.append(state)

sage: U = matrix(GF(2),ulist)

sage: det(U)

1

sage: W = U.inverse()

sage: vlist = []

sage: for i in range(1,l+1):

state = kbits[i:(l+i)]

vlist.append(state)

sage: V = matrix(GF(2),vlist)

sage: S = V*W

sage: S

[0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0]

[0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0]

[0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0]

[0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0]

[0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0]

[0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0]

[0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0]

[0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0]

[0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0]

[0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0]

[0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0]

[0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0]

[0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0]

[0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0]

[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1]

[1 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0]

scenario). Then there is a smallest index k � 1 such that u(k) is contained in
the subspace spanned by u(0), . . . , u(k�1), and we find coe�cients t1, . . . , tk 2
F2 such that

u(k) = t1u(k�1) + · · ·+ tku(0).

Then also u(k+1) = S ·u(k) = t1S ·u(k�1)+· · ·+tkS ·u(0) = t1u(k)+· · ·+tku(1),



K. Pommerening, Bitstream Ciphers 43

and by induction we get

u(n) = t1u(n�1) + · · ·+ tku(n�k) for all n � k.

This formula predicts all the following bits.

Discussion

• For a singular state matrix this consideration yields a shorter LFSR
(of length k < l) that generates exactly the same sequence. Then our
method doesn’t determine the coe�cients of the original register but
nevertheless correctly predicts the sequence.

• If the bits the attacker knows aren’t just the first ones but 2l contiguous
ones at a later position, then the theorem yields only the prediction
of the following bits. In the main case of an invertible state matrix U
the LFSR is completely known and may be run backwards to get the
previous bits. For a singular state matrix we achieve the same e↵ect
using the shorter LFSR constructed above.

• The situation where 2l bits of the key stream are known but at non-
contiguous positions is slightly more involved. We get linear relations
that contain additional (unknown) intermediate bits. If m is the num-
ber of these then we get l + m linear equations for l + m unknown
bits.

• What if the length l of the LFSR is unknown? Exhaustively trying
all values l = 1, 2, 3, . . . is nasty but feasible. A better approach is
provided by the Berlekamp-Massey algorithm, see Section 3.3 that
is e�cient also without knowledge of l.



K. Pommerening, Bitstream Ciphers 44

2.4 Linear Congruential Generators with Known
Module

This section uses elementary methods only and is independent of the general
theory from the preceding sections of Chapter 2.

Assume the parameters a and b of the linear congruential generator
xn = axn�1 + b mod m are unknown, whereas the module m is known.

We’ll show that for predicting the complete output sequence we only
need 3 successive elements x0, x1, x2 of the sequence, even for a composite
module m. Starting with the relation

x2 � x1 ⌘ a(x1 � x0) (mod m)

we immediately get (assuming for the moment that x1 � x0 and m are
coprime)

a =
x2 � x1
x1 � x0

mod m,

where the division is mod m (using the extended Euclidean algorithm). The
increment b is given by

b = x1 � ax0 mod m.

So we found the defining formula and may predict the complete sequence.
A typical tool for this simple case was the sequence of di↵erences

yi = xi � xi�1 for i � 1.

It follows the rule
yi+1 ⌘ ayi (mod m).

Note that the yi may be negative lying between the bounds �m < yi < m.
Sincem is known we might replace them by yi mod m, but this was irrelevant
in the example, and for an unknown m—to be considered later on—it is not
an option.

Lemma 6 (on the sequence of di↵erences) Assume the sequence (xi) is gen-
erated by the linear congruential generator with module m, multiplier a, and
increment b. Let (yi) be the sequence of di↵erences, c = gcd(m, a), and
d = gcd(m, y1). Then:

(i) The following statements are equivalent:
(a) The sequence (xi) is constant.
(b) y1 = 0.
(c) yi = 0 for all i.

(ii) gcd(m, yi)| gcd(m, yi+1) for all i.
(iii) d|yi for all i.



K. Pommerening, Bitstream Ciphers 45

(iv) If gcd(y1, . . . , yt) = 1 for some t � 1, then d = 1.
(v) c|yi for all i � 2.
(vi) If gcd(y2, . . . , yt) = 1 for some t � 2, then c = 1.
(vii) m|yiyi+2 � y2i+1 for all i.
(viii) If ã, m̃ are integers, m̃ � 1, with yi ⌘ ãyi�1 (mod m̃)

for i = 2, . . . , r, then xi = ãxi�1 + b̃ mod m̃ for all
i = 1, . . . , r with b̃ = x1 � ãx0 mod m̃.

Proof. (i) Note that yi = 0 implies that all following elements are 0.
(ii) If e divides yi and m, then it also divides yi+1 = ayi + kim.
(iii) is a special case of (ii).
(iv) follows from d| gcd(y1, . . . , yt), and this, from (iii).
(v) Let m = cm̃ and a = cã. Then yi+1 = cãyi + kicm̃, hence c|yi+1 for

i � 1.
(vi) follows from c| gcd(y2, . . . , yt) and this, from (v).
(vii) yiyi+2 � y2i+1 ⌘ a2yi � a2yi (mod m).

(viii) by induction: For i = 1 the assertion is the definition of b̃. For i � 2
we have

xi � ãxi�1 � b̃ ⌘ xi � ãxi�1 � xi�1 + ãxi�2 ⌘ yi � ãyi�1 ⌘ 0 (mod m̃),

as claimed. 3

The trivial case of a constant sequence merits no further care. However it
shows that in general the parameters of a linear congruential generator are
not uniquely determined by the output sequence. For the constant sequence
may be generated with an arbitrary module m and an arbitrary multiplier
a if only the increment is set to b = �(a � 1)x0 mod m. Even if m is fixed
a is not uniquely determined, not even a mod m.

Previously we considered the case where y1 and m are coprime, yielding
a = y2/y1 mod m. In the general case it might happen that division mod m
is not unique. This happens if and only if m and y1 have a non-trivial
common divisor, hence d = gcd(m, y1) > 1. The sequence of reduced

di↵erences ȳi = yi/d (see (iii) in Lemma 6) then follows the recursive
formula

ȳi+1 ⌘ āȳi (mod m̄)

with the reduced module m̄ = m/d and reduced multiplier ā = a mod m̄,
from which we get a unique ā = ȳ2/ȳ1. Setting ã = ā + km̄ with an arbi-
trary integer k and b̃ = x1 � ãx0 mod m, from Lemma 6 (viii) we also get
xi = ãxi�1 + b̃ mod m for all i � 1. This proves:

Proposition 7 Assume the sequence (xi) is generated by a linear congru-
ential generator with known module m, but unknown multiplier a and incre-
ment b. Then the complete output sequence is predictable from its first three



K. Pommerening, Bitstream Ciphers 46

elements x0, x1, x2. If the sequence (xi) is not constant, then the multiplier
a is uniquely determined up to a multiple of the reduced module m̄.

Thus also in this situation we sometimes have to content ourselves with
predicting the sequence without revealing the parameters used for its gen-
eration. Here is a simple concrete example: For m = 24, a = 2k + 1 with
k 2 [0 . . . 11], b = 12�2k mod 24, and initial value x0 = 1 we always get the
sequence (1, 13, 1, 13, . . .).



K. Pommerening, Bitstream Ciphers 47

2.5 Linear Congruential Generators with Un-
known Module

The attack on linear congruential generators surely becomes harder if the
modulem is kept secret and cannot be guessed in an obvious way. We assume
that the attacker has a (short) subsequence x0, x1, . . . of the output sequence
at her disposal.

Surprisingly it is easier to attack the multiplier first. The following propo-
sition yields a “surrogate” value a0 in a few steps. Note the Noetherian ap-
proach via the (implicit) formula yt+1 2 Zy1 + · · ·+ Zyt, the principal ideal
generated by the integer gcd(y1, . . . , yt).

Proposition 8 (Plumstead-Boyar) Let (yi) be the sequence of dif-
ferences of the linear congruential generator with generating function
s(x) = ax+ b mod m, m � 2, and initial value x0. Let y1 6= 0 and t be
the smallest index such that e = gcd(y1, . . . , yt) | yt+1. Then:

(i) t < 1 + log2m.

(ii) If e = c1y1 + · · · + ctyt with ci 2 Z and a0 = (c1y2 + · · · + ctyt+1)/e,
then a0 2 Z and

yi+1 ⌘ a0yi (mod m) for all i.

(iii) If b0 = x1 � a0x0, then

xi = a0xi�1 + b0 mod m for all i.

Proof. (i) If ej = gcd(y1, . . . , yj) doesn’t divide yj+1, then ej+1  ej/2. Since
e1 = |y1| < m we conclude e = et < m/2t�1, hence t� 1 < log2m.

(ii) We have

ae = c1ay1 + · · ·+ ctayt ⌘ c1y2 + · · ·+ ctyt+1 = a0e (mod m).

The greatest common divisor d of m and y1 divides e by Lemma 6, hence
also d = gcd(m, e). We divide the congruence first by d:

a
e

d
⌘ a0

e

d
(mod m̄)

with the reduced module m̄ = m/d. Since e/d and m̄ are coprime we may
divide by e/d:

a ⌘ a0 (mod m̄), a = a0 + km̄.

Hence yi+1 ⌘ ayi = a0yi+kyim̄ (mod m). From d | yi follows yim̄ ⌘ 0, hence
yi+1 ⌘ a0yi (mod m).

(iii) is an immediate consequence of Lemma 6 (viii). 3



K. Pommerening, Bitstream Ciphers 48

Examples

1. Let m = 8397, a = 4381, b = 7364 [Reeds 1977]. Generate

x0 = 2134
x1 = 2160 y1 = 26 e1 = 26
x2 = 6905 y2 = 4745 e2 = 13
x3 = 3778 y3 = �3127 e3 = 1
x4 = 8295 y4 = 4517

We get c1 = 87542, c2 = �481, c3 = �1, and a0 = 416881843.

2. Let m = 2q + 1, a = 2q�1, b = 2q, and x0 = 0. By the corollary of the
following Lemma 7 we have yi = (�1)i�1 · 2q�i+1 for i = 1, . . . , q + 1,
and thus ei = 2q�i+1. Hence t = q + 1. Thus the upper bound for t in
Proposition 8 is sharp, and indeed we need the q + 3 elements x0 to
xq+2 of the output sequence to determine the surrogate multiplier a0.

Lemma 7 Let the sequence (ci) in Z be defined by c0 = 0, ci = 2i�1 � ci�1

for i � 1. Then

(i) ci =
1
3 · [2i � (�1)i] for all i,

(ii) ci � 2ci�1 = (�1)i�1 for all i � 1.

Proof. (i) follows by induction, (ii) by a direct calculation. 3

Corollary 1 Let (xi) be the output sequence of the linear congruential gen-
erator with module m = 2q + 1, multiplier a = 2q�1, increment b = 2q, and
initial value x0 = 0. Let (yi) be the sequence of di↵erences. Then

(i) xi = ci · 2q�i+1 for i = 0, . . . , q + 1,

(ii) yi = (�1)i�1 · 2q�i+1 for i = 1, . . . , q + 1.

Proposition 8 provides a surrogate multiplier in an e�cient way. Now
we need a procedure for determining the module m. We close in on it by
“successive correcting”. In step j we determine a new surrogate module mj

and a new surrogate multiplier aj as follows:

• In the first step set m1 = 1 and a1 = a0. [Calculating mod1 simply
means calculating with integers, and gcd(c,1) = c for c 6= 0, but = 1
for c = 0.]

• In step j, j � 2, let y0j := aj�1yj�1 mod mj�1. Then set mj =
gcd(mj�1, y0j � yj) and aj = aj�1 mod mj .



K. Pommerening, Bitstream Ciphers 49

Thus in iteration step j we use the current surrogate values mj�1 and aj�1

for m and a and predict a value y0j for yj that we compare with the real
(known) value yj . If these two numbers di↵er, then their di↵erence is a
multiple of m. In this case we correct the surrogate values. We always have
m |mj . The corrected values don’t invalidate the former calculations since
yi ⌘ ajyi�1 (mod mj) for i = 2, . . . , j, and also yi ⌘ ajyi�1 (mod m) for all
i � 2. Also the true sequence (xi) always fulfils xi ⌘ ajxi�1 + bj (mod mj)
for i = 1, . . . , j with bj = x1 � ajx0 by Lemma 6 (viii).

In Example 1 above we have

m1 = 1 a1 = 416881843
y02 = 10838927918 m2 = 10838923173 a2 = 416881843
y03 = 5420327549 m3 = 8397 a3 = 4381

The calculation for m3 is

gcd(10838923173, 5420330676) = 8397.

Since m3  2x2 we conclude that necessarily m = m3, a = a3, and
b = x1 � ax0 mod m = 7364. Thus we found the true values after two correc-
tion steps, and we didn’t need any further elements of the output sequence
than the five we used for determining a0. Note the large intermediate results
that suggest that in general the procedure relies on multi-precision integer
arithmetic.

Does the procedure always terminate? At the latest when we reach the
period of the sequence, that is after at most m steps, the complete sequence
is predictable. However this bound is practically useless. Unfortunately it is
tight: For arbitrary m let a = 1, b = 1, and x0 = 0. Then xi = i and yi = 1
for i = 0, . . . ,m� 1. The initial value for the surrogate multiplier is a0 = 1.
The first false prediction is y0m = 1 instead of the correct value ym = 1�m.
The end is reached only after evaluating xm. Although this worst case is
easily recognized and might be treated separately it nevertheless hints at
the di�culty of finding good general results. And indeed we don’t know of
any.

From a slightly di↵erent point of view we count the number of necessary
correction steps where the surrogate module changes. For if mj 6= mj�1,
then mj  mj�1/2. Let m(0) = 1 > m(1) > . . . be the sequence of distinct
surrogate modules. Then

m(1) = mj1 = |y0j1 � yj1 | < a0|yj1�1|+m < m(a0 + 1),

m  m(j) <
m(a0 + 1)

2j�1
,

hence always j < 1+ log2(a
0+1). This gives an upper bound for the number

of necessary corrections. Joan Plumstead-Boyar described a variant of the



K. Pommerening, Bitstream Ciphers 50

algorithm that results in a potentially smaller value of a0, and eventually in
the upper bound 2 + log2m for the number of correction steps. However
in general the algorithm doesn’t involve that many corrections making this
bound obsolete as a terminating criterion.

It seems that the search for theoretical results is a worthwile task. Could
we exclude a (maybe small) class of (maybe bad anyway) linear congruential
generators such that the majority of the remaining (interesting) generators
obey a practically useful terminating criterion? I would expect such a result.
Is there a way to control the distribution of the number of steps? Or at least
the mean value?

Anyway the known results su�ce to disqualify linear congruential gen-
erators for direct cryptographic application.

For an implementation of this algorithm in C see
https://www.staff.uni-mainz.de/pommeren/Cryptology/Bitstream

/2 Analysis/LCGcrack.html.



K. Pommerening, Bitstream Ciphers 51

2.6 A General Prediction Method

The method of Boyar (née Plumstead) admits a broad generalization
by the BK algorithm (named after Boyar and Krawczyk): It applies
to recursive formulas that have an expression in terms of (unknown) linear
combinations of known functions. A suitable language for its description is
commutative algebra, that is, rings and modules.

So let R be a commutative ring (with 1 6= 0), and X, Z be R-modules.
Let

�(i) : Xi �! Z for i � h

be a family of maps that we consider as known, and

↵ : Z �! X

be a linear map considered as secret. From these data we generate a sequence
(xn)n2N in X by the following algorithm, see Figure 2.2:

• Set x0, . . . , xh�1 2 X as initial values.

• After generating x0, . . . , xn�1 for some n � h let

zn := �(n)(x0, . . . , xn�1) 2 Z,

xn := ↵(zn) 2 X.

x0 x1 . . . . . . xn�1 xn

zn��
�⌧
�(n)

6

-

6 6 6

?

↵

-output
sequence

Figure 2.2: A very general generator

Here, in greater generality as before, we allow that each element of the
sequence depends on all of its predecessors, that is, on the complete “past”.
A reasonable use for pseudorandom generation of course supposes that the
�(i) are e�ciently computable. In the sample case R = Z/mZ, X = Rk, the
cost should grow at most polynomially with log(m), h, and k.

Examples

1. The linear congruential generator: R = Z/mZ = X, Z = R2, h = 1,
xn = axn�1 + b,

�(i)(x0, . . . , xi�1) =

✓
xi�1

1

◆
,



K. Pommerening, Bitstream Ciphers 52

↵

✓
s
t

◆
= as+ bt.

2. The linear-inversive congruential generator: R, X, Z, h, ↵ as above,
xn = ax�1

n�1 + b,

�(i)(x0, . . . , xi�1) =

✓
x�1
i�1 mod m

1

◆
.

(Set the first component to 0 if xi�1 is not invertible modm.)

3. Congruential generators of higher degree: R = Z/mZ = X, Z = Rd+1,
h = 1, xn = adxdn�1 + · · ·+ a0,

�(i)(x0, . . . , xi�1) =

0

BBB@

xdi�1
...

xi�1

1

1

CCCA
,

↵

0

B@
t0
...
td

1

CA = adt0 + · · ·+ a0td.

4. Arbitrary congruential generators: R = Z/mZ, xn = s(xn�1), h = 1.
If m is prime, then each function s: R �! R has an expression as a
polynomial of degree < m, as in Example 3. For a more general module
m we may use the basis {e0, . . . , em�1} with ei(j) = �ij of RR. The
basis representation is s =

Pm�1
i=0 s(i)ei. Thus we set X = R, Z = Rm,

and

�(i)(x0, . . . , xi�1) =

0

B@
e0(xi�1)

...
em�1(xi�1)

1

CA ,

↵

0

B@
t0
...

tm�1

1

CA = s(0)t0 + · · ·+ s(m� 1)tm�1.

5. For multistep congruential generators set h equal the recursion depth.

6. For nonlinear feedback shift registers see the next section 2.7.

For cryptanalysis we assume that the �(i) are known, but ↵ is unknown.
(Later on, in the case R = Z/mZ, we’ll also treat m as unknown.) The
question is: Given an initial segment x0, . . . , xn�1 (n � h) of the output
sequence, is there a method to predict the next element xn?



K. Pommerening, Bitstream Ciphers 53

To this end we consider the ascending chain Zh ✓ Zh+1 ✓ . . . ✓ Z of
submodules with

Zn = Rzh + · · ·+Rzn.

If Zn = Zn�1, then zn = thzh + · · · + tn�1zn�1 with th, . . . , tn�1 2 R, and
applying ↵ we get the formula

xn = thxh + · · ·+ tn�1xn�1

that predicts xn from x0, . . . , xn�1 without using knowledge of ↵.
If Z is a Noetherian R-module, then we encounter a stationary situation

after finitely many steps: Zn = Zl for n � l. Beginning with this index the
complete sequence xn is predictable by the following “algorithm”:

1. Calculate zn = �(n)(x0, . . . , xn�1).

2. Find a linear combination zn = thzh + · · ·+ tn�1zn�1.

3. Set xn = thxh + · · ·+ tn�1xn�1.

The Noetherian principle allows the prediction by a linear
relation (that however might change from step to step).

To transform the “algorithm” into a true algorithm we need a procedure
that explicitly finds a linear combination in step 2, solving a system of linear
equations in Z.

For our standard example of a congruential generator with module
m = 8397 (here assumed to be known), x0 = 2134, x1 = 2160, x2 = 6905,
we calculate

z1 =

✓
2134
1

◆
, z2 =

✓
2160
1

◆
, z3 =

✓
6905
1

◆
.

Trying to write z3 as a linear combination t1z1 + t2z2 we get the system

2134t1 + 2160t2 = 6905(1)

t1 + t2 = 1

of linear equations in R = Z/mZ. By elimination we find

26t1 = �4745 = 3652.

The inverse of 26 mod 8397 is 323, and thus we get t1 = 4016, t2 = 4382.
This result correctly predicts x3 = 3778.

Proceeding in this way we correctly predict the complete output se-
quence. The reason is that Z2 = Z:

z2 � z1 =

✓
26

0

◆
, e1 =

✓
1

0

◆
2 Z2, e2 =

✓
0

1

◆
= z1 � 2134 · e1 2 Z2.



K. Pommerening, Bitstream Ciphers 54

This example contains a partial answer to the question of when the chain
of submodules Zn becomes stationary: At least when Zl = Z. But in a more
general case this might never happen. Note also that from Zl = Zl+1 we
can’t conclude that the chain is stationary at Zl—later on it could ascend
again. For a bound on the number of proper increments see Proposition 5.

In each single loop of the prediction algorithm there are two possible
alternative events:

• zn 62 Zn�1. Then predicting xn is impossible, and Zn�1 properly ex-
tends to Zn = Zn�1 +Rzn.

• zn 2 Zn�1. Then the algorithm correctly predicts xn.

By Proposition 5 the first of these two events may happen at most log2(#Z)
times (or DimZ times if R is a field). For each of these events we need ac-
cess to the next element xn of the output sequence to get ahead. On first
sight this looks disappointing, but some thought brings to mind that it is a
realistic situtation for cryptanalysis: In the process of breaking a cipher the
cryptanalyst works with a supposed key until she gets nonsense “plaintext”.
Then she tries to guess the following plaintext characters by context knowl-
edge, corrects the supposed key and goes on with deciphering. Remember
that we already encountered this e↵ect in the last section. And note that the
present algorithm is fairly simple but contents itself with predicting elements
instead of determining the unknown parameters of the random generator.



K. Pommerening, Bitstream Ciphers 55

2.7 Nonlinear Feedback Shift Registers

As another example of the general prediction method we consider arbitrary,
not necessarily linear, feedback shift registers as illustrated in Figure 2.3.

un+l�1 un+l�2 . . . . . . un+1 un-

un+l

- un�1 . . . u0
output sequence

feedback function
◆
✓

⇣
⌘f

6 6 6 6

- - - -
cell number: l � 1 l � 2 1 0

Figure 2.3: A feedback shift register (FSR) of length l

Here the feedback function is an arbitrary Boolean function f: Fl
2 �! F2

whose algebraic normal form is a polynomial

f(y1, . . . , yl) =
X

I✓{1,...,l}

aIy
I with yI =

Y

j2I
yj .

We want to apply the prediction method with R = X = F2, h = l,
Z = F2l

2 . For i � l
�(i) : Fi

2 �! Z

is given by

zi := �(i)(x1, . . . , xi) = (yI)I✓{1,...,l} with y = (xi�l+1, . . . , xi).

And finally we set

↵ : Z �! X, ↵((tI)I✓{1,...,l}) =
X

aItI .

First we treat two concrete examples:

Examples

1. l = 2, f = T1T2 + T2. From the initial values u0 = 1, u1 = 0 we
generate the sequence (manually or by Sage example 2.2)

u0 = 1, u1 = 0, u2 = 1, u3 = 0, . . .

(that evidently has period 2). We have

Z = F4
2, zn =

0

BB@

un�1un�2

un�1

un�2

1

1

CCA ,



K. Pommerening, Bitstream Ciphers 56

z2 =

0

BB@

0
0
1
1

1

CCA , z3 =

0

BB@

0
1
0
1

1

CCA , z4 =

0

BB@

0
0
1
1

1

CCA = z2, . . .

From this the cryptanalyst recognizes the linear recursion

zn = zn�2 = 0 · zn�1 + 1 · zn�2 for n � 4.

She even recognizes the period, and correctly predicts

un = 0 · un�1 + 1 · un�2 = un�2 for n � 4.

Note that the very same sequence can be generated by a linear FSR
of length 2. The analysis used the elements u0, u1, u2, u3.

2. l = 3, f = T1T3 + T2. From the initial values u0 = 0, u1 = 1, u2 = 1
we generate the elements (manually or by Sage example 2.3)

u3 = 1, u4 = 0, u5 = 1, u6 = 1, u7 = 1, u8 = 0, u9 = 1, . . .

of the output sequence. We have

Z = F8
2, zn =

0

BBBBBBBBBB@

un�1un�2un�3

un�1un�2

un�1un�3

un�2un�3

un�1

un�2

un�3

1

1

CCCCCCCCCCA

,

z3 =

0

BBBBBBBBBB@

0
1
0
0
1
1
0
1

1

CCCCCCCCCCA

, z4 =

0

BBBBBBBBBB@

1
1
1
1
1
1
1
1

1

CCCCCCCCCCA

, z5 =

0

BBBBBBBBBB@

0
0
0
1
0
1
1
1

1

CCCCCCCCCCA

, z6 =

0

BBBBBBBBBB@

0
0
1
0
1
0
1
1

1

CCCCCCCCCCA

, z7 =

0

BBBBBBBBBB@

0
1
0
0
1
1
0
1

1

CCCCCCCCCCA

= z3,

and so on. Hence the supposed linear recursion is

zn = zn�4 for n � 4,

again it reflects the periodicity. We get the correct prediction formula

un = un�4 for n � 4.

We needed the elements from u0 to u6; and again we found an “equiv-
alent” LFSR, this time of length 4.



K. Pommerening, Bitstream Ciphers 57

Sage Example 2.2 f1 = T1T2+T2—monomials with exponent pairs [1,1]
=̂ 3 and [0,1] =̂ 1, hence ANF bitblock [0,1,0,1]

f1 = BoolF([0,1,0,1],method="ANF")

y = f1.getTT(); y

[0, 1, 0, 0]

start = [0,1]

seq = fsr(f1,start,10); seq

[1, 0, 1, 0, 1, 0, 1, 0, 1, 0]

Sage Example 2.3 f2 = T1T3 + T2—monomials with exponent triples
[1,0,1] =̂ 5 and [0,1,0] =̂ 2, hence ANF bitblock [0,0,1,0,0,1,0,0]

f2 = BoolF([0,0,1,0,0,1,0,0],method="ANF")

y = f2.getTT(); y

[0, 1, 0, 0]

start = [1,1,0]

seq = fsr(f2,start,10); seq

[0, 1, 1, 1, 0, 1, 1, 1, 0, 1]

Since the dimension of Z grows exponentially with the register length the
prediction algorithm reaches its limits soon. In the worst case the stationary
state of the ascending chain of subspaces—and the needed linear relation—
occurs only after 2l steps. This observation would make shift registers up to
a length of about 32 predictable with manageable cost using linear algebra
in a binary vector space of dimension 232.

However in the examples we observed that the linear relation we found
is nothing other than the formula for the final periodic repetition. This was
not a fortunate coincidence but is a general phenomen that has an easy
proof. For details see the paper [6]. Hence instead of solving large systems
of linear equations we can apply an algorithm for period search that needs
significantly less resources. This approach enables a realistic attack on shift
registers of lengths up to about 80.

From a general point of view there is another objection against using
arbitrary FSRs: The feedback function f depends on 2l parameters. To have
f e�ciently computable and to deal with a manageable key space we have to
restrict the choice of f , say by forcing “almost all” coe�cients aI in the ANF
of the “admissible” feedback functions f to 0. Thus we specify a “small” set
M ✓ P({1, . . . l}) a priori, and use only functions f whose ANF

f(x1, . . . , xl) =
X

I2P({1,...l})

aIx
I



K. Pommerening, Bitstream Ciphers 58

has coe�cients aI = 0 for I 62 M. Then the key space has size 2#M.
However the coice of M is part of the encryption algorithm—in particular
for a hardware FSR—, not a part of the key. Kerckhoffs’ principle warns
us that the enemy will learn about M sooner or later. In the model of
Figure 2.1 we treat the a priori “monomial supply” M as public parameter,
and the concrete “monomial selection” I as secret parameter.

The necessity of choosing an e�ciently computable feedback function
and a manageable key space enforces restrictions that make the prediction
method e�cient too. Expressed in a somewhat sloppy way:

Proposition 9 Each bit sequence that is generated by an FSR with e�-
ciently computable feedback function is e�ciently predictable.

Our treatment of this problem was quite coarse. To derive mathemati-
cally correct statements there are two approaches:

1. Directly estimate the circuit complexity of the prediction algorithm by
the circuit complexity of the feedback function.

2. Consider families of Boolean functions—that define families of FSRs—
whose complexity grows polynomially with the register length, and
show that the costs of the corresponding prediction procedures also
grow at most polynomially.

For a comprehensive treatment see the cited paper [6].
We conclude that FSRs, no matter whether linear or nonlinear, are un-

suited for generating pseudorandom sequences of cryptographic value—at
least if naively applied. The method of Boyar/Krawczyk breaks also
nonlinear FSRs in realistic scenarios. And the result of Beth/Dai in Sec-
tion 3.6 will open another promising way of predicting an FSR using the
Berlekamp/Massey algorithm, see Section 3.3.



K. Pommerening, Bitstream Ciphers 59

2.8 A General Congruential Generator

The prediction procedure becomes somewhat more involved when the mod-
ule of a congruential generator is unknown. We abandon the general setting
of commutative algebra and use special properties of the rings Z and Z/mZ,
in particular the “canonical” representation of the residue classes of Z/mZ
by the subset {0, . . . ,m� 1} ✓ Z.

Let X = Zr, X̄ = (Z/mZ)r, Z = Zk, Z̄ = (Z/mZ)k. The generator uses
maps

�(i) : Xi �! Z for i � h,

↵ : Z̄ �! X̄ linear,

where ↵ and m are unknown to the cryptanalyst. Identifying the residue
classes with their canonical representants we consider X̄ as the subset
{0, . . . ,m � 1}r of X. Then we generate a sequence by the same algorithm
as in the previous Section 2.6, and call this procedure a general congru-

ential generator, if the evaluation of the maps �(i) is e�cient with costs
that depend at most polynomially on r, k, and log(m). In particular there
is a bound M for the values of the �(i) on {0, . . . ,m� 1}ri that is at most
polynomial in r, k, and log(m).

The cryptanalysis proceeds in two phases. In phase one we work over
the ring Z and its quotient field Q, and we determine a multiple m̂ of the
module m. In phase two we work over the ring Z/m̂Z. Predicting xn in this
situation can trigger three di↵erent events:

• zn 62 Zn�1. Then the module Zn�1 (over Q or Z/m̂Z) must be enlarged
to Zn, and no prediction is possible for xn. The cryptanalyst needs
some more plaintext.

• The prediction of xn is correct.

• The prediction of xn is false. Then the module m̂ has to be adjusted.

In phase one Zn�1 is the vector space over Q that is spanned by zh, . . . , zn�1

(omitting redundant zi’s).
Case 1: zn 62 Zn�1. Then set Zn = Zn�1 +Qzn. This case can occur at

most k times.
Case 2: [Linear relation] zn = thzh + · · · + tn�1zn�1. Then predict

xn = thxh + · · ·+ tn�1xn�1 (as element of Qr).
Case 3: We have an analogous linear relation, but x̂n = thxh + · · · +

tn�1xn�1 di↵ers from xn. Let d 2 N be the common denominator of
th, . . . , tn�1. Then

dx̂n = ↵(dthzh + · · ·+ dtn�1zn�1) = ↵(dzn) = dxn

in X̄, that is modm. This shows:



K. Pommerening, Bitstream Ciphers 60

Lemma 8 (Boyar) The greatest common divisor m̂ of the components of
dx̂n � dxn in case 3 is a multiple of the module m.

The result of phase one is a multiple m̂ 6= 0 of the true module m. The
expense is:

• at most k+ 1 trials of solving a system of linear equations for up to k
unknowns over Q,

• one determination of the greatest common divisor of r integers.

Along the way the procedure correctly predicts a certain number of elements
xn, each time solving a system of linear equations of the same type.

How large can m̂ be? For an estimate we need an upper bound M for
all components of all �(i) on {0, . . . ,m � 1}ri ✓ Xi. We use Hadamard’s
inequality: For arbitrary vectors x1, . . . , xk 2 Rk we have

|Det(x1, . . . , xk)|  kx1k2 · · · kxkk2

where k • k2 is the Euclidean norm.

Lemma 9 m̂  (k + 1) ·m ·
p
kk ·Mk. In particular log(m̂) is bounded by

a polynomial in k, log(m), log(M).

Proof. The coe�cient vector t is the solution of a system of at most k
linear equations for the same number of unknowns. The coe�cients zi of
this system are bounded by M . By Hadamard’s inequality and Cramer’s
rule the numerators dti and denominators d of the solution are bounded by

kY

i=1

vuut
kX

j=1

M2 =
kY

i=1

p
kM2 =

p
kk ·Mk.

Hence the components of dx̂n are bounded by

kdx̂nk1 = k
X

dtixik1 
p
kk ·Mk ·

X
kxik1  km ·

p
kk ·Mk

because m bounds the components of the xi. We conclude

kdx̂n � dxnk1  km ·
p
kk ·Mk +

p
kk ·Mk ·m = (k + 1) ·m ·

p
kk ·Mk,

as claimed. 3

How does this procedure look in the example of an ordinary linear con-
gruential generator? Here we have

z1 =

✓
x0
1

◆
, z2 =

✓
x1
1

◆
, z3 =

✓
x2
1

◆
, . . .



K. Pommerening, Bitstream Ciphers 61

If x1 = x0, then we have the trivial case of a constant sequence. Otherwise
z3 is a rational linear combination t1z1 + t2z2. Solving the system

x0t1 + x1t2 = x2,

t1 + t2 = 1

yields

t =
1

d
·
✓

�x2 + x1
x2 � x0

◆
with d = x1 � x0.

From this we derive the prediction

x̂3 = t1x1 + t2x2 =
�x2x1 + x21 + x22 � x2x0

x1 � x0
=

(x2 � x1)2

x1 � x0
+ x2.

Hence d(x̂3 � x3) = (x2 � x1)2 � (x1 � x0)(x3 � x2) = y22 � y1y3 where (yi)
is the sequence of di↵erences. If x̂3 = x3, then we must continue this way.
Otherwise we get, see Lemma 6,

m|m̂ = |y1y3 � y22|.

For our concrete standard example, where x0 = 2134, x1 = 2160,
x2 = 6905, x3 = 3778, y1 = 26, y2 = 4745, y3 = �3127, this general ap-
proach gives

m̂ = 47452 + 26 · 3127 = 22596327.

A closer look, using Lemma 8 directly, even yields

t1 = �365

2
, t2 =

367

2
, x̂3 =

1745735

2
, m̂ = 2 · (x̂3 � x3) = 1738179.

In phase two of the algorithm we execute the same procedure but over
the ring R̂ = Z/m̂Z. However we can’t simply reduce mod m̂ the rational
numbers from phase one. Hence we restart at zh. Again we distinguish three
cases for each single step:

Case 1: zn 62 Ẑn�1 = R̂zh + · · · + R̂zn�1. Then set Ẑn = Ẑn�1 + R̂zn
(and represent this R̂-module by a non-redundant system {zj1 , . . . , zjl} of
generators where zjl = zn). We can’t predict xn (but have to get it from
somewhere else).

Case 2: zn = thzh + · · · + tn�1zn�1. Then predict xn = thxh + · · · +
tn�1xn�1 (as an element of X̂ = (Z/m̂Z)r). The prediction turns out to be
correct.

Case 3: The same, but now the predicted value
x̂n = thxh + · · ·+ tn�1xn�1 di↵ers from xn in X̂. Then considering
x̂n � xn as an element of Zr we show:

Lemma 10 In case 3 the greatest common divisor d of the coe�cients of
x̂n � xn is a multiple of m, but not a multiple of m̂.



K. Pommerening, Bitstream Ciphers 62

Proof. It is a multiple of m since x̂n mod m = xn. It is not a multiple of m̂
since otherwise x̂n = xn in X̂. 3

In case 3 we replace m̂ by the greatest common divisor of d and m̂
and reduce mod m̂ all the former zj . The lemma tells us that the new m̂ is
properly smaller than the old one.

By Lemma 9 case 3 can’t occur too often, the number of occurences is
polynomially in k, log(m), and log(M). If we already hit the true m this
case can’t occur any more. Case 1 may occur at most log2(#(Z/m̂Z)k) =
k · log2(m̂) times in phase 2 by Proposition 5, and this bound is polynomial
in k, log(m), and log(M).

Note. There is a common aspect of phases one and two: In both
cases we use the full quotient ring. The full quotient ring of Z is
the quotient field Q. In a residue class ring Z/mZ the non-zero-
divisors are exactly the elements that are coprime with m, hence
the units. Thus Z/mZ is its own full quotient ring.

For the concrete standard example we had m̂ = 1738179 after phase one,
and now have to solve mod m̂ the system (1) of linear equations. Since the
determinant �26 is coprime with m̂ we already have Z2 = R̂2, and know
that case 1 will never occur. The inverse of �26 is 66853 (in Z/m̂Z), so
from �26 t1 = 4745 we get t1 = 868907. Hence t2 = 1 � t1 = 869273, and
x̂3 = 11x1 + t2x2 = 3778 is a correct prediction.

In the next step we calculate new coe�cients t1 and t2 for the linear
combination z4 = t1z1 + t2z2. We solve (in Z/m̂Z)

2134 t1 + 2160 t2 = 3778,

t1 + t2 = 1.

Eliminating t2 yields �26 t1 = 1618, hence t1 = 401056, and thus
t2 = 1337124, as well as x̂4 = 11x1 + t2x2 = 302190. Since x4 = 8295 we are
in case 3 and must adjust m̂:

gcd(x̂4 � x4, m̂) = gcd(293895, 1738179) = 8397.

Now m̂ < 2x2. Thus from now on only case 2 will occur. This means that
we’ll predict all subsequent elements correctly.

A prediction method for a general congruential generator is an algo-
rithm that gets the initial values x0, . . . , xh�1 as input, then successively
produces predictions of xh, xh+1, . . ., and compares them with the true val-
ues; in the case of a mistake it adjusts the parameters using the respective
true value.

A prediction method is e�cient if

1. the cost of predicting each single xn is polynomial in r, k, and log(m),



K. Pommerening, Bitstream Ciphers 63

2. the number of false predictions is bounded by a polynomial in r, k,
and log(m), as is the cost of adjusting the parameters in the case of a
mistake.

The Boyar/Krawczyk algorithm that we considered in this section fulfils
requirement 2. It also fulfils requirement 1 since solving systems of linear
equations over residue class rings Z/mZ is e�cient (as shown in Section 9.2
of Part I). Thus we have shown:

Theorem 2 For an arbitrary (e�cient) general congruential generator the
Boyar/Krawczyk algorithm is an e�cient prediction method.

A simple concrete example shows the application to a non-linear congru-
ential generator. Suppose a quadratic generator of the form

xn = ax2n�1 + bxn�1 + c mod m

outputs the sequence

x0 = 63, x1 = 96, x2 = 17, x3 = 32, x4 = 37, x5 = 72.

We set X = Z, Z = Z3, h = 1. In phase one the vectors

z1 =

0

@
3969
63
1

1

A z2 =

0

@
9216
96
1

1

A z3 =

0

@
289
17
1

1

A

span Q3 since the coe�cient matrix is the Vandermonde matrix with de-
terminant 119922. Solving

z4 =

0

@
1024
32
1

1

A = t1z1 + t2z2 + t3z3

yields

t1 =
160

253
, t2 = �155

869
, t3 =

992

1817
,

with common denominator d = 11 · 23 · 79 = 19987. The algorithm predicts

x̂4 =
1502019

19987
6= x4.

Hence the first guessed module is

m̂ = dx̂4 � dx4 = 762500,

and phase one is completed. Now we have to solve the same system of linear
equations over Z/m̂Z. Here the determinant is a zero divisor. We get two
solutions, one of them being

t1 = 156720 , t2 = 719505 , t3 = 648776 .



K. Pommerening, Bitstream Ciphers 64

Thus we predict the correct value

x̂4 = 156720 · 96 + 719505 · 17 + 648776 · 32 mod 763500 = 37.

We are in case 2, and continue with predicting x5: The system

z5 =

0

@
1369
37
1

1

A = t1z1 + t2z2 + t3z3

has two solutions, one of them being

t1 = 2010 , t2 = 558640 , t3 = 201851 ,

hence
x̂5 = 136572 , x̂5 � x5 = 136500 .

We are in case 3 and adjust m̂ to

gcd(762500, 136500) = 500.

This exhausts the known values. Because all zi are elements of
Ẑ3 = R̂z1 + R̂z2 + R̂z3 6= R̂3 case 1 remains a possibility for the following
steps. Since x0, . . . , x5 are smaller than half the current module m̂ also case
3 remains possible. In particular maybe we have to adjust the module fur-
thermore.

Trying to predict x6 we get (mod 500)

t1 = 240 , t2 = 285 , t3 = 476 , x6 = 117 .

Exercise. What happens in the concrete standard example if after phase 1
we continue with the value m̂ = 22596327?



K. Pommerening, Bitstream Ciphers 65

2.9 Analysis of Congruential Generators with
Truncated Output

Cryptanalysis is significantly harder for pseudorandom generators that don’t
output all bits of the generated numbers. Then the sequence of di↵erences
is known at most approximately, greatest common divisors cannot be deter-
mined, and the algorithms of Plumstead-Boyar or Boyar/Krawczyk

break down.
If the parameters of the pseudorandom generator are known, the crypt-

analyst may try an exhaustion. The following consideration lacks mathe-
matical strength. It doesn’t presuppose that the pseudorandom generator is
linear.

Suppose the generator produces n-bit integers but outputs only q bits
(from fixed known positions) and suppresses n� q bits. Then for each q-bit
fragment of the output there exist 2n�q possible complete values. In other
words, a pseudorandom n-bit integer has the given bits at the given positions
with probability 1/2q.

To continue we assume for simplicity that the q output bits are the most
significant bits. So we decompose the integer x into x = x02n�q + x1 where
0  x1 < 2n�q. The value x0, the first q bits, is known. The cryptanalyst
runs through the 2n�q di↵erent possibilities for x1. For each choice of x1 she
forms x = x02n�q + x1 and sets y = s(x) with the generating function s
of the pseudorandom generator. She compares y with the next q bits of the
output that she knows. If the pseudorandom generator is statistically good,
then the probability of a hit is 1/2q. Thus from the 2n�q test values of x0
there survive about 2n�2q ones. In the case q � n

2 she expects exactly one
hit. Otherwise she proceeds. After using k substrings of q bits the expected
number of hits is about 2n�kq. The expected necessary number of q-bit
substrings exceeds k only if kq  n, or q � n

k . For q = 1
4 (as in the example

n = 32, q = 8, that is an output of 8 bits of a 32-bit integer) four q-bit
fragments su�ce (where the exhaustion runs through 224 integers). This
trial-and-error procedure is manageable for small modules m. But note that
the expense grows exponentially with m (assume the ratio r = q

n of output
bits is bounded away from 1).

For linear congruential generators with unknown module
Frieze/Kennan/Lagarias, Håstad/Shamir, and J. Stern devel-
oped a better (probabilistic) procedure whose first step—finding the
module—is summarized in the statement: The cryptanalyst finds m with
high probability if the generator outputs more than 2/5 of the leading bits.
(without proof).

In the second step the cryptanalyst finds the multiplier a under the
assumption that the module m is already known. In the third step she
determines the complete integers xi, or the di↵erences yi. Also with these



K. Pommerening, Bitstream Ciphers 66

tasks she succeeds except for a negligeable subset of multipliers, and for the
“good” multipliers she needs slightly more than one third of the leading
bits of x0, x1, x2, and x3, to derive the complete integers. This enables her
to predict all further output of the generator. A similar, somewhat weaker
result by J. Stern holds for the case where instead of leading bits the
generator outputs “inner bits” of the generated integers.

Thus the cryptanalysis of linear congruential generators reveals funda-
mental weaknesses, independently of the quality of their statistical proper-
ties.

Nevertheless linear congruential generators are useful for statistical ap-
plications. It is extremely unlikely that an application procedure “by ac-
cident” contains the steps that break a linear congruential generator and
reveal its determinism. On the other hand linear congruential generators
are disqualified for cryptographic applications once and for all, even with
truncated output. However it is an open problem whether the objections
also hold for a truncation strategy that outputs “very few” bits, say a quar-
ter (note 1

4 < 2
5), or only log log(m) bits.

References

• J. Stern: Secret linear congruential generators are not cryptograph-
ically secure. FOCS 28 (1987), 421–426.

• Frieze/Håstad/Kannan/Lagarias/Shamir: Reconstructing
truncated integer variables satisfying linear congruences. SIAM J.
Comput. 17 (1988), 262–280.

• J. Boyar: Inferring sequences produced by a linear congruential gen-
erator missing low-order bits. J. Cryptology 1 (1989), 177–184.



K. Pommerening, Bitstream Ciphers 67

2.10 Summary

In Sections 2.1 to 2.8 we developed a prediction method whose overall work-
flow is depicted in Figure 2.4.

1. Construct

?

2. Predict

?

3. Adjust

�

Figure 2.4: Workflow for prediction

1. By guessing plaintext the cryptanalyst finds subsequences of the key
stream until she succeeds in constructing a linear relation for the state
vectors (Noetherian principle).

2. Using this linear relation she predicts some more key bits.

3. If the predicted key bits are false (the plaintext ceases from making
sense), then the cryptanalyst has to guess some more plaintext and to
use it to adjust the parameters. Then she continues predicting bits.

This procedure is e�cient for the “classical” pseudorandom generators,
in particular for congruential generators—even with unknown module—and
for feedback shift registers—even nonlinear ones. “E�cient” means that the
computational cost is low, and also implies that the needed amount of known
or correctly guessed plaintext is small.

One lesson learnt from these results is that for cryptographically se-
cure pseudorandom generation we never should directly use the state of
the generator as output. Rather we should insert a transformation between
state and output that conceals the state—the output function of Figure 2.1.
Section 2.9 illustrates that simply suppressing some bits —“truncating” or
“decimating” the output—might be to weak as an output transformation.
In the following section we’ll learn about better output transformations.

There is a large twilight zone between pseudorandom generators that
promise advantage to the cryptanalyst, and pseudorandom generators that



K. Pommerening, Bitstream Ciphers 68

put the cipher designer’s mind at ease. In any case we should prefer pseu-
dorandom generators for which both of the procedures

• state transition,

• output function,

are nonlinear. The twilight zone where we don’t know useful results on secu-
rity contains (among others) quadratic congruential generators with slightly
truncated output.

quadratic
output n bits

linear
output c · n bits

quadratic
output c · n bits

linear
output c · log(n) bits

quadratic
output c · log(n) bits

�
�

�

@
@

@

�
�

�

@
@

@

�
�

�

⌫
�


�predictable

✓⌘
◆⇣
?

◆
✓

⇣
⌘secure

Figure 2.5: Predictable and secure congruential pseudorandom generators
for n-bit integers (c a constant factor)

The following chapters present two approaches that are believed to lead
to secure pseudorandom generators:

• combinations of LFSRs with a nonlinear output transformation (Chap-
ter 3),

• nonlinear congruential generators with substantially truncated output
(Chapter 4).


