1.4 The Maximum Period Length

Under what conditions does the period of a linear congruential generator with module m attain the theoretic maximum length m? A multiplicative generator will never attain this period since the output 0 reproduces itself forever. Thus for this question we consider mixed generators with nonzero increment. As the trivial generator with generating function $s(x) = x + 1 \mod m$ shows the period length m really occurs; on the other hand this example also shows that a period of maximum length is insufficient as a proof of quality for a random generator. Nevertheless maximum period is an important criterion, and the general result is easily stated:

Proposition 1 (HULL/DOBELL **1962**, KNUTH) The linear congruential generator with generating function $s(x) = ax + b \mod m$ has period m if and only if the following three conditions hold:

- (i) b and m are coprime.
- (ii) Each prime divisor p of m divides a 1.
- (iii) If 4 divides m, then 4 divides a 1.

From the first condition we conclude $b \neq 0$, hence the generator is mixed. Before giving the proof of the proposition we state and prove a lemma. (We'll use two more lemmas from Part III, Appendix A.1, that we state here without proofs.)

Lemma 1 Let $m = m_1m_2$ with coprime natural numbers m_1 and m_2 . Let λ , λ_1 , and λ_2 be the periods of the congruential generators $x_n = s(x_{n-1}) \mod m$, $\mod m_1$, $\mod m_2$ with initial value x_0 in each case. Then λ is the least common multiple of λ_1 and λ_2 .

Proof. Let $x_n^{(1)}$ and $x_n^{(2)}$ be the corresponding outputs for m_1 and m_2 . Then $x_n^{(i)} = x_n \mod m_i$. Since $x_{n+\lambda} = x_n$ for all sufficiently large n we immediately see that λ is a multiple of λ_1 and λ_2 . On the other hand from $m \mid t \iff m_1, m_2 \mid t$ we get

$$x_n = x_k \iff x_n^{(i)} = x_k^{(i)}$$
 for $i = 1$ and 2

Hence λ is not larger than the least common multiple of λ_1 and λ_2 .

The two lemmas without proofs:

Lemma 2 Let $n = 2^e$ with $e \ge 2$.

(i) If a is odd, then

$$a^{2^s} \equiv 1 \pmod{2^{s+2}}$$
 for all $s \ge 1$.

(ii) If
$$a \equiv 3 \pmod{4}$$
, then $n \mid 1 + a + \dots + a^{n/2 - 1}$

Lemma 3 Let p be prime, and e, a natural number with $p^e \ge 3$. Assume p^e is the largest power of p that divides x - 1. Then p^{e+1} is the largest power of p that divides $x^p - 1$.

Proof of the proposition For both directions we may assume $m = p^e$ where p is prime by Lemma 1

" \implies ": Each residue class in $[0 \dots m - 1]$ occurs exactly once during a full period. Hence we may assume $x_0 = 0$. Then

$$x_n = (1 + a + \dots + a^{n-1}) \cdot b \mod m \quad \text{for all } n.$$

Since x_n assumes the value 1 for some n we conclude that b is invertible mod m, or that b and m are coprime.

Let $p \mid m$. From $x_m = 0$ we now get $m \mid 1 + a + \cdots + a^{m-1}$, hence

$$p \mid m \mid a^m - 1 = (a - 1)(1 + a + \dots + a^{m-1}).$$

FERMAT's little theorem gives $a^p \equiv a \pmod{p}$, hence

$$a^m = a^{p^e} \equiv a^{p^{e-1}} \equiv \ldots \equiv a \pmod{p},$$

hence $p \mid a - 1$. This proves (ii).

Statement (iii) corresponds to the case p = 2 with $e \ge 2$. From (ii) we get that a is even. The assumption $a \equiv 3 \pmod{4}$ would result in the contradiction $x_{m/2} = 0$ by Lemma 2 Hence $a \equiv 1 \pmod{4}$.

" \Leftarrow ": Again we may assume $x_0 = 0$. Then

$$x_n = 0 \Longleftrightarrow m \mid 1 + a + \dots + a^{n-1}.$$

In particular the case a = 1 is trivial. Hence assume $a \ge 2$. Then

$$x_n = 0 \Longleftrightarrow m \mid \frac{a^n - 1}{a - 1}.$$

We have to show:

- $m \mid \frac{a^m 1}{a 1}$ —then $\lambda \mid m;$
- *m* doesn't divide $\frac{a^{m/p}-1}{a-1}$ —then $\lambda \ge m$ since *m* is a power of *p*.

Let p^h be the maximum power that divides a-1. By Lemma 3 we conclude

$$a^p \equiv 1 \pmod{p^{h+1}}, \quad a^p \not\equiv 1 \pmod{p^{h+2}}$$

and successively

$$a^{p^k} \equiv 1 \pmod{p^{h+k}}, \quad a^{p^k} \not\equiv 1 \pmod{p^{h+k+1}}$$

for all k. In particular $p^{h+e} | a^m - 1$. Since no larger power than p^h divides a-1 we conclude that $m = p^e | \frac{a^m-1}{a-1}$. The assumption $p^e | \frac{a^{m/p}-1}{a-1}$ leads to the contradiction $p^{e+h} | a^{p^{e-1}} - 1$.

The main application of Proposition 1 is for modules that are powers of 2:

Corollary 1 (GREENBERGER 1961) For the module $m = 2^e$ with $e \ge 2$ the period m is attained if and only if:

- (i) b is odd.
- (ii) $a \equiv 1 \pmod{4}$.

For prime modules Proposition 1 is useless, as the following corollary shows.

Corollary 2 For a prime module m the period m is attained if and only if b is coprime with m and a = 1.

This (lousy) result admits an immediate generalization to squarefree modules m:

Corollary 3 For a squarefree module m the period m is attained if and only if b is coprime with m and a = 1.

In summary Proposition 1 shows how to get the maximum possible period, and Corollary 1 provides a class of half-decent useful examples.