1.5 The Maximum Period of a Multiplicative Generator

A multiplicative generator $x_{n}=a x_{n-1} \bmod m$ never has period m since the output 0 reproduces itself. So what is the largest possible period? In the following proposition λ is the CARMIChaEl function, and this is exactly the context where it occurred for the first time.

Proposition 2 (Carmichael 1910) The maximum period of a multiplicative generator with generating function $s(x)=a x \bmod m$ is $\lambda(m) . A$ sufficient condition for the period $\lambda(m)$ is:
(i) a is primitive $\bmod m$.
(ii) x_{0} is relatively prime to m.

Proof. We have $x_{n}=a^{n} x_{0} \bmod m$. If $k=\operatorname{ord}_{m} a$ is the order of a in the multiplicative group of $\mathbb{Z} / m \mathbb{Z}$, then $x_{k}=x_{0}$. Thus the period is $\leq k \leq \lambda(m)$. Now assume a is primitive $\bmod m$, hence $1, a, \ldots, a^{\lambda(m)-1} \bmod m$ are distinct, and let x_{0} be relatively prime to m. Then the x_{n} are distinct for $n=0, \ldots, \lambda(m)-1$, and the period is $\lambda(m)$.

Corollary 1 Let $m=p$ prime. Then the generator has the maximum period $\lambda(p)=p-1$ if and only if:
(i) a is primitive $\bmod p$.
(ii) $x_{0} \neq 0$.

Thus for prime modules we are in a comfortable situation: The period misses the maximum value for one-step recursive generators only by 1 , and any initial value is good except 0 .

Section 1.9 will broadly generalize this result.
How to find a primitive element is comprehensively discussed in Appendix A of Part III.

