1.9 Matrix generators over finite fields

A matrix generator over a field K is completely specified by an $r \times r$ matrix

$$
A \in M_{r}(K)
$$

(except for the choice of the start vector $x_{0} \in K^{r}$). The objective of the present section is the characterization of the sequences with maximum period length.

In the polynomial ring $K[T]$ in one indeterminate T the set

$$
\{\rho \in K[T] \mid \rho(A)=0\}
$$

is an ideal. Since $K[T]$ is a principal ring (even Euclidean) this ideal is generated by a unique monic polynomial μ. This polynomial is called the minimal polynomial of A. Since the matrix A is a zero of its own characteristic polynomial χ we have $\mu \mid \chi$. If A is invertible, then the absolute term of μ is $\neq 0$; otherwise μ would have the root 0 , and A, the eigenvalue 0 .

Lemma 4 Let K be a field, $A \in G L_{r}(K)$, a matrix of finite order t, μ, the minimal polynomial of $A, s=\operatorname{deg} \mu, R:=K[T] / \mu K[T]$, and $a \in R$, the residue class of T. Then:

$$
a^{k}=1 \Longleftrightarrow \mu \mid T^{k}-1 \Longleftrightarrow A^{k}=\mathbf{1} .
$$

In particular $a \in R^{\times}, t$ is also the order of a, and $\mu \mid T^{t}-1$.
Proof. R is a K-algebra of dimension s. If $\mu=b_{s} T^{s}+\cdots+b_{0}$ (where $b_{s}=1$), then

$$
\mu-b_{0}=T \cdot\left(b_{s} T^{s-1}+\cdots+b_{1}\right)
$$

Since $b_{0} \neq 0$, the residue class $T \bmod \mu$ is invertible, hence $a \in R^{\times}$. Since a^{k} is the residue class of T^{k} all the equivalences follow.

Corollary 1 If K is a finite field with q elements, then

$$
t \leq \# R^{\times} \leq q^{s}-1 \leq q^{r}-1
$$

From now on let K be a finite field with q elements. Then also the group $G L_{r}(K)$ of invertible $r \times r$-matrices is finite. The vector space K^{r} consists of q^{r} vectors. We know already that every sequence from the matrix generator corresponding to $A \in G L_{r}(K)$ is purely periodic. One full cycle consists of the null vector $0 \in K^{r}$ alone. The remaining vectors in general distribute over several cycles. If s is the length of such a cycle, and x_{0}, the corresponding start vector, then $x_{0}=x_{s}=A^{s} x_{0}$. Hence A^{s} has the eigenvalue 1 , and consequently, A has as eigenvalue an s-th root of unity.

Maybe all vectors $\neq 0$ are in a single cycle of the maximum possible period length $q^{r}-1$. In this case $A^{s} x=x$ for all vectors $x \in K^{r}$ if $s=q^{r}-1$, but not for a smaller exponent >0. Hence $t=q^{r}-1$ is the order of A. This shows:

Corollary 2 Let K be finite with q elements. Then:
(i) If the matrix generator for A and a start vector $\neq 0$ outputs a sequence of period s, then A has as eigenvalue an s-th root of unity.
(ii) If there is an output sequence of period length $q^{r}-1$, then $t=q^{r}-1$ is the order of A.

Lemma 5 Let K be a finite field with q elements, and $\varphi \in K[T]$ be an irreducible polynomial of degree d. Then $\varphi \mid T^{q^{d}-1}-1$.

Proof. The residue class ring $R=k[T] / \varphi K[T]$ is an extension field of degree $d=\operatorname{dim}_{K} R$, hence has $h:=q^{d}$ elements, and R contains at least one zero a of φ, namely the residue class of T. Since each $x \in R^{\times}$satisfies the equation $x^{h-1}=1$ we conclude that a is also a zero of $T^{h-1}-1$. Hence $\operatorname{ggT}\left(\varphi, T^{h-1}-1\right)$ is not a constant. Since φ is irreducible $\varphi \mid T^{h-1}-1$.

Definition Let K be a finite field with q elements. A polynomial $\varphi \in K[T]$ of degree d is called primitive if φ is irreducible and is not a divisor of $T^{k}-1$ for $1 \leq k<q^{d}-1$.

Theorem 1 Let K be a finite field with q elements and $A \in G L_{r}(K)$. Then the following statements are equivalent:
(i) The matrix generator for A generates a sequence of period $q^{r}-1$.
(ii) The order of A is $q^{r}-1$.
(iii) The characteristic polynomial χ of A is primitive.

Proof. "(i) \Longrightarrow (ii)": See Corollary 2 (ii).
"(ii) \Longrightarrow (iii)": In Corollary 1 we now have $t=q^{r}-1$. Hence $\# R^{\times}=$ $q^{s}-1$, hence R is a field, and thus μ is irreducible. Moreover $s=r$, hence $\mu=\chi$, and μ is not a divisor of $T^{k}-1$ for $1 \leq k<q^{r}-1$ by Lemma 4 . Therefore μ is primitive.
"(iii) \Longrightarrow (i)": Since χ is irreducible, $\chi=\mu$. The residue class a of T is a zero of μ and has multiplicative order $q^{r}-1$ by the definition of "primitive". Since taking the q-th power is an automorphism of the field R that fixes K elementwise all the r powers $a^{q^{k}}$ for $0 \leq k<r$ are zeroes of μ, and they are all different. Therefore they must represent all the zeroes, and they all have
multiplicative order $q^{r}-1$. Hence A has no eigenvalue of lower order. By Corollary 2 (i) there is no shorter period.

For an LFSR take A as the companion matrix as in Section 1.7. Hence the characteric polynomial is $T^{l}-a_{1} T^{l-1}-\cdots-a_{l}$.

Corollary 1 An LFSR of length l generates a sequence of the maximum possible period length $2^{l}-1$ if and only if its characteristic polynomial is primitive, and the start vector is $\neq 0$.

This result reduces the construction of LFSRs that generate maximum period sequences to the construction of primitive polynomials over the field \mathbb{F}_{2}.

The special case of dimension $r=1$ describes a multiplicative generator $x_{n}=a x_{n-1}$ over the finite field K with q elements. The corresponding 1×1 matrix $A=(a)$ is the multiplication by a. Thus a is the only eigenvalue, and $\chi=T-a \in K[T]$ is the characteristic polynomial. It is linear, hence irreducible. Since

$$
\chi \mid T^{k}-1 \Longleftrightarrow a \text { is a zero of } T^{k}-1 \Longleftrightarrow a^{k}=1
$$

χ is primitive if and only if a is a generating element of the multiplicative group K^{\times}, hence a primitive element. This proves the following slight generalization of the corollary of Proposition 2

Corollary 2 The multiplicative generator over K with multiplier a generates a sequence of period $q-1$ if and only if a is primitive and the start value is $x_{0} \neq 0$.

