1.5 The Maximum Period of a Multiplicative Generator

A multiplicative generator $x_n = ax_{n-1} \mod m$ never has period m since the output 0 reproduces itself. So what is the largest possible period? In the following proposition λ is the CARMICHAEL function, and this is exactly the context where it occurred for the first time.

Proposition 2 (CARMICHAEL **1910**) The maximum period of a multiplicative generator with generating function $s(x) = ax \mod m$ is $\lambda(m)$. A sufficient condition for the period $\lambda(m)$ is:

- (i) a is primitive mod m.
- (ii) x_0 is relatively prime to m.

Proof. We have $x_n = a^n x_0 \mod m$. If $k = \operatorname{ord}_m a$ is the order of a in the multiplicative group of $\mathbb{Z}/m\mathbb{Z}$, then $x_k = x_0$. Thus the period is $\leq k \leq \lambda(m)$. Now assume a is primitive mod m, hence $1, a, \ldots, a^{\lambda(m)-1} \mod m$ are distinct, and let x_0 be relatively prime to m. Then the x_n are distinct for $n = 0, \ldots, \lambda(m) - 1$, and the period is $\lambda(m)$.

Corollary 1 Let m = p prime. Then the generator has the maximum period $\lambda(p) = p - 1$ if and only if:

(i) a is primitive mod p. (ii) $x_0 \neq 0$.

Thus for prime modules we are in a comfortable situation: The period misses the maximum value for one-step recursive generators only by 1, and any initial value is good except 0.

Section 1.9 will broadly generalize this result.

How to find a primitive element is comprehensively discussed in Appendix A of Part III.