Appendix A

Finite Fields

As a corollary of the Euclidean algorithm we saw that the integers modulo a
prime number p form a field, Z/pZ = F,,. (For a simple direct proof observe
that multiplying by a nonzero element is injective.) The fields [, play an
important role in the theory of finite fields.

The purpose of this appendix is to determine all finite fields.

A.1 Prime Fields

For an arbitrary ring R (with 1) and an integer n the product n-1 € R has
a natural definition as sum 1+ --- + 1 of n exemplars of 1, if n > 0, as 0, if
n =0, and as —|n|- 1, if n < 0. This makes R an algebra over Z and defines
a canonical ring homomorphism

a:Z— R, a(n)=n-1.

The kernel of « is an ideal mZ with m > 0. If m = rs, then a(r)a(s) =0
in R. Thus if R is an integral domain (say a field), then m = p is a prime
number or 0, and is called the characteristic of R. If K is a finite field,
then p > 0 (else @ would be injective), and the Homomorphy Theorem yields
a natural embedding F,, < K. Usually one identifies the field F, with its
image in K and calls it the prime field of K.

Remarks

1. If K is a field of characteristic p > 0, then pa = 0 for all a € K, since
pa=(p-1)-a=0-a.

2. With the same assumptions (a 4+ b)P? = a? + b for all a,b € K. For by
the Binomial Theorem

p—1
(a+bP=a’+3 <f> AP 4 P

i=1
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Since p divides all binomial coefficients (f) for 0 < ¢ < p the sum is 0.
In particular the map a — a? is a ring homomorphism of K into itself
with kernel 0, hence injective. If K is finite, it is an automorphism.

Now let K be a finite field of characteristic p with ¢ = #K elements.
Then K is a finite dimensional vector space over F),. If e = dim K, then K
as a vector space is isomorphic with Fy. Hence ¢ = p°.

We have proved:

Theorem 4 Let K be a finite field, and q the number of its elements. Then
there is a prime number p and an exponent e such that ¢ = p¢. Furthermore
K has characteristic p and contains the prime field F, (up to isomorphism).

A.2 The Multiplicative Group of a Finite Field

This is a standard result of Algebra:

Proposition 9 Let K be a field, and G < K* a finite subgroup with #G =
n elements. Then G is cyclic and consists of the n-th roots of unity in K.

Proof. For a € G always o' = 1. Hence G is contained in the set of roots of
the polynomial 7" — 1 € K[T]. Hence K has exactly n different n-th roots
of unity, and G consists exactly of these. Now let m be the exponent of GG, in
particular m < n. The following Lemma 2 yields: All a € G are m-th roots
of unity whose number—as roots of the polynomial T™ — 1—is at most m.
Therefore also n < m, hence n = m, and G has an element of order n. &

Lemma 2 Sei G be an abelian group.

(i) Leta,b € G, orda =m, ordb = n, where m,n are finite and coprime.
Then ord ab = mn.

(ii) Let a,b € G, orda, ordb finite, ¢ = lem(ord a,ord b). Then there is a
c € G with ordc = gq.

(iii) Let m = max{ordala € G}, the exponent of G, be finite. Then ordb|m
forallbeG.

Proof. (i) Let k := ord(ab). From (ab)™ = (a™)™ - (b™)™ = 1 it follows
that k|mn. Since a*” = a*" - (b")* = (ab)*™ = 1 also m|kn, hence m|k, and
likewise n|k, hence mn|k.

(ii) Let p°® be a prime power with p¢|q, say p¢|m := ord a. Then a”/?" has
order p°. If ¢ = p{* - - - p&r is the prime decomposition with different primes
pi, then there are ¢; € G with ord¢; = p*. By (i) ¢ = ¢1 - - ¢, has order gq.
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(iii) Let ord b = n. Then there is a ¢ € G with ord ¢ = lem(m,n). Thus
lem(m, n) < m, hence = m, hence n|jm. &

Theorem 5 Let K be a finite field, #K = q. Then the multiplicative group
K> is cyclic of order ¢ — 1, and a?' =1 for all a € K*. Moreover a? = a
for all a € K. In particular K consists exactly of the roots of the polynomial
T —T € Fp[T].

An element a € K, K finite, is called primitive if it generates the
multiplicative group K*.

A.3 Irreducible Polynomials and Field Extensions

Given two fields L O K with n = DimgL < oo we call L a finite field
extension of K, and n its degree.

There is a common way of constructing field extensions: Let f € K[T]
be an irreducible polynomial of degree n.

The definition of “irreducible” is: f is not constant, and if f = gh
for g,h € K[T'], then g or h is constant.

We'll show that L = K[T]/fK|[T] is a field extension of degree n.

First K C K[T] as the set of constant polynomials, and K N fK[T] =
0. Therefore the natural homomorphism K[T] — L induces an injection
K — L, that allows us to identify K as a subfield of L.

Next we want to show that L is a field. We start with the division
algorithm of polynomials. For a convenient handling of the zero polynomial
in this context we assign it the degree —oo. Thus degr < 0 is equivalent
with r = 0.

Proposition 10 Let K be a field, and let f,g € K[T]|, g # 0. Then there
are uniquely determined polynomials q,v € K[T)] such that f =q-g+1r and
degr < degg.

Proof. Uniqueness: If f = G- g+ 7 with degr < deg g, then
0=(G—q)-g+7—r,

(¢—q)-g=7—r
The degree of the right-hand side is < degg. If we assume that g # ¢, then
the left-hand side has degree > deg g because the degree of a product is the
sum of the degrees, contradiction. Hence ¢ = ¢, and consequently also r = 7.
Ezistence: We use the following Lemma 3 to conclude that we get a
correct algorithm by the instructions:
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Initialization: Put r:= f, ¢ := 0. (Then f =qg+1.)

Division loop: While degr > degg, replace ¢ by ¢ + s and r by r — sg
with deg(r — sg) < degr. (Then degr decreases while the condition
f = qg + r is preserved.)

At the exit of the loop we have the sought-after polynomials. <

Lemma 3 Letn > m and f = a,T™ + ---ag, g = by, T™ + - -+ + by with
leading coefficients an, by, # 0. Then deg(f — qg) < deg f for

Gn _
q b,

Proof. The leading term of f cancels out. <

As for integers this algorithm leads to an Euclidean algorithm. Here we
only need a theoretical consequence. Define a principal ring to be a ring
R all of whose ideals are principal, that is of the form aR (we consider
commutative rings only). We already know a principal ring: Z.

Proposition 11 The polynomial ring K[T] over a field K is principal.

Proof. Let a < K[T] be an ideal. We may assume a # 0. Choose g € a of
minimal degree > 0, and f € a arbitrary. Division yields r = f —qg € a
with a smaller gegree. This is possible only if r = 0, hence f = qg € gK|[T].
Therefore a = gK[T]. ©

An ideal m < R of a ring R is called maximal if it is maximal in the
ordered set of proper ideals a # R. An ideal m is maximal if and only if the
residue class ring R/m has only two ideals: the zero ideal m/m, and the unit
ideal R/m, that is if and only if it is a field.

Proposition 12 Let f € K[T] be irreducible and have degree n. Then L =
K[T|/fKI[T) is a field extension of K of degree n.

Proof. First L is a field since fK[T] is a maximal ideal: If fK[T] C a<K|[T],
then the ideal a also is principal = gK[T]. As a member of this ideal f = gh,
and the irreducibility forces h € K. Hence fK[T] = gK[T]| = a.

Furthermore L as a vector space is spanned by the residue classes t; =
T* mod f. The equation f mod f = 0 displays t" as a linear combination of
to,...,tp—1. By induction all ¢; (i > n) are linear combinations. Hence the
dimension is < n. A linear combination = 0 of g, ...,¢,—1 would define a
polynomial g =0 (mod f) of degree < n — 1. Hence all its coefficients must
be 0. Thus the dimension is = n. &
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An isomorphism of field extensions of K is an isomorphism of fields
that fixes all elements of K. By K[a] for a € L O K we denote the smallest
subring of L that contains K and a. It consists of the polynomial expressions
in a with coefficients in K. Note that in general these are not all different
as elements of L.

Corollary 3 Let f € K][T| be irreducible. Then in the field L =
K[T|/fKI[T] the polynomial f has the root t =T mod f.
If M O K is a field extension containing a root a of f, then K[a] = L.

Proof. The natural homomorphism K[T] — L coincides with the substitu-
tion map g — g(t). It maps f to 0, and that means that f(t) = 0.

The substitution map K[T| — M, g — g(a), is a homomorphism whose
kernel contains fK[T]. By the Homomorphy Theorem it induces a homo-
morphism ¢: L — M. Since L is a field ¢ is injective, and the image of ¢ is
Kla). ©

This construction of field extensions generalizes one of the usual con-
structions of the complex numbers as C = R[T|/(T? + 1)R[T].

A.4 Splitting Fields

Continuing the considerations of the last section we are going to construct
a field extension where a given polynomial f, not necessarily irreducible,
splits into linear factors.

If f is reducible (i. e. not irreducible), then we split off a factor of smaller
degree and successively arrive at a decomposition into irreducible polynomi-
als. (Showing the uniqueness is easy but not needed here.) Therefore there is
a field extension L O K such that f has a root in L, hence a linear factor in
L[T] O KIT]. Split this factor off and process the remaining polynomial in
the same way until there remain only linear factors. A field extension L O K
where f € K[T]| decomposes into linear factors is called splitting field of
f. We just have shown the existence:

Proposition 13 FEvery polynomial f € K[T)] has a splitting field.
Now let L O K be an arbitrary field extension, and a € L. Then

a={g € K[T]|g(a) =0}

is an ideal of K[T], hence a principal ideal fK[T], where f has minimal
degree in a — {0} and is irreducible. (Otherwise a would be a root of a
proper factor of f that also would belong to a.) Assume without restriction
that the leading coefficient of f is 1. Then f is called minimal polynomial
of a. Clearly its degree is dimg Klal.
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This said we return to finite fields. Let K be one of them with ¢ = p°
elements, p a prime number. Choose a primitive element a € K. Then each
element # 0 of K is a power of a, whence a forteriori a polynomial in a.
Hence K = Fp[a]. The minimal polynomial f € F,[T] of a divides T9 — T,
and K = F,[T]/fF,[T].

Consider an arbitrary field L of ¢ elements. Then L O F,, and L is a
splitting field of 77 — T € F,[T]. In particular f has a root b in L. Hence
F,[b] = F,[T]/fFp|T] = K, and because [, [b] has ¢ elements it must be the
whole of L. Hence L is isomorphic with K: Up to isomorphism there is at
most one field with ¢ elements.

To show the existence we start with a splitting field K of h=T9 - T €
F,[T]. (We know there is one.) The derivative i’ = —1 is constant # 0.
Hence all roots of h in K are different. In particular there are ¢ of them.
They constitute a subfield of L: The sum of two roots a, b is again a root,
(a+b)P = aP +b” = a+ b, likewise the product, and for a # 0 also 1/a. We
proved:

Theorem 6 (GarLois 1830/E. H. MOORE 1893) For each prime power q
there is up to isomorphism exactly one field with q elements.

This result allows us to think of the field of ¢ elements. We denote it by
F,.



