1.9 Matrix generators over finite fields

A matrix generator over a field K is completely specified by an $r \times r$ matrix

$$A \in M_r(K)$$

(except for the choice of the start vector $x_0 \in K^r$). The objective of the present section is the characterization of the sequences with maximum period length.

In the polynomial ring K[T] in one indeterminate T the set

$$\{\rho \in K[T] \mid \rho(A) = 0\}$$

is an ideal. Since K[T] is a principal ring (even Euclidean) this ideal is generated by a unique monic polynomial μ . This polynomial is called the **minimal polynomial** of A. Since the matrix A is a zero of its own characteristic polynomial χ we have $\mu|\chi$. If A is invertible, then the absolute term of μ is $\neq 0$; otherwise μ would have the root 0, and A, the eigenvalue 0.

Lemma 4 Let K be a field, $A \in GL_r(K)$, a matrix of finite order t, μ , the minimal polynomial of A, $s = \deg \mu$, $R := K[T]/\mu K[T]$, and $a \in R$, the residue class of T. Then:

$$a^k = 1 \iff \mu | T^k - 1 \iff A^k = \mathbf{1}$$

In particular $a \in \mathbb{R}^{\times}$, t is also the order of a, and $\mu|T^t - 1$.

Proof. R is a K-algebra of dimension s. If $\mu = b_s T^s + \cdots + b_0$ (where $b_s = 1$), then

$$\mu - b_0 = T \cdot (b_s T^{s-1} + \dots + b_1).$$

Since $b_0 \neq 0$, the residue class $T \mod \mu$ is invertible, hence $a \in \mathbb{R}^{\times}$. Since a^k is the residue class of T^k all the equivalences follow. \diamond

Corollary 1 If K is a finite field with q elements, then

$$t \le \#R^{\times} \le q^s - 1 \le q^r - 1.$$

From now on let K be a finite field with q elements. Then also the group $GL_r(K)$ of invertible $r \times r$ -matrices is finite. The vector space K^r consists of q^r vectors. We know already that every sequence from the matrix generator corresponding to $A \in GL_r(K)$ is purely periodic. One full cycle consists of the null vector $0 \in K^r$ alone. The remaining vectors in general distribute over several cycles. If s is the length of such a cycle, and x_0 , the corresponding start vector, then $x_0 = x_s = A^s x_0$. Hence A^s has the eigenvalue 1, and consequently, A has as eigenvalue an s-th root of unity.

Maybe all vectors $\neq 0$ are in a single cycle of the maximum possible period length $q^r - 1$. In this case $A^s x = x$ for all vectors $x \in K^r$ if $s = q^r - 1$, but not for a smaller exponent > 0. Hence $t = q^r - 1$ is the order of A. This shows:

Corollary 2 Let K be finite with q elements. Then:

- (i) If the matrix generator for A and a start vector ≠ 0 outputs a sequence of period s, then A has as eigenvalue an s-th root of unity.
- (ii) If there is an output sequence of period length $q^r 1$, then $t = q^r 1$ is the order of A.

Lemma 5 Let K be a finite field with q elements, and $\varphi \in K[T]$ be an irreducible polynomial of degree d. Then $\varphi|T^{q^d-1}-1$.

Proof. The residue class ring $R = k[T]/\varphi K[T]$ is an extension field of degree $d = \dim_K R$, hence has $h := q^d$ elements, and R contains at least one zero a of φ , namely the residue class of T. Since each $x \in R^{\times}$ satisfies the equation $x^{h-1} = 1$ we conclude that a is also a zero of $T^{h-1}-1$. Hence $ggT(\varphi, T^{h-1}-1)$ is not a constant. Since φ is irreducible $\varphi|T^{h-1}-1$.

Definition Let K be a finite field with q elements. A polynomial $\varphi \in K[T]$ of degree d is called **primitive** if φ is irreducible and is not a divisor of $T^k - 1$ for $1 \leq k < q^d - 1$.

Theorem 1 Let K be a finite field with q elements and $A \in GL_r(K)$. Then the following statements are equivalent:

- (i) The matrix generator for A generates a sequence of period $q^r 1$.
- (ii) The order of A is $q^r 1$.
- (iii) The characteristic polynomial χ of A is primitive.

Proof. "(i) \implies (ii)": See Corollary 2 (ii).

"(ii) \implies (iii)": In Corollary 1 we now have $t = q^r - 1$. Hence $\#R^{\times} = q^s - 1$, hence R is a field, and thus μ is irreducible. Moreover s = r, hence $\mu = \chi$, and μ is not a divisor of $T^k - 1$ for $1 \le k < q^r - 1$ by Lemma 4. Therefore μ is primitive.

"(iii) \implies (i)": Since χ is irreducible, $\chi = \mu$. The residue class a of T is a zero of μ and has multiplicative order $q^r - 1$ by the definition of "primitive". Since taking the q-th power is an automorphism of the field R that fixes K elementwise all the r powers a^{q^k} for $0 \le k < r$ are zeroes of μ , and they are all different. Therefore they must represent all the zeroes, and they all have

multiplicative order $q^r - 1$. Hence A has no eigenvalue of lower order. By Corollary 2 (i) there is no shorter period. \diamond

For an LFSR take A as the companion matrix as in Section 1.7. Hence the characteric polynomial is $T^{l} - a_{1}T^{l-1} - \cdots - a_{l}$.

Corollary 1 An LFSR of length l generates a sequence of the maximum possible period length $2^{l} - 1$ if and only if its characteristic polynomial is primitive, and the start vector is $\neq 0$.

This result reduces the construction of LFSRs that generate maximum period sequences to the construction of primitive polynomials over the field \mathbb{F}_2 .

The special case of dimension r = 1 describes a multiplicative generator $x_n = ax_{n-1}$ over the finite field K with q elements. The corresponding 1×1 matrix A = (a) is the multiplication by a. Thus a is the only eigenvalue, and $\chi = T - a \in K[T]$ is the characteristic polynomial. It is linear, hence irreducible. Since

$$\chi | T^k - 1 \iff a \text{ is a zero of } T^k - 1 \iff a^k = 1,$$

 χ is primitive if and only if *a* is a generating element of the multiplicative group K^{\times} , hence a primitive element. This proves the following slight generalization of the corollary of Proposition 2

Corollary 2 The multiplicative generator over K with multiplier a generates a sequence of period q - 1 if and only if a is primitive and the start value is $x_0 \neq 0$.