Appendix A

Finite Fields

As a corollary of the Euclidean algorithm we saw that the integers modulo a prime number p form a field, $\mathbb{Z} / p \mathbb{Z}=\mathbb{F}_{p}$. (For a simple direct proof observe that multiplying by a nonzero element is injective.) The fields \mathbb{F}_{p} play an important role in the theory of finite fields.

The purpose of this appendix is to determine all finite fields.

A. 1 Prime Fields

For an arbitrary ring R (with 1) and an integer n the product $n \cdot 1 \in R$ has a natural definition as sum $1+\cdots+1$ of n exemplars of 1 , if $n>0$, as 0 , if $n=0$, and as $-|n| \cdot 1$, if $n<0$. This makes R an algebra over \mathbb{Z} and defines a canonical ring homomorphism

$$
\alpha: \mathbb{Z} \longrightarrow R, \alpha(n)=n \cdot 1
$$

The kernel of α is an ideal $m \mathbb{Z}$ with $m \geq 0$. If $m=r s$, then $\alpha(r) \alpha(s)=0$ in R. Thus if R is an integral domain (say a field), then $m=p$ is a prime number or 0 , and is called the characteristic of R. If K is a finite field, then $p>0$ (else α would be injective), and the Homomorphy Theorem yields a natural embedding $\mathbb{F}_{p} \hookrightarrow K$. Usually one identifies the field \mathbb{F}_{p} with its image in K and calls it the prime field of K.

Remarks

1. If K is a field of characteristic $p>0$, then $p a=0$ for all $a \in K$, since $p a=(p \cdot 1) \cdot a=0 \cdot a$.
2. With the same assumptions $(a+b)^{p}=a^{p}+b^{p}$ for all $a, b \in K$. For by the Binomial Theorem

$$
(a+b)^{p}=a^{p}+\sum_{i=1}^{p-1}\binom{p}{i} a^{p-i} b^{i}+b^{p} .
$$

Since p divides all binomial coefficients $\binom{p}{i}$ for $0<i<p$ the sum is 0 . In particular the map $a \mapsto a^{p}$ is a ring homomorphism of K into itself with kernel 0 , hence injective. If K is finite, it is an automorphism.

Now let K be a finite field of characteristic p with $q=\# K$ elements. Then K is a finite dimensional vector space over \mathbb{F}_{p}. If $e=\operatorname{dim} K$, then K as a vector space is isomorphic with \mathbb{F}_{p}^{e}. Hence $q=p^{e}$.

We have proved:
Theorem 4 Let K be a finite field, and q the number of its elements. Then there is a prime number p and an exponent e such that $q=p^{e}$. Furthermore K has characteristic p and contains the prime field \mathbb{F}_{p} (up to isomorphism).

A. 2 The Multiplicative Group of a Finite Field

This is a standard result of Algebra:
Proposition 9 Let K be a field, and $G \leq K^{\times}$a finite subgroup with $\# G=$ n elements. Then G is cyclic and consists of the n-th roots of unity in K.

Proof. For $a \in G$ always $a^{n}=1$. Hence G is contained in the set of roots of the polynomial $T^{n}-1 \in K[T]$. Hence K has exactly n different n-th roots of unity, and G consists exactly of these. Now let m be the exponent of G, in particular $m \leq n$. The following Lemma 2 yields: All $a \in G$ are m-th roots of unity whose number - as roots of the polynomial $T^{m}-1$-is at most m. Therefore also $n \leq m$, hence $n=m$, and G has an element of order n. \diamond

Lemma 2 Sei G be an abelian group.
(i) Let $a, b \in G$, ord $a=m$, ord $b=n$, where m, n are finite and coprime. Then ord $a b=m n$.
(ii) Let $a, b \in G$, ord a, ord b finite, $q=\operatorname{lcm}(\operatorname{ord} a$, $\operatorname{ord} b)$. Then there is a $c \in G$ with ord $c=q$.
(iii) Let $m=\max \{\operatorname{ord} a \mid a \in G\}$, the exponent of G, be finite. Then $\operatorname{ord} b \mid m$ for all $b \in G$.

Proof. (i) Let $k:=\operatorname{ord}(a b)$. From $(a b)^{m n}=\left(a^{m}\right)^{n} \cdot\left(b^{n}\right)^{m}=1$ it follows that $k \mid m n$. Since $a^{k n}=a^{k n} \cdot\left(b^{n}\right)^{k}=(a b)^{k n}=1$ also $m \mid k n$, hence $m \mid k$, and likewise $n \mid k$, hence $m n \mid k$.
(ii) Let p^{e} be a prime power with $p^{e} \mid q$, say $p^{e} \mid m:=\operatorname{ord} a$. Then $a^{m / p^{e}}$ has order p^{e}. If $q=p_{1}^{e_{1}} \cdots p_{r}^{e_{r}}$ is the prime decomposition with different primes p_{i}, then there are $c_{i} \in G$ with ord $c_{i}=p_{i}^{e_{i}}$. By (i) $c=c_{1} \cdots c_{r}$ has order q.
(iii) Let ord $b=n$. Then there is a $c \in G$ with ord $c=\operatorname{lcm}(m, n)$. Thus $\operatorname{lcm}(m, n) \leq m$, hence $=m$, hence $n \mid m . \diamond$

Theorem 5 Let K be a finite field, $\# K=q$. Then the multiplicative group K^{\times}is cyclic of order $q-1$, and $a^{q-1}=1$ for all $a \in K^{\times}$. Moreover $a^{q}=a$ for all $a \in K$. In particular K consists exactly of the roots of the polynomial $T^{q}-T \in \mathbb{F}_{p}[T]$.

An element $a \in K, K$ finite, is called primitive if it generates the multiplicative group K^{\times}.

A. 3 Irreducible Polynomials and Field Extensions

Given two fields $L \supseteq K$ with $n=\operatorname{Dim}_{K} L<\infty$ we call L a finite field extension of K, and n its degree.

There is a common way of constructing field extensions: Let $f \in K[T]$ be an irreducible polynomial of degree n.

The definition of "irreducible" is: f is not constant, and if $f=g h$ for $g, h \in K[T]$, then g or h is constant.

We'll show that $L=K[T] / f K[T]$ is a field extension of degree n.
First $K \subseteq K[T]$ as the set of constant polynomials, and $K \cap f K[T]=$ 0 . Therefore the natural homomorphism $K[T] \rightarrow L$ induces an injection $K \hookrightarrow L$, that allows us to identify K as a subfield of L.

Next we want to show that L is a field. We start with the division algorithm of polynomials. For a convenient handling of the zero polynomial in this context we assign it the degree $-\infty$. Thus $\operatorname{deg} r<0$ is equivalent with $r=0$.

Proposition 10 Let K be a field, and let $f, g \in K[T], g \neq 0$. Then there are uniquely determined polynomials $q, r \in K[T]$ such that $f=q \cdot g+r$ and $\operatorname{deg} r<\operatorname{deg} g$.

Proof. Uniqueness: If $f=\tilde{q} \cdot g+\tilde{r}$ with $\operatorname{deg} \tilde{r}<\operatorname{deg} g$, then

$$
\begin{gathered}
0=(\tilde{q}-q) \cdot g+\tilde{r}-r, \\
(q-\tilde{q}) \cdot g=\tilde{r}-r .
\end{gathered}
$$

The degree of the right-hand side is $<\operatorname{deg} g$. If we assume that $q \neq \tilde{q}$, then the left-hand side has degree $\geq \operatorname{deg} g$ because the degree of a product is the sum of the degrees, contradiction. Hence $q=\tilde{q}$, and consequently also $r=\tilde{r}$.

Existence: We use the following Lemma 3 to conclude that we get a correct algorithm by the instructions:

Initialization: Put $r:=f, q:=0$. (Then $f=q g+r$.)
Division loop: While $\operatorname{deg} r \geq \operatorname{deg} g$, replace q by $q+s$ and r by $r-s g$ with $\operatorname{deg}(r-s g)<\operatorname{deg} r$. (Then $\operatorname{deg} r$ decreases while the condition $f=q g+r$ is preserved.)

At the exit of the loop we have the sought-after polynomials. \diamond

Lemma 3 Let $n \geq m$ and $f=a_{n} T^{n}+\cdots a_{0}, g=b_{m} T^{m}+\cdots+b_{0}$ with leading coefficients $a_{n}, b_{m} \neq 0$. Then $\operatorname{deg}(f-q g)<\operatorname{deg} f$ for

$$
q=\frac{a_{n}}{b_{n}} \cdot T^{n-m} .
$$

Proof. The leading term of f cancels out.
As for integers this algorithm leads to an Euclidean algorithm. Here we only need a theoretical consequence. Define a principal ring to be a ring R all of whose ideals are principal, that is of the form $a R$ (we consider commutative rings only). We already know a principal ring: \mathbb{Z}.

Proposition 11 The polynomial ring $K[T]$ over a field K is principal.
Proof. Let $\mathfrak{a} \unlhd K[T]$ be an ideal. We may assume $\mathfrak{a} \neq 0$. Choose $g \in \mathfrak{a}$ of minimal degree ≥ 0, and $f \in \mathfrak{a}$ arbitrary. Division yields $r=f-q g \in \mathfrak{a}$ with a smaller gegree. This is possible only if $r=0$, hence $f=q g \in g K[T]$. Therefore $\mathfrak{a}=g K[T]$.

An ideal $\mathfrak{m} \unlhd R$ of a ring R is called maximal if it is maximal in the ordered set of proper ideals $\mathfrak{a} \neq R$. An ideal \mathfrak{m} is maximal if and only if the residue class ring R / \mathfrak{m} has only two ideals: the zero ideal $\mathfrak{m} / \mathfrak{m}$, and the unit ideal R / \mathfrak{m}, that is if and only if it is a field.

Proposition 12 Let $f \in K[T]$ be irreducible and have degree n. Then $L=$ $K[T] / f K[T]$ is a field extension of K of degree n.

Proof. First L is a field since $f K[T]$ is a maximal ideal: If $f K[T] \subseteq \mathfrak{a} \triangleleft K[T]$, then the ideal \mathfrak{a} also is principal $=g K[T]$. As a member of this ideal $f=g h$, and the irreducibility forces $h \in K$. Hence $f K[T]=g K[T]=\mathfrak{a}$.

Furthermore L as a vector space is spanned by the residue classes $t_{i}=$ $T^{i} \bmod f$. The equation $f \bmod f=0$ displays t^{n} as a linear combination of t_{0}, \ldots, t_{n-1}. By induction all $t_{i}(i \geq n)$ are linear combinations. Hence the dimension is $\leq n$. A linear combination $=0$ of t_{0}, \ldots, t_{n-1} would define a polynomial $g \equiv 0(\bmod f)$ of degree $\leq n-1$. Hence all its coefficients must be 0 . Thus the dimension is $=n$.

An isomorphism of field extensions of K is an isomorphism of fields that fixes all elements of K. By $K[a]$ for $a \in L \supseteq K$ we denote the smallest subring of L that contains K and a. It consists of the polynomial expressions in a with coefficients in K. Note that in general these are not all different as elements of L.

Corollary 3 Let $f \in K[T]$ be irreducible. Then in the field $L=$ $K[T] / f K[T]$ the polynomial f has the root $t=T \bmod f$.

If $M \supseteq K$ is a field extension containing a root a of f, then $K[a] \cong L$.
Proof. The natural homomorphism $K[T] \rightarrow L$ coincides with the substitution map $g \mapsto g(t)$. It maps f to 0 , and that means that $f(t)=0$.

The substitution map $K[T] \rightarrow M, g \mapsto g(a)$, is a homomorphism whose kernel contains $f K[T]$. By the Homomorphy Theorem it induces a homomorphism $\varphi: L \rightarrow M$. Since L is a field φ is injective, and the image of φ is $K[a] . \diamond$

This construction of field extensions generalizes one of the usual constructions of the complex numbers as $\mathbb{C}=\mathbb{R}[T] /\left(T^{2}+1\right) \mathbb{R}[T]$.

A. 4 Splitting Fields

Continuing the considerations of the last section we are going to construct a field extension where a given polynomial f, not necessarily irreducible, splits into linear factors.

If f is reducible (i. e. not irreducible), then we split off a factor of smaller degree and successively arrive at a decomposition into irreducible polynomials. (Showing the uniqueness is easy but not needed here.) Therefore there is a field extension $L \supseteq K$ such that f has a root in L, hence a linear factor in $L[T] \supseteq K[T]$. Split this factor off and process the remaining polynomial in the same way until there remain only linear factors. A field extension $L \supseteq K$ where $f \in K[T]$ decomposes into linear factors is called splitting field of f. We just have shown the existence:

Proposition 13 Every polynomial $f \in K[T]$ has a splitting field.
Now let $L \supseteq K$ be an arbitrary field extension, and $a \in L$. Then

$$
\mathfrak{a}=\{g \in K[T] \mid g(a)=0\}
$$

is an ideal of $K[T]$, hence a principal ideal $f K[T]$, where f has minimal degree in $\mathfrak{a}-\{0\}$ and is irreducible. (Otherwise a would be a root of a proper factor of f that also would belong to \mathfrak{a}.) Assume without restriction that the leading coefficient of f is 1 . Then f is called minimal polynomial of a. Clearly its degree is $\operatorname{dim}_{K} K[a]$.

This said we return to finite fields. Let K be one of them with $q=p^{e}$ elements, p a prime number. Choose a primitive element $a \in K$. Then each element $\neq 0$ of K is a power of a, whence a forteriori a polynomial in a. Hence $K=\mathbb{F}_{p}[a]$. The minimal polynomial $f \in \mathbb{F}_{p}[T]$ of a divides $T^{q}-T$, and $K \cong \mathbb{F}_{p}[T] / f \mathbb{F}_{p}[T]$.

Consider an arbitrary field L of q elements. Then $L \supseteq \mathbb{F}_{p}$, and L is a splitting field of $T^{q}-T \in \mathbb{F}_{p}[T]$. In particular f has a root b in L. Hence $\mathbb{F}_{p}[b] \cong \mathbb{F}_{p}[T] / f \mathbb{F}_{p}[T] \cong K$, and because $\mathbb{F}_{p}[b]$ has q elements it must be the whole of L. Hence L is isomorphic with K : Up to isomorphism there is at most one field with q elements.

To show the existence we start with a splitting field K of $h=T^{q}-T \in$ $\mathbb{F}_{p}[T]$. (We know there is one.) The derivative $h^{\prime}=-1$ is constant $\neq 0$. Hence all roots of h in K are different. In particular there are q of them. They constitute a subfield of L : The sum of two roots a, b is again a root, $(a+b)^{p}=a^{p}+b^{p}=a+b$, likewise the product, and for $a \neq 0$ also $1 / a$. We proved:

Theorem 6 (Galois 1830/E. H. Moore 1893) For each prime power q there is up to isomorphism exactly one field with q elements.

This result allows us to think of the field of q elements. We denote it by \mathbb{F}_{q}.

