Appendix B

Polynomials and Polynomial Functions

Consider an arbitrary (commutative) field K. The functions from K^{n} to K form a K-algebra $A:=\operatorname{Map}\left(K^{n}, K\right)$. Let $K[T]$ be the polynomial algebra in the n-tuple $T=\left(T_{1}, \ldots, T_{n}\right)$ of indeterminates. Then

$$
\begin{aligned}
\alpha: K[T] & \longrightarrow A, \\
\varphi & \mapsto \alpha(\varphi) \quad \text { with } \alpha(\varphi)\left(x_{1}, \ldots, x_{n}\right):=\varphi\left(x_{1}, \ldots, x_{n}\right)
\end{aligned}
$$

is a K-algebra homomorphism, called the "substitution homomorphism". Its image, $\alpha(K[T]) \subseteq A$, is the algebra of polynomial functions on K^{n}. We distinguish two fundamentally different cases- K is infinite, or K is finite.

B. 1 Polynomial Functions over Infinite Fields

Let K be infinite. Then α is

- injective, i. e., different polynomials define different functions-the proof is the uniqueness proof of interpolation formulas, and is given below,
- not surjective, because $K[T]$ has the same cardinality as K, but A is strictly larger-the proof is elementary set theory.

The proof of injectivity relies on the following lemma:
Lemma 4 Let K be a field with at least $d+1$ elements, and let $\varphi \in K[T]$ be a polynomial of degree $\leq d$ with $\varphi(x)=0$ for all $x \in K^{n}$. Then $\varphi=0$.

Proof. We prove this by induction on the dimension n. In the case $n=1$ the polynomial φ has more than d roots, whence $\varphi=0$ by elementary algebra.

Now let $n \geq 2$. Split the indeterminates into $X=\left(T_{1}, \ldots, T_{n-1}\right)$ and $Y=T_{n}$. Then

$$
\varphi=\sum_{i=0}^{d} \psi_{i}(X) \cdot Y^{i} \quad \text { where } \operatorname{deg} \psi_{i} \leq d-i \leq d
$$

Fix an arbitrary $x \in K^{n-1}$. Then $\varphi(x, y)=\sum_{i} \psi_{i}(x) \cdot y^{i}=0$ for all $y \in K$. The assertion in the case $n=1$ gives $\psi_{0}(x)=\ldots=\psi_{d}(x)=0$. Since this holds for all x, induction gives $\psi_{0}=\ldots=\psi_{d}=0$. Hence $\varphi=0$.

From this lemma we immediately get the following theorem:
Theorem 7 Let K be an infinite field. Then the substitution homomorphism $\alpha: K[T] \longrightarrow A$ is injective.

Now let $x_{1}, \ldots, x_{d} \in K^{n}$ be d distinct points, $x_{i}=\left(x_{i 1}, \ldots, x_{i n}\right)$. We want to construct a polynomial that takes given (not necessarily distinct) values a_{1}, \ldots, a_{d} at these points. To this end consider the polynomials

$$
\psi_{k}:=\prod_{i \in\{1, \ldots, d\} \backslash\{k\}} \prod_{j \in\left\{1, \ldots, n \mid x_{i j} \neq x_{k j}\right\}}\left(T_{j}-x_{i j}\right)
$$

For $i \neq k$ at least one coordinate $x_{i j} \neq x_{k j}$, therefore $\psi_{k}\left(x_{i}\right)=0$. On the other hand $\psi_{k}\left(x_{k}\right) \neq 0$. Hence for $\varphi_{k}:=\psi_{k} / \psi_{k}\left(x_{k}\right)$ we conclude:

Lemma 5 For each $k=1, \ldots$ d there is a polynomial $\varphi_{k} \in K[T]$ with all partial degrees $\leq d-1$ and

$$
\varphi_{k}\left(x_{i}\right)= \begin{cases}1 & \text { for } i=k \\ 0 & \text { for } i \text { otherwise }\end{cases}
$$

Taking the linear combination $\varphi=\sum a_{k} \varphi_{k}$ we get:
Theorem 8 Let $x_{1}, \ldots, x_{d} \in K^{n}$ be d distinct points, and $a_{1}, \ldots, a_{d} \in K$. Then there is a polynomial $\varphi \in K\left[T_{1}, \ldots, T_{n}\right]$ of partial degree $\leq d-1$ in each T_{i} such that $\varphi\left(x_{k}\right)=a_{k}$ for $k=1, \ldots d$.

Note that the proof was constructive but didn't care about the most efficient algorithm.

B. 2 Polynomial Functions over Finite Fields

Let K be finite with $\# K=q$ elements. Then α is

- not injective, because $K[T]$ is infinite, but $\# A=q^{q^{n}}$.
- surjective, because $F \in A$ is completely determined by the q^{n} pairs $(x, F(x)), x \in K^{n}$, that is by the graph of F; interpolation gives a polynomial $\varphi \in K[T]$ with $\varphi(x)=F(x)$ for all $x \in K^{n}$, i. e., $\alpha(\varphi)=F$. A proof follows directly from Theorem 8, however in the following we give an independent proof.

The polynomial

$$
\varphi=\prod_{i=1}^{n}\left(-T_{i}^{q-1}+1\right) \in K[T]
$$

has partial degree $q-1$ in each T_{i}.
Lemma 6 The function $\alpha(\varphi)$ is the indicator function

$$
\varphi(x)= \begin{cases}1 & \text { for } x=0 \\ 0 & \text { for } x \in K^{n} \text { otherwise }\end{cases}
$$

Proof. This is immediate from $a^{q-1}=1$ for $a \in K^{\times} . \diamond$

Corollary 1 For each $a \in K$ there is a polynomial $\varphi_{a} \in K[T]$ with all partial degrees $q-1$ and

$$
\varphi_{a}(x)= \begin{cases}1 & \text { for } x=a, \\ 0 & \text { for } x \in K^{n} \text { otherwise } .\end{cases}
$$

Proof. Take $\varphi_{a}=\varphi\left(T_{1}-a_{1}, \ldots, T_{n}-a_{n}\right) . \diamond$
Now let $F: K^{n} \longrightarrow K$ be given. Then the polynomial

$$
\varphi=\sum_{a \in K^{n}} F(a) \varphi_{a} \in K[T]
$$

has all partial degrees $\leq q-1$, and $\varphi(x)=F(x)$ for all $x \in K^{n}$. This proves the following theorem:

Theorem 9 Let K be a finite field with q elements, and $n \in \mathbb{N}$. Then each function $F: K^{n} \longrightarrow K$ is given by a polynomial $\varphi \in K\left[T_{1}, \ldots, T_{n}\right]$ of partial degree $\leq q-1$ in each T_{i}.

Corollary 2 Each function $F: \mathbb{F}_{2}^{n} \longrightarrow \mathbb{F}_{2}$ is given by a polynomial $\varphi \in$ $\mathbb{F}_{2}\left[T_{1}, \ldots, T_{n}\right]$ that is linear in each T_{i}.

Corollary 3 The kernel of the substitution homomorphism α is the ideal $\mathfrak{a}=\left(T_{1}^{q}-T_{1}, \ldots, T_{n}^{q}-T_{n}\right) \unlhd K[T]$.

Proof. Clearly $\mathfrak{a} \subseteq \operatorname{ker} \alpha$. Because $\operatorname{dim} K[T] / \mathfrak{a}=q^{n}=\operatorname{dim} A$, and α is surjective, we have $\mathfrak{a}=\operatorname{ker} \alpha . \diamond$

Corollary 4 Let $m, n \in \mathbb{N}$. Then each map $F: K^{n} \longrightarrow K^{m}$ is given by an m-tuple $\left(\varphi_{1}, \ldots, \varphi_{m}\right)$ of polynomials $\varphi_{i} \in K\left[T_{1}, \ldots, T_{n}\right]$ of partial degree $\leq q-1$ in each T_{i}.

Corollary 5 Each map $F: V \longrightarrow W$ between finite dimensional K vectorspaces V and W is polynomial with partial degrees each $\leq q-1$.

