
2 The Walsh Transformation

For the moment we consider real valued functions ϕ : Fn
2 −→ R. These make

up the R-algebra Cn = RFn
2 .

2.1 Definition of the Walsh transformation

Definition 1 The Walsh Transformation (or Hadamard-Walsh-Trans-
formation)

Φ : Cn −→ Cn, ϕ �→ ϕ̂,

is defined by the formula

ϕ̂(u) :=
�

x∈Fn
2

ϕ(x) · (−1)u·x

(where u · x is the canonical dot product in Fn
2).

Remarks

1. Obviously Φ is a R-linear map.

2. Φ is a special case of the discrete Fourier transformation. In the general
case, instead of −1 in the formula one takes the complex N -th root of
unity ζ = e

2πi/N , and transforms complex valued functions over the
ring Z/NZ—or functions on Zn, that have period N in each variable.
[Character sums are a further generalization.]

3. Clearly 0̂ = 0 for the constant function 0 ∈ Cn. The other constant
function 1 tranforms to 1̂ = the “point mass” in 0:

1̂(0) = 2n,

1̂(u) = 0 else.

This follows from the next lemma:

Lemma 1 For u ∈ Fn
2 we have

�

x∈Fn
2

(−1)u·x =

�
2n, if u = 0,

0 else.

Proof. If u = 0, then all exponents are 0, all summands 1, and we have 2n

of them.
For u �= 0 let H be the hyperplane {x ∈ Fn

2 | x · u = 0}. Then H̄ =
{x ∈ Fn

2 | x · u = 1} is its complement, hence Fn
2 = H

�
H̄, H

�
H̄ = ∅,

and #H = #H̄ = 2n−1. For x ∈ H the summand is 1, for x ∈ H̄ it’s −1.
Therefore the sum is 0. ✸

12

Definition 2 For a Boolean function f : Fn
2 −→ F2 the transformed func-

tion χ̂f : Fn
2 −→ R of the character form χf is called the (Walsh)

spectrum of f .

We have

χ̂f (u) =
�

x∈Fn
2

(−1)f(x)+u·x
� �� �





1, if f(x) = u · x,
−1, if f(x) �= u · x,

= #{x | f(x) = u · x} −#{x | f(x) �= u · x}.

If we denote the first of these sets by

Lf (u) := {x | f(x) = u · x}

then we have shown:

Corollary 1 The spectrum of a Boolean function f : Fn
2 −→ F2 equals

χ̂f (u) = 2 ·#Lf (u)− 2n.

In particular χ̂f (u) is always even, and

−2n ≤ χ̂f (u) ≤ 2n.

The lower bound is taken for f(x) = u · x+ 1, the upper one for f(x) =
u · x. In general the spectrum reflects the coincidence or deviation between
a Boolean function and all linear and affine functions.

Corollary 2 Let α be the linear form α(x) = u ·x corresponding to u. Then

d(f, α) = 2n −#Lf (u) = 2n−1 − 1

2
χ̂f (u).

Remarks

4. χ̂f+1 = −χ̂f for all f .

Exercise 1 How does the spectrum change under an affine transformation
of the argument space?

Exercise 2 Calculate the spectrum of an affine function and of the function
f(x1, x2) = x1x2 of two variables.

13

2.2 The inversion formula

Let’s apply the Walsh transformation Φ again to an already transformed
function ϕ̂:

ˆ̂ϕ(w) =
�

u∈Fn
2

ϕ̂(u) · (−1)u·w

=
�

u∈Fn
2

�

x∈Fn
2

ϕ(x) · (−1)u·x · (−1)u·w

=
�

x∈Fn
2

ϕ(x)




�

u∈Fn
2

(−1)u·(x+w)





� �� �

=






2n, if x+ w = 0,

0 else,

= 2nϕ(w).

We have shown, that Φ ◦ Φ(ϕ) = 2nϕ for all ϕ ∈ Cn:

Proposition 1 The Walsh transformation Φ : Cn −→ Cn is bijective, and

it’s inverse transformation is given by

Φ−1 =
1

2n
Φ.

Corollary 1

ϕ(0) =
1

2n

�

u∈Fn
2

ϕ̂(u).

Corollary 2 For every Boolean function f : Fn
2 −→ F2 we have

�

u∈Fn
2

χ̂f (u) =

�
2n, if f(0) = 0,

−2n else.

2.3 The convolution

Definition 3 For ϕ, ψ : Fn
2 −→ R the convolution ϕ ∗ ψ : Fn

2 −→ R is
defined by

ϕ ∗ ψ(w) :=
�

x∈Fn
2

ϕ(x)ψ(w − x).

This gives a bilinear map ∗ : Cn × Cn −→ Cn.

14

Let’s calculate the value at 0 for the convolution of the character forms
of two Boolean functions f, g : Fn

2 −→ F2:

χf ∗ χg(0) =
�

x∈Fn
2

χf (x)χg(x)

=
�

x∈Fn
2

(−1)f(x)+g(x)

= 2n − 2 · d(f, g),

because

(−1)f(x)+g(x) =

�
1, if f(x) = g(x),

−1 else.

Therefore d(f, g) summands are = −1, and 2n − d(f, g) summands are = 1.
We have shown the following generalization of corollary 2 in 2.1:

Proposition 2 The Hamming distance of two Boolean functions f, g on Fn
2

is

d(f, g) = 2n−1 − 1

2
χf ∗ χg(0).

Another way to express this result is in terms of the correlation,

κ(f, g) :=
1

2n
[#{x | f(x) = g(x)} −#{x | f(x) �= g(x)}]

=
1

2n−1
[#{x | f(x) = g(x)}]− 1.

Corollary 1 The correlation of the functions f and g is

κ(f, g) =
1

2n
· χf ∗ χg(0).

Exercise Show: The correlation κ is a scalar product on the real function
space Cn. The set {χf | f ∈ Ln} of the character forms of the linear
forms on Fn

2 is an orthonormal basis of Cn. The Walsh transformation
of a function f ∈ Cn is its representation in this basis.

Definition 4 The autocorrelation of a Boolean function f : Fn
2 −→ F2

with respect to the shift x ∈ Fn
2 is

κf (x) :=
1

2n
[#{u ∈ Fn

2 | f(u+ x) = f(u)} −#{u ∈ Fn
2 | f(u+ x) �= f(u)}] .

Therefore we have

κf (x) =
1

2n
·
�

u∈Fn
2

(−1)f(u+x)+f(u) =
1

2n
·
�

u∈Fn
2

χf (u+ x)χf (u),

hence

15

Lemma 2 The autocorrelation of f is

κf =
1

2n
· χf ∗ χf .

Let’s calculate the Walsh transform of a convolution:

�ϕ ∗ ψ(u) =
�

w∈Fn
2

(ϕ ∗ ψ)(w)(−1)u·w

=
�

w∈Fn
2

�

x∈Fn
2

ϕ(x)ψ(w + x)(−1)u·w

=
�

x∈Fn
2

ϕ(x)




�

w∈Fn
2

ψ(w + x)(−1)u·w





=
�

x∈Fn
2

ϕ(x)
�

v∈Fn
2

ψ(v)(−1)u·(v+x)

=
�

x∈Fn
2

ϕ(x)




�

v∈Fn
2

ψ(v)(−1)u·v



 (−1)u·x

=




�

x∈Fn
2

ϕ(x)(−1)u·x



 ψ̂(u)

= ϕ̂(u)ψ̂(u).

Proposition 3 (Convolution theorem) For ϕ, ψ : Fn
2 −→ R we have

�ϕ ∗ ψ = ϕ̂ψ̂.

Corollary 2 Cn, with ∗ as multiplication is a R-algebra C∗
n; in particular ∗

is commutative and associative, and Φ : Cn −→ C∗
n is a homomorphism of

R-algebras.

Since Φ−1 = 1
2n Φ, up to the factor 2n also Φ is a homomorphism C∗

n −→
Cn, in other words:

Corollary 3 For ϕ, ψ : Fn
2 −→ R we have �ϕψ = 1

2n · ϕ̂ ∗ ψ̂.

Corollary 4 For f, g : Fn
2 −→ F2 we have

�χf+g = �χfχg =
1

2n
χ̂f ∗ χ̂g,

2�χfg = Φ(1 + χf + χg − χfχg) = 1̂ + χ̂f + χ̂g −
1

2n
χ̂f ∗ χ̂g.

Corollary 5 The Walsh transform of the autocorrelation κf is given by

κ̂f = 1
2n χ̂

2
f .

16

There are two ways to calculate the value of a convolution product at 0;
first:

ϕ ∗ ψ(0) =
�

x∈Fn
2

ϕ(x)ψ(x).

Secondly, by the corollary 1 of the inversion formula (proposition 1):

ϕ ∗ ψ(0) = 1

2n

�

u∈Fn
2

�ϕ ∗ ψ(u) = 1

2n

�

u∈Fn
2

ϕ̂(u)ψ̂(u).

We have shown:

Proposition 4 (Parseval’s equation) For ϕ, ψ : Fn
2 −→ R

�

u∈Fn
2

ϕ̂(u)ψ̂(u) = 2n
�

x∈Fn
2

ϕ(x)ψ(x).

2.4 Bent functions

Parseval’s equation, applied to the character form of a Boolean function
f : Fn

2 −→ F2 yields:

�

u∈Fn
2

χ̂f (u)
2 = 2n ·

�

x∈Fn
2

χf (x)
2 = 22n,

because in the last sum all summands are = 1. Therefore in the first sum
there must be at least one of the 2n summands χ̂f (u)2 ≥ 2n. Hence:

Proposition 5 For every Boolean function f : Fn
2 −→ F2 we have

max|χ̂f | ≥ 2n/2,

with equality, if and only if χ̂
2
f = 2n constant.

These functions are well-known in combinatorics since many years:

Definition 5 (Rothaus, ca 1965, published in 1976) A Boolean function
f : Fn

2 −→ F2 is called bent, if (χ̂f)2 = 2n constant.

In particular the spektrum χ̂f of a bent function can only assume the
values ±2n/2; these must be integers:

χ̂f (u) =
�

x∈Fn
2

χf (x)(−1)u·x ∈ Z.

Corollary 1 If a bent function f : Fn
2 −→ F2 exists, then n must be even.

17

Remarks

1. The correlation of a Boolean function f with the linear form α that
corresponds to u ∈ Fn

2 is

κ(f, α) =
1

2n
· χ̂f (u).

While constructing stream ciphers (or pseudorandom generators) by
combining linear shift registers one tries to avoid correlations with
linear functions. But because the sum of squares over all such corre-
lations is constant = 1, the correlation 0 is possible only, if there are
higher correlations with other linear forms. It’s better to minimize all
these correlationen in a uniform way, that means to minimize max |χ̂f |.
That’s what bent functions fulfil.

Exercise 1 Find a bent function of 2 or 4 variables.

Exercise 2 Show that for every bent function f there is a bent function g

such that χ̂f = 2n/2χg. (Duality of bent functions.)

Exercise 3 Let n = 2m be even. Let π : Fm
2 −→ Fm

2 be bijective, and
g : Fm

2 −→ F2 be any Boolean function. Let f : Fm
2 × Fm

2 −→ F2 be
defined by f(x, y) = π(x) · y + g(x). Show that f is bent. (Maiorana-
McFarland construction.)

2.5 An algorithm for the Walsh transformation

Let ϕ : Fn
2 −→ R be a function. We assume that ϕ is given by it’s value

table—that is, all the values ϕ(x) are known. We want to calculate the value
table of the transformed function ϕ̂. To this end we construct an algorithm
via binary recursion that strongly resembles the algorithm in section 1.4.
We start from the observation: For v ∈ Fj

2, w ∈ Fn−j
2 and 0 ≤ j ≤ n

ϕ̂(v, w) =
�

y∈Fj
2

(−1)v·y




�

z∈Fn−j
2

(−1)w·z
ϕ(y, z)



 .

We define

ϕ
(j)(y, w) :=

�

z∈Fn−j
2

(−1)w·z
ϕ(y, z) for y ∈ Fj

2 and w ∈ Fn−j
2

(partial Walsh transformation). Then

ϕ
(0)(w) = ϕ̂(w) for w ∈ Fn

2 ,

ϕ
(n)(y) = ϕ(y) for y ∈ Fn

2 ,

and we have:

18

Lemma 3 For all v ∈ Fj
2 and w ∈ Fn−j

2

ϕ̂(v, w) =
�

y∈Fj
2

(−1)v·yϕ(j)(y, w).

This gives a recursion: For y ∈ Fj−1
2 , η ∈ F2, w ∈ Fn−j

2

ϕ
(j−1)(y, η, w) =

�

ζ∈F2

�

z∈F(n−j)
2

(−1)ηζ+w·z
ϕ(y, ζ, z) =

�

ζ∈F2

(−1)ηζϕ(j)(y, ζ, w).

Therefore:

Proposition 6 (Recursion for the partial Walsh transformation)

For y ∈ Fj−1
2 and w ∈ Fn−j

2

ϕ
(j−1)(y, 0, w) = ϕ

(j)(y, 0, w) + ϕ
(j)(y, 1, w),

ϕ
(j−1)(y, 1, w) = ϕ

(j)(y, 0, w)− ϕ
(j)(y, 1, w).

In order to get an iterative procedure for the Walsh transformation from
this formula, we take i := n− j. The initial vector x(0) = (xu)u∈Fn

2
consists

of the value table xu = ϕ(u) of ϕ. Via the intermediate vectors x
(i), i =

1, . . . , n − 1, we get the final reasult x
(n), the value table of the Walsh

transform ϕ̂. For the step from x
(i) to x

(i+1) we decompose the n-bit index
as uξv with n− i− 1 bits u, 1 bit ξ, and i bits v; then by proposition 6 we
have:

x
(i+1)
u0v = x

(i)
u0v + x

(i)
u1v

x
(i+1)
u1v = x

(i)
u0v − x

(i)
u1v

To implement this procedure in a common programming language, as
before we interpret the indices as natural numbers k =

�
kn−i2i in the

integer interval [0 . . . 2n − 1] as in table 1. Then in the above equations we
have u1v = u0v+2i and in analogy with 1.4 get the formula for the iteration:

x
(i+1)
k =

�
x
(i)
k + x

(i)
k+2i , if kn−i = 0,

x
(i)
k−2i − x

(i)
k , if kn−i = 1,

for k = 0, . . . , 2n − 1. The entire algorithm reads as follows:

Procedure [WT]

Input and output parameters: A vector x of length 2n,
x[0], . . . , x[2n − 1].

Local variables: A vector y of length 2n, y[0], . . . , y[2n − 1].
Loop counters i = 0, . . . , n− 1, and k = 0, . . . , 2n − 1.

19

Instructions:

For i = 0, . . . , n− 1:
For k = 0, . . . , 2n − 1:

If (((k � i) mod 2) = 1) then y[k] := x[k − 2i]− x[k]
else y[k] := x[k] + x[k + 2i]

For k = 0, . . . , 2n − 1:
x[k] := y[k]

Of course this procedure makes sense only with exact arithmetic, say
with integer vectors. One has to take care of errors by overflow.

Note that, if ϕ takes values only in a subring of R (say Z or Q), then
the entire procedure works in this subring.

The expense as function of the input size N = 2n is—as in 1.4—almost
linear: 3N · 2logN (as usual for the fast Fourier transform). We need roughly
2N memory cells for elements of the base ring (with exact arithmetic).

The corresponding C procedure in the sources is called wt.

2.6 An algorithm for the convolution

The naive application of definition 2 requires 22n products of (complex or
integer, depending on the context) numbers: multiply each value of ϕ with
each value of ψ. The expense is quadratic in the input size N = 2n.

Using the convolution theorem we reduce the expense to N logN : Let’s

denote the intermediate result by g := �ϕ ∗ ψ = ϕ̂ψ̂. Then ĝ = 2nϕψ. There-
fore we may use the following algorithm:

1. a) Calculate ϕ̂,

b) Calculate ψ̂,

2. Multiply g = ϕ̂ψ̂ (for each argument),

3. Transform back ϕ ∗ ψ = 1
2n ĝ.

The effort essentially consists of 3 Walsh transformations, each with 3n ·
2n elementary operations; plus additionally 2n multiplications in step 2.
Togehter we asymptotically need some 9N · 2logN elementary operations.
For this we essentially need 3N memory units.

Note. An analoguous procedure performs the efficient multiplication of
polynomials via the fast Fourier transformation.

20

