
Appendix B

Polynomials and Polynomial
Functions

Consider an arbitrary (commutative) field K. The functions from K
n to K

form a K-algebra A := Map(Kn
,K). Let K[T ] be the polynomial algebra

in the n-tuple T = (T1, . . . , Tn) of indeterminates. Then

α : K[T ] −→ A,

ϕ �→ α(ϕ) with α(ϕ)(x1, . . . , xn) := ϕ(x1, . . . , xn)

is a K-algebra homomorphism, called the “substitution homomorphism”.
Its image, α(K[T ]) ⊆ A, is the algebra of polynomial functions on K

n. We
distinguish two fundamentally different cases—K is infinite, or K is finite.

B.1 Polynomial Functions over Infinite Fields

Let K be infinite. Then α is

• injective, i. e., different polynomials define different functions—the
proof is the uniqueness proof of interpolation formulas, and is given
below,

• not surjective, because K[T ] has the same cardinality as K, but A is
strictly larger—the proof is elementary set theory.

The proof of injectivity relies on the following lemma:

Lemma 4 Let K be a field with at least d + 1 elements, and let ϕ ∈ K[T ]
be a polynomial of degree ≤ d with ϕ(x) = 0 for all x ∈ K

n. Then ϕ = 0.

Proof. We prove this by induction on the dimension n. In the case n = 1 the
polynomial ϕ has more than d roots, whence ϕ = 0 by elementary algebra.
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Now let n ≥ 2. Split the indeterminates into X = (T1, . . . , Tn−1) and
Y = Tn. Then

ϕ =
d�

i=0

ψi(X) · Y i where degψi ≤ d− i ≤ d.

Fix an arbitrary x ∈ K
n−1. Then ϕ(x, y) =

�
i ψi(x) · yi = 0 for all y ∈ K.

The assertion in the case n = 1 gives ψ0(x) = . . . = ψd(x) = 0. Since this
holds for all x, induction gives ψ0 = . . . = ψd = 0. Hence ϕ = 0. ✸

From this lemma we immediately get the following theorem:

Theorem 7 Let K be an infinite field. Then the substitution homomor-
phism α : K[T ] −→ A is injective.

Now let x1, . . . , xd ∈ K
n be d distinct points, xi = (xi1, . . . , xin). We

want to construct a polynomial that takes given (not necessarily distinct)
values a1, . . . , ad at these points. To this end consider the polynomials

ψk :=
�

i∈{1,...,d}\{k}

�

j∈{1,...,n | xij �=xkj}

(Tj − xij).

For i �= k at least one coordinate xij �= xkj , therefore ψk(xi) = 0. On the
other hand ψk(xk) �= 0. Hence for ϕk := ψk/ψk(xk) we conclude:

Lemma 5 For each k = 1, . . . d there is a polynomial ϕk ∈ K[T ] with all
partial degrees ≤ d− 1 and

ϕk(xi) =

�
1 for i = k,

0 for i otherwise.

Taking the linear combination ϕ =
�

akϕk we get:

Theorem 8 Let x1, . . . , xd ∈ K
n be d distinct points, and a1, . . . , ad ∈ K.

Then there is a polynomial ϕ ∈ K[T1, . . . , Tn] of partial degree ≤ d − 1 in
each Ti such that ϕ(xk) = ak for k = 1, . . . d.

Note that the proof was constructive but didn’t care about the most
efficient algorithm.

B.2 Polynomial Functions over Finite Fields

Let K be finite with #K = q elements. Then α is

• not injective, because K[T ] is infinite, but #A = q
qn .
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• surjective, because F ∈ A is completely determined by the q
n pairs

(x, F (x)), x ∈ K
n, that is by the graph of F ; interpolation gives a

polynomial ϕ ∈ K[T ] with ϕ(x) = F (x) for all x ∈ K
n, i. e., α(ϕ) = F .

A proof follows directly from Theorem 8, however in the following we
give an independent proof.

The polynomial

ϕ =
n�

i=1

�
−T

q−1
i + 1

�
∈ K[T ]

has partial degree q − 1 in each Ti.

Lemma 6 The function α(ϕ) is the indicator function

ϕ(x) =

�
1 for x = 0,

0 for x ∈ K
n otherwise.

Proof. This is immediate from a
q−1 = 1 for a ∈ K

×. ✸

Corollary 1 For each a ∈ K there is a polynomial ϕa ∈ K[T ] with all
partial degrees q − 1 and

ϕa(x) =

�
1 for x = a,

0 for x ∈ K
n otherwise.

Proof. Take ϕa = ϕ(T1 − a1, . . . , Tn − an). ✸

Now let F : Kn −→ K be given. Then the polynomial

ϕ =
�

a∈Kn

F (a)ϕa ∈ K[T ]

has all partial degrees ≤ q− 1, and ϕ(x) = F (x) for all x ∈ K
n. This proves

the following theorem:

Theorem 9 Let K be a finite field with q elements, and n ∈ N. Then each
function F : Kn −→ K is given by a polynomial ϕ ∈ K[T1, . . . , Tn] of partial
degree ≤ q − 1 in each Ti.

Corollary 2 Each function F : Fn
2 −→ F2 is given by a polynomial ϕ ∈

F2[T1, . . . , Tn] that is linear in each Ti.

Corollary 3 The kernel of the substitution homomorphism α is the ideal
a = (T q

1 − T1, . . . , T
q
n − Tn) ✂K[T ].
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Proof. Clearly a ⊆ kerα. Because dimK[T ]/a = q
n = dimA, and α is

surjective, we have a = kerα. ✸

Corollary 4 Let m,n ∈ N. Then each map F : Kn −→ K
m is given by

an m-tuple (ϕ1, . . . ,ϕm) of polynomials ϕi ∈ K[T1, . . . , Tn] of partial degree
≤ q − 1 in each Ti.

Corollary 5 Each map F : V −→ W between finite dimensional K-
vectorspaces V and W is polynomial with partial degrees each ≤ q − 1.


