
Appendix A

Finite Fields

As a corollary of the Euclidean algorithm we saw that the integers modulo a
prime number p form a field, Z/pZ = Fp. (For a simple direct proof observe
that multiplying by a nonzero element is injective.) The fields Fp play an
important role in the theory of finite fields.

The purpose of this appendix is to determine all finite fields.

A.1 Prime Fields

For an arbitrary ring R (with 1) and an integer n the product n · 1 ∈ R has
a natural definition as sum 1 + · · ·+ 1 of n exemplars of 1, if n > 0, as 0, if
n = 0, and as −|n| · 1, if n < 0. This makes R an algebra over Z and defines
a canonical ring homomorphism

α : Z −→ R, α(n) = n · 1.

The kernel of α is an ideal mZ with m ≥ 0. If m = rs, then α(r)α(s) = 0
in R. Thus if R is an integral domain (say a field), then m = p is a prime
number or 0, and is called the characteristic of R. If K is a finite field,
then p > 0 (else α would be injective), and the Homomorphy Theorem yields
a natural embedding Fp �→ K. Usually one identifies the field Fp with its
image in K and calls it the prime field of K.

Remarks

1. If K is a field of characteristic p > 0, then pa = 0 for all a ∈ K, since
pa = (p · 1) · a = 0 · a.

2. With the same assumptions (a+ b)p = a
p + b

p for all a, b ∈ K. For by
the Binomial Theorem

(a+ b)p = a
p +

p−1�

i=1
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Since p divides all binomial coefficients
�p
i

�
for 0 < i < p the sum is 0.

In particular the map a �→ a
p is a ring homomorphism of K into itself

with kernel 0, hence injective. If K is finite, it is an automorphism.

Now let K be a finite field of characteristic p with q = #K elements.
Then K is a finite dimensional vector space over Fp. If e = dimK, then K

as a vector space is isomorphic with Fe
p. Hence q = p

e.
We have proved:

Theorem 4 Let K be a finite field, and q the number of its elements. Then

there is a prime number p and an exponent e such that q = p
e. Furthermore

K has characteristic p and contains the prime field Fp (up to isomorphism).

A.2 The Multiplicative Group of a Finite Field

This is a standard result of Algebra:

Proposition 9 Let K be a field, and G ≤ K
× a finite subgroup with #G =

n elements. Then G is cyclic and consists of the n-th roots of unity in K.

Proof. For a ∈ G always an = 1. Hence G is contained in the set of roots of
the polynomial Tn − 1 ∈ K[T ]. Hence K has exactly n different n-th roots
of unity, and G consists exactly of these. Now let m be the exponent of G, in
particular m ≤ n. The following Lemma 2 yields: All a ∈ G are m-th roots
of unity whose number—as roots of the polynomial Tm − 1—is at most m.
Therefore also n ≤ m, hence n = m, and G has an element of order n. ✸

Lemma 2 Sei G be an abelian group.

(i) Let a, b ∈ G, ord a = m, ord b = n, where m,n are finite and coprime.

Then ord ab = mn.

(ii) Let a, b ∈ G, ord a, ord b finite, q = lcm(ord a, ord b). Then there is a

c ∈ G with ord c = q.

(iii) Let m = max{ord a|a ∈ G}, the exponent of G, be finite. Then ord b |m
for all b ∈ G.

Proof. (i) Let k := ord(ab). From (ab)mn = (am)n · (bn)m = 1 it follows
that k|mn. Since a

kn = a
kn · (bn)k = (ab)kn = 1 also m|kn, hence m|k, and

likewise n|k, hence mn|k.
(ii) Let pe be a prime power with p

e|q, say p
e|m := ord a. Then a

m/pe has
order pe. If q = p

e1
1 · · · perr is the prime decomposition with different primes

pi, then there are ci ∈ G with ord ci = p
ei
i . By (i) c = c1 · · · cr has order q.
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(iii) Let ord b = n. Then there is a c ∈ G with ord c = lcm(m,n). Thus
lcm(m,n) ≤ m, hence = m, hence n|m. ✸

Theorem 5 Let K be a finite field, #K = q. Then the multiplicative group

K
× is cyclic of order q − 1, and a

q−1 = 1 for all a ∈ K
×. Moreover a

q = a

for all a ∈ K. In particular K consists exactly of the roots of the polynomial

T
q − T ∈ Fp[T ].

An element a ∈ K, K finite, is called primitive if it generates the
multiplicative group K

×.

A.3 Irreducible Polynomials and Field Extensions

Given two fields L ⊇ K with n = DimKL < ∞ we call L a finite field
extension of K, and n its degree.

There is a common way of constructing field extensions: Let f ∈ K[T ]
be an irreducible polynomial of degree n.

The definition of “irreducible” is: f is not constant, and if f = gh

for g, h ∈ K[T ], then g or h is constant.

We’ll show that L = K[T ]/fK[T ] is a field extension of degree n.
First K ⊆ K[T ] as the set of constant polynomials, and K ∩ fK[T ] =

0. Therefore the natural homomorphism K[T ] → L induces an injection
K �→ L, that allows us to identify K as a subfield of L.

Next we want to show that L is a field. We start with the division
algorithm of polynomials. For a convenient handling of the zero polynomial
in this context we assign it the degree −∞. Thus deg r < 0 is equivalent
with r = 0.

Proposition 10 Let K be a field, and let f, g ∈ K[T ], g �= 0. Then there

are uniquely determined polynomials q, r ∈ K[T ] such that f = q · g + r and

deg r < deg g.

Proof. Uniqueness : If f = q̃ · g + r̃ with deg r̃ < deg g, then

0 = (q̃ − q) · g + r̃ − r,

(q − q̃) · g = r̃ − r.

The degree of the right-hand side is < deg g. If we assume that q �= q̃, then
the left-hand side has degree ≥ deg g because the degree of a product is the
sum of the degrees, contradiction. Hence q = q̃, and consequently also r = r̃.

Existence : We use the following Lemma 3 to conclude that we get a
correct algorithm by the instructions:
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Initialization: Put r := f , q := 0. (Then f = qg + r.)

Division loop: While deg r ≥ deg g, replace q by q + s and r by r − sg

with deg(r − sg) < deg r. (Then deg r decreases while the condition
f = qg + r is preserved.)

At the exit of the loop we have the sought-after polynomials. ✸

Lemma 3 Let n ≥ m and f = anT
n + · · · a0, g = bmT

m + · · · + b0 with

leading coefficients an, bm �= 0. Then deg(f − qg) < deg f for

q =
an

bn
· Tn−m

.

Proof. The leading term of f cancels out. ✸

As for integers this algorithm leads to an Euclidean algorithm. Here we
only need a theoretical consequence. Define a principal ring to be a ring
R all of whose ideals are principal, that is of the form aR (we consider
commutative rings only). We already know a principal ring: Z.

Proposition 11 The polynomial ring K[T ] over a field K is principal.

Proof. Let a ✂ K[T ] be an ideal. We may assume a �= 0. Choose g ∈ a of
minimal degree ≥ 0, and f ∈ a arbitrary. Division yields r = f − qg ∈ a
with a smaller gegree. This is possible only if r = 0, hence f = qg ∈ gK[T ].
Therefore a = gK[T ]. ✸

An ideal m ✂ R of a ring R is called maximal if it is maximal in the
ordered set of proper ideals a �= R. An ideal m is maximal if and only if the
residue class ring R/m has only two ideals: the zero ideal m/m, and the unit
ideal R/m, that is if and only if it is a field.

Proposition 12 Let f ∈ K[T ] be irreducible and have degree n. Then L =
K[T ]/fK[T ] is a field extension of K of degree n.

Proof. First L is a field since fK[T ] is a maximal ideal: If fK[T ] ⊆ a✁K[T ],
then the ideal a also is principal = gK[T ]. As a member of this ideal f = gh,
and the irreducibility forces h ∈ K. Hence fK[T ] = gK[T ] = a.

Furthermore L as a vector space is spanned by the residue classes ti =
T
i mod f . The equation f mod f = 0 displays tn as a linear combination of

t0, . . . , tn−1. By induction all ti (i ≥ n) are linear combinations. Hence the
dimension is ≤ n. A linear combination = 0 of t0, . . . , tn−1 would define a
polynomial g ≡ 0 (mod f) of degree ≤ n− 1. Hence all its coefficients must
be 0. Thus the dimension is = n. ✸
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An isomorphism of field extensions of K is an isomorphism of fields
that fixes all elements of K. By K[a] for a ∈ L ⊇ K we denote the smallest
subring of L that contains K and a. It consists of the polynomial expressions
in a with coefficients in K. Note that in general these are not all different
as elements of L.

Corollary 3 Let f ∈ K[T ] be irreducible. Then in the field L =
K[T ]/fK[T ] the polynomial f has the root t = T mod f .

If M ⊇ K is a field extension containing a root a of f , then K[a] ∼= L.

Proof. The natural homomorphism K[T ] → L coincides with the substitu-
tion map g �→ g(t). It maps f to 0, and that means that f(t) = 0.

The substitution map K[T ] → M , g �→ g(a), is a homomorphism whose
kernel contains fK[T ]. By the Homomorphy Theorem it induces a homo-
morphism ϕ : L → M . Since L is a field ϕ is injective, and the image of ϕ is
K[a]. ✸

This construction of field extensions generalizes one of the usual con-
structions of the complex numbers as C = R[T ]/(T 2 + 1)R[T ].

A.4 Splitting Fields

Continuing the considerations of the last section we are going to construct
a field extension where a given polynomial f , not necessarily irreducible,
splits into linear factors.

If f is reducible (i. e. not irreducible), then we split off a factor of smaller
degree and successively arrive at a decomposition into irreducible polynomi-
als. (Showing the uniqueness is easy but not needed here.) Therefore there is
a field extension L ⊇ K such that f has a root in L, hence a linear factor in
L[T ] ⊇ K[T ]. Split this factor off and process the remaining polynomial in
the same way until there remain only linear factors. A field extension L ⊇ K

where f ∈ K[T ] decomposes into linear factors is called splitting field of
f . We just have shown the existence:

Proposition 13 Every polynomial f ∈ K[T ] has a splitting field.

Now let L ⊇ K be an arbitrary field extension, and a ∈ L. Then

a = {g ∈ K[T ] | g(a) = 0}

is an ideal of K[T ], hence a principal ideal fK[T ], where f has minimal
degree in a − {0} and is irreducible. (Otherwise a would be a root of a
proper factor of f that also would belong to a.) Assume without restriction
that the leading coefficient of f is 1. Then f is called minimal polynomial
of a. Clearly its degree is dimK K[a].
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This said we return to finite fields. Let K be one of them with q = p
e

elements, p a prime number. Choose a primitive element a ∈ K. Then each
element �= 0 of K is a power of a, whence a forteriori a polynomial in a.
Hence K = Fp[a]. The minimal polynomial f ∈ Fp[T ] of a divides T

q − T ,
and K ∼= Fp[T ]/fFp[T ].

Consider an arbitrary field L of q elements. Then L ⊇ Fp, and L is a
splitting field of T q − T ∈ Fp[T ]. In particular f has a root b in L. Hence
Fp[b] ∼= Fp[T ]/fFp[T ] ∼= K, and because Fp[b] has q elements it must be the
whole of L. Hence L is isomorphic with K: Up to isomorphism there is at
most one field with q elements.

To show the existence we start with a splitting field K of h = T
q − T ∈

Fp[T ]. (We know there is one.) The derivative h
� = −1 is constant �= 0.

Hence all roots of h in K are different. In particular there are q of them.
They constitute a subfield of L: The sum of two roots a, b is again a root,
(a+ b)p = a

p + b
p = a+ b, likewise the product, and for a �= 0 also 1/a. We

proved:

Theorem 6 (Galois 1830/E.H. Moore 1893) For each prime power q

there is up to isomorphism exactly one field with q elements.

This result allows us to think of the field of q elements. We denote it by
Fq.


