The Hypergeometric Distribution

Klaus Pommerening
Fachbereich Physik, Mathematik, Informatik
der Johannes-Gutenberg-Universität
Saarstraße 21
D-55099 Mainz

February 2, 2003-English version February 14, 2015
last change February 15, 2015

The urn problem underlying the hypergeometric distribution is "drawing without replacement". Assume the urn contains n balls s of which are black, and $t=n-s$ are white. Let

$$
p:=\frac{s}{n}
$$

be the proportion of black balls, and assume without loss of generality that $p>\frac{1}{2}$. (The case $p=\frac{1}{2}$ is not interesting, the case $p<\frac{1}{2}$ is symmetric to the considered case.)

Draw r balls $(r \leq n)$ by random. The probability that exactly ν of the balls are white is

$$
q_{r}^{(s)}(\nu)=\frac{\binom{s}{r-\nu}\binom{t}{\nu}}{\binom{n}{r}} \text {. }
$$

The function

$$
q_{r}^{(s)}: \mathbb{Z} \longrightarrow \mathbb{R}
$$

is called the hypergeometric distribution (with parameters n, s, and r). We have $q_{r}^{(s)}(\nu)=0$ for $\nu<0$ as well as for $\nu>r$. The probability of drawing more blacks balls than white ones is

$$
p_{r}^{(s)}= \begin{cases}\sum_{\nu=0}^{\frac{r-1}{2}} q_{r}^{(s)}(\nu) & \text { if } r \text { is odd, } \\ \sum_{\nu=0}^{\frac{r}{2}-1} q_{r}^{(s)}(\nu)+\frac{1}{2} q_{r}^{(s)}\left(\frac{r}{2}\right) & \text { if } r \text { is even, }\end{cases}
$$

in case of a tie we randomly decide between black and white with probability $\frac{1}{2}$.

In the uninteresting case $p=\frac{1}{2}$ obviously all $p_{r}^{(s)}=\frac{1}{2}$.

Lemma 1

(i) $p_{1}^{(s)}=p$.
(ii) $p_{2}^{(s)}=p_{1}^{(s)}($ if $t \geq 1)$.
(iii) $p_{3}^{(s)}=\frac{s(s-1)}{n(n-1)} \cdot\left[3-2 \cdot \frac{s-2}{n-2}\right]$ (if $\left.t \geq 2\right)$.
(iv) $p_{4}^{(s)}=p_{3}^{(s)}$ (if $t \geq 2$).
(v) $p_{r}^{(s)}=1$ for $r>2 t$.

Proof. (i) Trivial.
(ii) We draw two balls, and break the tie (in the case where we draw one ball of each type) by a random decision. Therefore the numerator is

$$
\binom{s}{2}+\frac{1}{2}\binom{s}{1}\binom{t}{1}=\frac{s(s-1)}{2}+\frac{s(n-s)}{2}=\frac{s(n-1)}{2}
$$

The denominator is $\frac{n(n-1)}{2}$, and the quotient is

$$
p_{2}^{(s)}=\frac{s(n-1)}{n(n-1)}=p
$$

(iii) Here the numerator is

$$
\begin{aligned}
\binom{s}{3}+\binom{s}{2} \cdot(n-s) & =\frac{s(s-1)(s-2)+3 s(s-1)(n-s)}{6} \\
& =\frac{s(s-1)}{6} \cdot[s-2+3 \cdot(n-s)] \\
& =\frac{s(s-1)}{6} \cdot[3 \cdot(n-2)-2 \cdot(s-2)]
\end{aligned}
$$

The denominator is $\frac{1}{6} \cdot n(n-1)(n-2)$, hence the asserted value of $p_{3}^{(s)}$.
(iv) We omit the calculation since the next lemma contains a more general statement.
(v) In this case we necessarily draw a majority of black balls.

Lemma 2 If r is even and $2 \leq r \leq 2 t$, then

$$
p_{r+1}^{(s)}>p_{r}^{(s)}=p_{r-1}^{(s)} .
$$

Proof. Let $A_{r}^{(s)}(\nu)=\binom{n}{r} \cdot q_{r}^{(s)}(\nu)$ be the numerator of $q_{r}^{(s)}(\nu)$, and $B_{r}^{(s)}=$ $\binom{n}{r} \cdot p_{r}^{(s)}$, the numerator of $p_{r}^{(s)}$.

After $r+1$ drawings we have a black majority in $B_{r+1}^{(s)}$ cases. Considering the change from r to $r+1$ we have:

- $\sum_{\nu=0}^{\frac{r}{2}-1} A_{r}^{(s)}(\nu)$ cases where the number of black balls is at least $\frac{r}{2}+1$ after r drawings. We have $n-r$ possibilities for the $(r+1)$-th ball, but all of these cannot change the majority. So we get

$$
X_{1}=(n-r) \cdot \sum_{\nu=0}^{\frac{r}{2}-1} A_{r}^{(s)}(\nu)
$$

cases with a black majority.

- $A_{r}^{(s)}\left(\frac{r}{2}\right)$ cases where after r drawings we have exactly $\frac{r}{2}$ black balls. From the $n-r$ possibilities for the $(r+1)$-th ball
$-s-\frac{r}{2}$ are black and give a black majority,
$-t-\frac{r}{2}$ are white and give a white majority.
Thus we get another

$$
X_{2}=\left(s-\frac{r}{2}\right) \cdot A_{r}^{(s)}\left(\frac{r}{2}\right)
$$

cases with a black majority.

- In the remaining cases after r drawings we have at most $\frac{r}{2}-1$ black balls. Therefore the $(r+1)$-th ball cannot change the white majority.
This count contains each resulting set exactly $r+1$ times. Therefore

$$
B_{r+1}^{(s)}=\frac{1}{r+1} \cdot\left(X_{1}+X_{2}\right)=\frac{n-r}{r+1} \cdot\left[\sum_{\nu=0}^{\frac{r}{2}-1} A_{r}^{(s)}(\nu)+\frac{s-\frac{r}{2}}{n-r} \cdot A_{r}^{(s)}\left(\frac{r}{2}\right)\right] .
$$

For the coefficient of the last term we have

$$
\frac{s-\frac{r}{2}}{n-r}>\frac{1}{2} \Longleftrightarrow 2 s-r>n-r \Longleftrightarrow s>\frac{n}{2}
$$

(Since $r \leq 2 t$ also $r<n$.) Therefore

$$
B_{r+1}^{(s)}>\frac{n-r}{r+1} \cdot B_{r}^{(s)},
$$

and the first part of the assertion, $p_{r+1}^{(s)}>p_{r}^{(s)}$, follows.
Analyzing the change from $r-1$ to r is somewhat more complicated. After r drawings we have a black majority in $B_{r}^{(s)}$ cases. Among these are:

- $\sum_{\nu=0}^{\frac{r}{2}-2} A_{r-1}^{(s)}$ cases where after $r-1$ drawings we have at least $\frac{r}{2}+1$ black balls. The $n-r+1$ possibilities for the r-th ball can't change the decision. Hence we get

$$
Y_{1}=(n-r+1) \cdot \sum_{\nu=0}^{\frac{r}{2}-2} A_{r-1}^{(s)}
$$

cases with black majority.

- $A_{r-1}^{(s)}\left(\frac{r}{2}-1\right)$ cases where after $r-1$ drawings we have exactly $\frac{r}{2}$ black balls. The $n-r+1$ possibilities for the r-th ball dissociate into
$-s-\frac{r}{2}$ black ones that result in a black majority. This makes

$$
Y_{2}=\left(s-\frac{r}{2}\right) \cdot A_{r-1}^{(s)}\left(\frac{r}{2}-1\right)
$$

additional cases.
$-t+1-\frac{r}{2}$ white ones where we randomly decide with probability $\frac{1}{2}$. This adds another

$$
Y_{3}=\frac{1}{2} \cdot\left(t+1-\frac{r}{2}\right) \cdot A_{r-1}^{(s)}\left(\frac{r}{2}-1\right)
$$

cases to our collection.

- $A_{r-1}^{(s)}\left(\frac{r}{2}\right)$ cases where after $r-1$ drawings we have exactly $\frac{r}{2}-1$ black balls. The $n-r+1$ possibilities for the r-th ball dissociate into
$-s+1-\frac{r}{2}$ black ones where we randomly decide with probability $\frac{1}{2}$. This gives another

$$
Y_{4}=\frac{1}{2} \cdot\left(s+1-\frac{r}{2}\right) \cdot A_{r-1}^{(s)}\left(\frac{r}{2}\right)
$$

cases.
$-t-\frac{r}{2}$ white ones that don't disturb the white majority.

- In the remaining cases after $r-1$ drawings we have at most $\frac{r}{2}-2$ black balls. The white majority is unchanged.
Each set of drawn balls is counted exactly r times. Therefore

$$
\begin{aligned}
B_{r}^{(s)}= & \frac{1}{r} \cdot\left(Y_{1}+Y_{2}+Y_{3}+Y_{4}\right) \\
= & \frac{n-r+1}{r} \cdot \sum_{\nu=0}^{\frac{r}{2}-2} A_{r-1}^{(s)}+\frac{1}{r} \cdot\left(s-\frac{r}{2}+\frac{t}{2}+\frac{1}{2}-\frac{r}{4}\right) \cdot A_{r-1}^{(s)}\left(\frac{r}{2}-1\right) \\
& +\frac{1}{2 r} \cdot\left(s-\frac{r}{2}+1\right) \cdot A_{r-1}^{(s)}\left(\frac{r}{2}\right)
\end{aligned}
$$

Since $s+\frac{t}{2}=n-\frac{t}{2}$ the coefficient of the middle term equals
$s-\frac{r}{2}+\frac{t}{2}-\frac{r}{4}+\frac{1}{2}=n-\frac{t}{2}-r+\frac{r}{4}+1-\frac{1}{2}=(n-r+1)-\frac{1}{2} \cdot\left(t-\frac{r}{2}+1\right)$.
Hence

$$
\begin{aligned}
B_{r}^{(s)}= & \frac{n-r+1}{r} \cdot \sum_{\nu=0}^{\frac{r}{2}-1} A_{r-1}^{(s)} \\
& -\frac{1}{2 r}\left(t-\frac{r}{2}+1\right)\binom{s}{\frac{r}{2}}\binom{t}{\frac{r}{2}-1}+\frac{1}{2 r}\left(s-\frac{r}{2}+1\right)\binom{s}{\frac{r}{2}-1}\binom{t}{\frac{r}{2}} .
\end{aligned}
$$

The two last terms cancel. What remains is

$$
B_{r}^{(s)}=\frac{n-r+1}{r} \cdot B_{r-1}^{(s)} .
$$

This proves the second part of the assertion.
We conclude:
Proposition 1 The probability $p_{r}^{(s)}$ grows monotonically with r from $p_{1}^{(s)}=$ p to $p_{2 t+1}^{(s)}=1$.

If the quotients

$$
\frac{r s}{n}, \frac{r t}{n}, \frac{(n-r) s}{n}, \frac{(n-r) t}{n}
$$

are sufficiently large (by Fisher's rule of thumb: ≥ 5), the normal distribution approximates the hypergeometric distribution well. In particular

$$
\begin{equation*}
\sum_{\nu=0}^{x} q_{r}^{(s)}(\nu) \approx \Phi\left(\frac{x-\mu}{\sigma}\right)=\frac{1}{\sqrt{2 \pi}} \cdot \int_{-\infty}^{\frac{x-\mu}{\sigma}} e^{-t^{2} / 2} d t \tag{1}
\end{equation*}
$$

where μ is the mean value and σ^{2} is the variance of the hypergeometric distribution (with parameters n, s, and r), and Φ is the distribution function of the normal distribution. For mean value and variance we have:

Lemma 3

$$
\begin{aligned}
\mu & =\frac{r t}{n} \\
\sigma^{2} & =\frac{r(n-r) \cdot t(n-t)}{n^{2}(n-1)} .
\end{aligned}
$$

Proof. Take a random sample of r balls. Let $X_{k}: \Omega \longrightarrow \mathbb{R}$ be a random variable that assumes the value 0 if the k-th ball is black, and 1 if it is white. Then $S=X_{1}+\cdots+X_{r}: \Omega \longrightarrow \mathbb{R}$ is a random variable that counts the number of white balls in our sample. Then $\mu=\mathrm{E}(S)$ is the expectation and $\sigma^{2}=\operatorname{Var}(S)$ is the variance of this random variable.

Since $\mathrm{E}\left(X_{k}\right)=\frac{t}{n}$ we have $\mathrm{E}(S)=r \cdot \frac{t}{n}$.
We note that $X_{k}^{2}=X_{k}$ and derive

$$
\operatorname{Var}\left(X_{k}\right)=\mathrm{E}\left(X_{k}^{2}\right)-\mathrm{E}\left(X_{k}\right)^{2}=\frac{t}{n}-\frac{t^{2}}{n^{2}}=\frac{t(n-t)}{n^{2}} .
$$

Since $X_{j} X_{k}(\omega)=1 \Longleftrightarrow X_{j}(\omega)=1$ and $X_{k}(\omega)=1$ the probability of this event is $\frac{t(t-1)}{n(n-1)}$. This gives the expectation $\mathrm{E}\left(X_{j} X_{k}\right)=\frac{t(t-1)}{n(n-1)}$. Thus the covariance is

$$
\begin{aligned}
\operatorname{Cov}\left(X_{j}, X_{k}\right) & =\mathrm{E}\left(X_{j} X_{k}\right)-\mathrm{E}\left(X_{j}\right) \mathrm{E}\left(X_{k}\right)=\frac{t(t-1)}{n(n-1)}-\frac{t^{2}}{n^{2}} \\
& =\frac{t(n(t-1)-t(n-1))}{n^{2}(n-1)}=\frac{t(t-n)}{n^{2}(n-1)} .
\end{aligned}
$$

We deduce the variance of S :

$$
\begin{aligned}
\operatorname{Var}(S) & =\sum_{k=1}^{r} \operatorname{Var}\left(X_{k}\right)+2 \cdot \sum_{1 \leq j<k \leq r} \operatorname{Cov}\left(X_{j}, X_{k}\right) \\
& =\frac{r t(n-t)}{n^{2}}+r(r-1) \cdot \frac{t(t-n)}{n^{2}(n-1)}=\frac{r t(n-t)}{n^{2}} \cdot\left[1-\frac{r-1}{n-1}\right] \\
& =\frac{r t(n-t)}{n^{2}(n-1)} \cdot[n-r]
\end{aligned}
$$

as claimed. \diamond

Proposition 2 (Asymptotic distribution) The probability of a majority of black balls is

$$
p_{r}^{(s)} \approx \frac{1}{\sqrt{2 \pi}} \cdot \int_{-\infty}^{\sqrt{r \lambda}} e^{-t^{2} / 2} d t
$$

with $\lambda=(2 p-1)^{2}$, under the assumption that $p \approx \frac{1}{2}, r \ll n$, and r not too small.
[By Fisher's rule of thumb $10 \leq r \leq n-10$ suffices if $p \approx \frac{1}{2}$.
Note that this "proposition" lacks mathematical precision.]
Proof. We look at the upper boundary of the integral (1) for $x=\frac{r}{2}$:

$$
\begin{aligned}
\frac{x-\mu}{\sigma} & =\frac{\left(\frac{r}{2}-\frac{r t}{n}\right) \cdot n \cdot \sqrt{n-1}}{\sqrt{r(n-r) t(n-t)}}=\frac{(r n-2 r t) \sqrt{n-1}}{2 \cdot \sqrt{r(n-r) t(n-t)}} \\
& =\frac{\sqrt{r} \sqrt{n-1}}{\sqrt{n-r}} \cdot \frac{s-t}{2 \sqrt{s t}}=\frac{\sqrt{n-1}}{\sqrt{n-r}} \cdot \sqrt{r} \cdot \frac{2 p-1}{2 \sqrt{p(1-p)}} \\
& \approx 1 \cdot \sqrt{r} \cdot \frac{2 p-1}{2 \cdot \sqrt{\frac{1}{4}}}=\sqrt{r \lambda}
\end{aligned}
$$

as claimed.

