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1.4 The Maximum Period Length

Under what conditions does the period of a linear congruential genera-
tor with module m attain the theoretic maximum length m? A multi-
plicative generator will never attain this period since the output 0 repro-
duces itself forever. Thus for this question we consider mixed generators
with nonzero increment. As the trivial generator with generating function
s(x) = x+ 1 mod m shows the period length m really occurs; on the other
hand this example also shows that a period of maximum length is insu�-
cient as a proof of quality for a random generator. Nevertheless maximum
period is an important criterion, and the general result is easily stated:

Proposition 1 (Hull/Dobell 1962, Knuth) The linear congruential
generator with generating function s(x) = ax + b mod m has period m if
and only if the following three conditions hold:

(i) b and m are coprime.

(ii) Each prime divisor p of m divides a� 1.

(iii) If 4 divides m, then 4 divides a� 1.

From the first condition we conclude b 6= 0, hence the generator is mixed.
Before giving the proof of the proposition we state and prove a lemma.
(We’ll use two more lemmas from Part III, Appendix A.1, that we state
here without proofs.)

Lemma 1 Let m = m1m2 with coprime natural numbers m1 and
m2. Let �, �1, and �2 be the periods of the congruential generators
xn = s(xn�1) mod m, modm1, modm2 with initial value x0 in each case.
Then � is the least common multiple of �1 and �2.

Proof. Let x(1)n and x(2)n be the corresponding outputs for m1 and m2. Then

x(i)n = xn mod mi. Since xn+� = xn for all su�ciently large n we imme-
diately see that � is a multiple of �1 and �2. On the other hand from
m | t () m1,m2 | t we get

xn = xk () x(i)n = x(i)k for i = 1 and 2.

Hence � is not larger than the least common multiple of �1 and �2. 3

The two lemmas without proofs:

Lemma 2 Let n = 2e with e � 2.

(i) If a is odd, then

a2
s ⌘ 1 (mod 2s+2) for all s � 1.



K. Pommerening, Bitstream Ciphers 17

(ii) If a ⌘ 3 (mod 4), then n | 1 + a+ · · ·+ an/2�1.

Lemma 3 Let p be prime, and e, a natural number with pe � 3. Assume pe

is the largest power of p that divides x � 1. Then pe+1 is the largest power
of p that divides xp � 1.

Proof of the proposition For both directions we may assume m = pe

where p is prime by Lemma 1.
“=)”: Each residue class in [0 . . .m � 1] occurs exactly once during a

full period. Hence we may assume x0 = 0. Then

xn = (1 + a+ · · ·+ an�1) · b mod m for all n.

Since xn assumes the value 1 for some n we conclude that b is invertible
modm, or that b and m are coprime.

Let p |m. From xm = 0 we now get m | 1 + a+ · · ·+ am�1, hence

p |m | am � 1 = (a� 1)(1 + a+ · · ·+ am�1).

Fermat’s little theorem gives ap ⌘ a (mod p), hence

am = ap
e ⌘ ap

e�1 ⌘ . . . ⌘ a (mod p),

hence p | a� 1. This proves (ii).
Statement (iii) corresponds to the case p = 2 with e � 2. From (ii)

we get that a is even. The assumption a ⌘ 3 (mod 4) would result in the
contradiction xm/2 = 0 by Lemma 2. Hence a ⌘ 1 (mod 4).

“(=”: Again we may assume x0 = 0. Then

xn = 0 () m | 1 + a+ · · ·+ an�1.

In particular the case a = 1 is trivial. Hence assume a � 2. Then

xn = 0 () m | a
n � 1

a� 1
.

We have to show:

• m | am�1
a�1 —then �|m;

• m doesn’t divide am/p�1
a�1 —then � � m since m is a power of p.

Let ph be the maximum power that divides a� 1. By Lemma 3 we conclude

ap ⌘ 1 (mod ph+1), ap 6⌘ 1 (mod ph+2)

and successively

ap
k ⌘ 1 (mod ph+k), ap

k 6⌘ 1 (mod ph+k+1)
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for all k. In particular ph+e | am � 1. Since no larger power than ph divides

a � 1 we conclude that m = pe | am�1
a�1 . The assumption pe | am/p�1

a�1 leads to

the contradiction pe+h | ape�1 � 1. }

The main application of Proposition 1 is for modules that are powers of
2:

Corollary 1 (Greenberger 1961) For the module m = 2e with e � 2
the period m is attained if and only if:

(i) b is odd.

(ii) a ⌘ 1 (mod 4).

For prime modules Proposition 1 is useless, as the following corollary
shows.

Corollary 2 For a prime module m the period m is attained if and only if
b is coprime with m and a = 1.

This (lousy) result admits an immediate generalization to squarefree
modules m:

Corollary 3 For a squarefree module m the period m is attained if and only
if b is coprime with m and a = 1.

In summary Proposition 1 shows how to get the maximum possible pe-
riod, and Corollary 1 provides a class of half-decent useful examples.


