### 1.4 The Maximum Period Length

Under what conditions does the period of a linear congruential generator with module $m$ attain the theoretic maximum length $m$ ? A multiplicative generator will never attain this period since the output 0 reproduces itself forever. Thus for this question we consider mixed generators with nonzero increment. As the trivial generator with generating function $s(x)=x+1 \bmod m$ shows the period length $m$ really occurs; on the other hand this example also shows that a period of maximum length is insufficient as a proof of quality for a random generator. Nevertheless maximum period is an important criterion, and the general result is easily stated:

Proposition 1 (Hull/Dobell 1962, Knuth) The linear congruential generator with generating function $s(x)=a x+b \bmod m$ has period $m$ if and only if the following three conditions hold:
(i) $b$ and $m$ are coprime.
(ii) Each prime divisor $p$ of $m$ divides $a-1$.
(iii) If 4 divides $m$, then 4 divides $a-1$.

From the first condition we conclude $b \neq 0$, hence the generator is mixed. Before giving the proof of the proposition we state and prove a lemma. (We'll use two more lemmas from Part III, Appendix A.1, that we state here without proofs.)

Lemma 1 Let $m=m_{1} m_{2}$ with coprime natural numbers $m_{1}$ and $m_{2}$. Let $\lambda, \lambda_{1}$, and $\lambda_{2}$ be the periods of the congruential generators $x_{n}=s\left(x_{n-1}\right) \bmod m, \bmod m_{1}, \bmod m_{2}$ with initial value $x_{0}$ in each case. Then $\lambda$ is the least common multiple of $\lambda_{1}$ and $\lambda_{2}$.

Proof. Let $x_{n}^{(1)}$ and $x_{n}^{(2)}$ be the corresponding outputs for $m_{1}$ and $m_{2}$. Then $x_{n}^{(i)}=x_{n} \bmod m_{i}$. Since $x_{n+\lambda}=x_{n}$ for all sufficiently large $n$ we immediately see that $\lambda$ is a multiple of $\lambda_{1}$ and $\lambda_{2}$. On the other hand from $m\left|t \Longleftrightarrow m_{1}, m_{2}\right| t$ we get

$$
x_{n}=x_{k} \Longleftrightarrow x_{n}^{(i)}=x_{k}^{(i)} \quad \text { for } i=1 \text { and } 2
$$

Hence $\lambda$ is not larger than the least common multiple of $\lambda_{1}$ and $\lambda_{2} . \diamond$

The two lemmas without proofs:
Lemma 2 Let $n=2^{e}$ with $e \geq 2$.
(i) If $a$ is odd, then

$$
a^{2^{s}} \equiv 1 \quad\left(\bmod 2^{s+2}\right) \quad \text { for all } s \geq 1
$$

(ii) If $a \equiv 3(\bmod 4)$, then $n \mid 1+a+\cdots+a^{n / 2-1}$.

Lemma 3 Let $p$ be prime, and e, a natural number with $p^{e} \geq 3$. Assume $p^{e}$ is the largest power of $p$ that divides $x-1$. Then $p^{e+1}$ is the largest power of $p$ that divides $x^{p}-1$.

Proof of the proposition For both directions we may assume $m=p^{e}$ where $p$ is prime by Lemma 1
$" \Longrightarrow$ ": Each residue class in $[0 \ldots m-1]$ occurs exactly once during a full period. Hence we may assume $x_{0}=0$. Then

$$
x_{n}=\left(1+a+\cdots+a^{n-1}\right) \cdot b \bmod m \quad \text { for all } n
$$

Since $x_{n}$ assumes the value 1 for some $n$ we conclude that $b$ is invertible $\bmod m$, or that $b$ and $m$ are coprime.

Let $p \mid m$. From $x_{m}=0$ we now get $m \mid 1+a+\cdots+a^{m-1}$, hence

$$
p|m| a^{m}-1=(a-1)\left(1+a+\cdots+a^{m-1}\right)
$$

Fermat's little theorem gives $a^{p} \equiv a(\bmod p)$, hence

$$
a^{m}=a^{p^{e}} \equiv a^{p^{e-1}} \equiv \ldots \equiv a \quad(\bmod p)
$$

hence $p \mid a-1$. This proves (ii).
Statement (iii) corresponds to the case $p=2$ with $e \geq 2$. From (ii) we get that $a$ is even. The assumption $a \equiv 3(\bmod 4)$ would result in the contradiction $x_{m / 2}=0$ by Lemma 2 Hence $a \equiv 1(\bmod 4)$.
$" \Longleftarrow ":$ Again we may assume $x_{0}=0$. Then

$$
x_{n}=0 \Longleftrightarrow m \mid 1+a+\cdots+a^{n-1} .
$$

In particular the case $a=1$ is trivial. Hence assume $a \geq 2$. Then

$$
x_{n}=0 \Longleftrightarrow m \left\lvert\, \frac{a^{n}-1}{a-1} .\right.
$$

We have to show:

- $m \left\lvert\, \frac{a^{m}-1}{a-1}\right.$-then $\lambda \mid m ;$
- $m$ doesn't divide $\frac{a^{m / p}-1}{a-1}$ - then $\lambda \geq m$ since $m$ is a power of $p$.

Let $p^{h}$ be the maximum power that divides $a-1$. By Lemma 3 we conclude

$$
a^{p} \equiv 1 \quad\left(\bmod p^{h+1}\right), \quad a^{p} \not \equiv 1 \quad\left(\bmod p^{h+2}\right)
$$

and successively

$$
a^{p^{k}} \equiv 1 \quad\left(\bmod p^{h+k}\right), \quad a^{p^{k}} \not \equiv 1 \quad\left(\bmod p^{h+k+1}\right)
$$

for all $k$. In particular $p^{h+e} \mid a^{m}-1$. Since no larger power than $p^{h}$ divides $a-1$ we conclude that $m=p^{e} \left\lvert\, \frac{a^{m}-1}{a-1}\right.$. The assumption $p^{e} \left\lvert\, \frac{a^{m / p}-1}{a-1}\right.$ leads to the contradiction $p^{e+h} \mid a^{p^{e-1}}-1 . \diamond$

The main application of Proposition 1 is for modules that are powers of 2 :

Corollary 1 (Greenberger 1961) For the module $m=2^{e}$ with $e \geq 2$ the period $m$ is attained if and only if:
(i) $b$ is odd.
(ii) $a \equiv 1(\bmod 4)$.

For prime modules Proposition 1 is useless, as the following corollary shows.

Corollary 2 For a prime module $m$ the period $m$ is attained if and only if $b$ is coprime with $m$ and $a=1$.

This (lousy) result admits an immediate generalization to squarefree modules $m$ :

Corollary 3 For a squarefree module $m$ the period $m$ is attained if and only if $b$ is coprime with $m$ and $a=1$.

In summary Proposition 1 shows how to get the maximum possible period, and Corollary 1 provides a class of half-decent useful examples.

