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The urn problem underlying the hypergeometric distribution is “drawing
without replacement”. Assume the urn contains n balls s of which are black,
and t = n− s are white. Let

p :=
s

n

be the proportion of black balls, and assume without loss of generality that
p > 1

2 . (The case p = 1
2 is not interesting, the case p < 1

2 is symmetric to
the considered case.)

Draw r balls (r ≤ n) by random. The probability that exactly ν of the
balls are white is

q(s)r (ν) =

(
s

r−ν
)(
t
ν

)(
n
r

) .

The function
q(s)r : Z −→ R

is called the hypergeometric distribution (with parameters n, s, and r).

We have q
(s)
r (ν) = 0 for ν < 0 as well as for ν > r. The probability of

drawing more blacks balls than white ones is

p(s)r =


∑ r−1

2
ν=0 q

(s)
r (ν) if r is odd,∑ r

2
−1

ν=0 q
(s)
r (ν) + 1

2q
(s)
r ( r2) if r is even,

in case of a tie we randomly decide between black and white with probability
1
2 .

In the uninteresting case p = 1
2 obviously all p

(s)
r = 1

2 .
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Lemma 1
(i) p

(s)
1 = p.

(ii) p
(s)
2 = p

(s)
1 (if t ≥ 1).

(iii) p
(s)
3 = s(s−1)

n(n−1) ·
[
3− 2 · s−2n−2

]
(if t ≥ 2).

(iv) p
(s)
4 = p

(s)
3 (if t ≥ 2).

(v) p
(s)
r = 1 for r > 2t.

Proof. (i) Trivial.
(ii) We draw two balls, and break the tie (in the case where we draw one

ball of each type) by a random decision. Therefore the numerator is(
s

2

)
+

1

2

(
s

1

)(
t

1

)
=
s(s− 1)

2
+
s(n− s)

2
=
s(n− 1)

2
.

The denominator is n(n−1)
2 , and the quotient is

p
(s)
2 =

s(n− 1)

n(n− 1)
= p.

(iii) Here the numerator is(
s

3

)
+

(
s

2

)
· (n− s) =

s(s− 1)(s− 2) + 3s(s− 1)(n− s)
6

=
s(s− 1)

6
· [s− 2 + 3 · (n− s)]

=
s(s− 1)

6
· [3 · (n− 2)− 2 · (s− 2)].

The denominator is 1
6 · n(n− 1)(n− 2), hence the asserted value of p

(s)
3 .

(iv) We omit the calculation since the next lemma contains a more gen-
eral statement.

(v) In this case we necessarily draw a majority of black balls. 3

Lemma 2 If r is even and 2 ≤ r ≤ 2t, then

p
(s)
r+1 > p(s)r = p

(s)
r−1.

Proof. Let A
(s)
r (ν) =

(
n
r

)
· q(s)r (ν) be the numerator of q

(s)
r (ν), and B

(s)
r =(

n
r

)
· p(s)r , the numerator of p

(s)
r .

After r+1 drawings we have a black majority in B
(s)
r+1 cases. Considering

the change from r to r + 1 we have:
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•
∑ r

2
−1

ν=0 A
(s)
r (ν) cases where the number of black balls is at least r

2 + 1
after r drawings. We have n−r possibilities for the (r+1)-th ball, but
all of these cannot change the majority. So we get

X1 = (n− r) ·

r
2
−1∑
ν=0

A(s)
r (ν)

cases with a black majority.

• A(s)
r ( r2) cases where after r drawings we have exactly r

2 black balls.
From the n− r possibilities for the (r + 1)-th ball

– s− r
2 are black and give a black majority,

– t− r
2 are white and give a white majority.

Thus we get another

X2 = (s− r

2
) ·A(s)

r (
r

2
)

cases with a black majority.

• In the remaining cases after r drawings we have at most r
2 − 1 black

balls. Therefore the (r + 1)-th ball cannot change the white majority.

This count contains each resulting set exactly r + 1 times. Therefore

B
(s)
r+1 =

1

r + 1
· (X1 +X2) =

n− r
r + 1

·

 r
2
−1∑
ν=0

A(s)
r (ν) +

s− r
2

n− r
·A(s)

r (
r

2
)

 .
For the coefficient of the last term we have

s− r
2

n− r
>

1

2
⇐⇒ 2s− r > n− r ⇐⇒ s >

n

2
.

(Since r ≤ 2t also r < n.) Therefore

B
(s)
r+1 >

n− r
r + 1

·B(s)
r ,

and the first part of the assertion, p
(s)
r+1 > p

(s)
r , follows.

Analyzing the change from r − 1 to r is somewhat more complicated.

After r drawings we have a black majority in B
(s)
r cases. Among these are:

•
∑ r

2
−2

ν=0 A
(s)
r−1 cases where after r − 1 drawings we have at least r

2 + 1
black balls. The n − r + 1 possibilities for the r-th ball can’t change
the decision. Hence we get

Y1 = (n− r + 1) ·

r
2
−2∑
ν=0

A
(s)
r−1

cases with black majority.



K. Pommerening, Hypergeometric Distribution 4

• A(s)
r−1(

r
2 − 1) cases where after r− 1 drawings we have exactly r

2 black
balls. The n− r + 1 possibilities for the r-th ball dissociate into

– s− r
2 black ones that result in a black majority. This makes

Y2 = (s− r

2
) ·A(s)

r−1(
r

2
− 1)

additional cases.

– t+ 1− r
2 white ones where we randomly decide with probability

1
2 . This adds another

Y3 =
1

2
· (t+ 1− r

2
) ·A(s)

r−1(
r

2
− 1)

cases to our collection.

• A(s)
r−1(

r
2) cases where after r− 1 drawings we have exactly r

2 − 1 black
balls. The n− r + 1 possibilities for the r-th ball dissociate into

– s+ 1− r
2 black ones where we randomly decide with probability

1
2 . This gives another

Y4 =
1

2
· (s+ 1− r

2
) ·A(s)

r−1(
r

2
)

cases.

– t− r
2 white ones that don’t disturb the white majority.

• In the remaining cases after r−1 drawings we have at most r
2−2 black

balls. The white majority is unchanged.

Each set of drawn balls is counted exactly r times. Therefore

B(s)
r =

1

r
· (Y1 + Y2 + Y3 + Y4)

=
n− r + 1

r
·

r
2
−2∑
ν=0

A
(s)
r−1 +

1

r
· (s− r

2
+
t

2
+

1

2
− r

4
) ·A(s)

r−1(
r

2
− 1)

+
1

2r
· (s− r

2
+ 1) ·A(s)

r−1(
r

2
)

Since s+ t
2 = n− t

2 the coefficient of the middle term equals

s− r

2
+
t

2
− r

4
+

1

2
= n− t

2
− r +

r

4
+ 1− 1

2
= (n− r + 1)− 1

2
· (t− r

2
+ 1).

Hence

B(s)
r =

n− r + 1

r
·

r
2
−1∑
ν=0

A
(s)
r−1

− 1

2r
(t− r

2
+ 1)

(
s
r
2

)(
t

r
2 − 1

)
+

1

2r
(s− r

2
+ 1)

(
s

r
2 − 1

)(
t
r
2

)
.
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The two last terms cancel. What remains is

B(s)
r =

n− r + 1

r
·B(s)

r−1.

This proves the second part of the assertion. 3

We conclude:

Proposition 1 The probability p
(s)
r grows monotonically with r from p

(s)
1 =

p to p
(s)
2t+1 = 1.

If the quotients
rs

n
,
rt

n
,

(n− r)s
n

,
(n− r)t

n
are sufficiently large (by Fisher’s rule of thumb: ≥ 5), the normal distribu-
tion approximates the hypergeometric distribution well. In particular

x∑
ν=0

q(s)r (ν) ≈ Φ(
x− µ
σ

) =
1√
2π
·
∫ x−µ

σ

−∞
e−t

2/2 dt (1)

where µ is the mean value and σ2 is the variance of the hypergeometric
distribution (with parameters n, s, and r), and Φ is the distribution function
of the normal distribution. For mean value and variance we have:

Lemma 3

µ =
rt

n
,

σ2 =
r(n− r) · t(n− t)

n2(n− 1)
.

Proof. Take a random sample of r balls. Let Xk : Ω −→ R be a random
variable that assumes the value 0 if the k-th ball is black, and 1 if it is
white. Then S = X1 + · · ·+Xr : Ω −→ R is a random variable that counts
the number of white balls in our sample. Then µ = E(S) is the expectation
and σ2 = Var(S) is the variance of this random variable.

Since E(Xk) = t
n we have E(S) = r · tn .

We note that X2
k = Xk and derive

Var(Xk) = E(X2
k)− E(Xk)

2 =
t

n
− t2

n2
=
t(n− t)
n2

.

Since XjXk(ω) = 1 ⇐⇒ Xj(ω) = 1 and Xk(ω) = 1 the probability of

this event is t(t−1)
n(n−1) . This gives the expectation E(XjXk) = t(t−1)

n(n−1) . Thus the
covariance is

Cov(Xj , Xk) = E(XjXk)− E(Xj)E(Xk) =
t(t− 1)

n(n− 1)
− t2

n2

=
t(n(t− 1)− t(n− 1))

n2(n− 1)
=

t(t− n)

n2(n− 1)
.
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We deduce the variance of S:

Var(S) =

r∑
k=1

Var(Xk) + 2 ·
∑

1≤j<k≤r
Cov(Xj , Xk)

=
rt(n− t)

n2
+ r(r − 1) · t(t− n)

n2(n− 1)
=
rt(n− t)

n2
·
[
1− r − 1

n− 1

]
=

rt(n− t)
n2(n− 1)

· [n− r],

as claimed. 3

Proposition 2 (Asymptotic distribution) The probability of a major-
ity of black balls is

p(s)r ≈
1√
2π
·
∫ √rλ
−∞

e−t
2/2dt

with λ = (2p− 1)2, under the assumption that p ≈ 1
2 , r � n, and r not too

small.

[By Fisher’s rule of thumb 10 ≤ r ≤ n− 10 suffices if p ≈ 1
2 .

Note that this “proposition” lacks mathematical precision.]
Proof. We look at the upper boundary of the integral (1) for x = r

2 :

x− µ
σ

=
( r2 −

rt
n ) · n ·

√
n− 1√

r(n− r)t(n− t)
=

(rn− 2rt)
√
n− 1

2 ·
√
r(n− r)t(n− t)

=

√
r
√
n− 1√
n− r

· s− t
2
√
st

=

√
n− 1√
n− r

·
√
r · 2p− 1

2
√
p(1− p)

≈ 1 ·
√
r · 2p− 1

2 ·
√

1
4

=
√
rλ,

as claimed. 3


