2 The Walsh Transformation

For the moment we consider real valued functions ¢ : Fy, — R. These make
up the R-algebra C,, = RF?.

2.1 Definition of the Walsh transformation

Definition 1 The Walsh Transformation (or Hadamard-Walsh-Trans-
formation)
®:Cp — Cy, o= @,

is defined by the formula

z€Fy

(where u - x is the canonical dot product in F%).

Remarks

1. Obviously @ is a R-linear map.

2. ® is a special case of the discrete Fourier transformation. In the general
case, instead of —1 in the formula one takes the complex N-th root of
unity ¢ = €2™/N | and transforms complex valued functions over the
ring Z/NZ—or functions on Z", that have period N in each variable.
[Character sums are a further generalization.]

3. Clearly 0 = 0 for the constant function 0 € C,. The other constant
function 1 tranforms to 1 = the “point mass” in 0:
10) = 2m,
() = 0 else.

This follows from the next lemma:

Lemma 1 For u € F we have

we 2" ifu=20,
> {0

= else.

Proof. If uw = 0, then all exponents are 0, all summands 1, and we have 2"
of them.

For u # 0 let H be the hyperplane {x € F} |z -u = 0}. Then H =
{r € F} |z - u = 1} is its complement, hence F§ = HUH, HNH = 0,
and #H = #H = 2!, For « € H the summand is 1, for z € H it’s —1.
Therefore the sum is 0. &

12

Definition 2 For a Boolean function f: Fy — Fy the transformed func-
tion X'y : F3 — R of the character form x; is called the (Walsh)
spectrum of f.

We have

) = 3 e

xelFy —
’ {1, if f(x) =u-x,
=1, if f(z) #u-z,
= #Half@) =u-a} —#{z] f(2) # u-x}.

If we denote the first of these sets by
Ly(w) = {z| f(2) = u-)
then we have shown:
Corollary 1 The spectrum of a Boolean function f:Fy — Fy equals
Xf(u) =2-#L¢(u) —2".
In particular X f(u) is always even, and
2" < xp(u) <27

The lower bound is taken for f(x) = u -z + 1, the upper one for f(z) =
u - z. In general the spectrum reflects the coincidence or deviation between
a Boolean function and all linear and affine functions.

Corollary 2 Let « be the linear form o(x) = u-x corresponding to u. Then

A(f,0) = 2"~ #Ly(w) = 2" — (),

Remarks
4. Xf41 = —Xy for all f.

Exercise 1 How does the spectrum change under an affine transformation
of the argument space?

Exercise 2 Calculate the spectrum of an affine function and of the function
f(z1,22) = z122 of two variables.

13

2.2 The inversion formula

Let’s apply the Walsh transformation ® again to an already transformed
function ¢:

bw) = Y plu) (-1

uelFy

= D D el (e (=)

uclFy xelFy

= > ela) | Y (=nrEr)

z€Fp ucFy

2 ifr+w=0,
0 else,

= 2"p(w).
We have shown, that ® o ®(p) = 2" for all p € Cp:

Proposition 1 The Walsh transformation ® : C,, — C,, is bijective, and
it’s inverse transformation is given by

o= Lo,
2TL

Corollary 1
uclFy

Corollary 2 For every Boolean function f:Fy — Fo we have

_9oMn
ks 2 else.

2.3 The convolution

Definition 3 For ¢,¢ : F§ — R the convolution ¢ x ¢ : F§ — R is
defined by

pry(w) =Y pla)(w -).

zelFy

This gives a bilinear map * : C, x C;, — C,.

14

Let’s calculate the value at 0 for the convolution of the character forms
of two Boolean functions f, g: Fy — Fo:

X7 xg(0) = D xrl@)xgl(x)

zelFy
= Z(_l)f(w)ﬂ(w)
zeFy
= 2"-2-d(f,9),
because
(—1)f @ +o@) — L if f(z) = g(=),
—1 else.
Therefore d(f, g) summands are = —1, and 2" — d(f, g) summands are = 1.

We have shown the following generalization of corollary 2 in 2.1:

Proposition 2 The Hamming distance of two Boolean functions f,g on F}
18

d(f,g9)=2""~ %Xf % Xg(0).
Another way to express this result is in terms of the correlation,
K(10) = o e | f@) = o(a)} — #le] (@) # ()]
= g e | 1) = @) - 1

Corollary 1 The correlation of the functions f and g is

k(f 9) = 2% “Xf * Xg(0).

Exercise Show: The correlation « is a scalar product on the real function
space Cp. The set {xs | f € Ly} of the character forms of the linear
forms on [F3 is an orthonormal basis of C,,. The Walsh transformation
of a function f € C, is its representation in this basis.

Definition 4 The autocorrelation of a Boolean function f: F§ — Fy
with respect to the shift z € FY is
1
rp(z) =g [#Hu e By | fluta) = f(u)} —#{u e Fy | flut+a) # f(u)}].

Therefore we have

() = g S0 (DR = LSt) (),

n
u€Fy u€Fy

hence

15

Lemma 2 The autocorrelation of f is

1
Iif = 27 . Xf k Xf-
Let’s calculate the Walsh transform of a convolution:

Y (o) (w)(=1)""

weFy

= > > el@vw) (-1

wely zeFy

—

@ * P(u)

= D el | Y dlwra) (=1

z€Fy wely

= D ol@) Y) (-1t

z€Fy velFy

= D el | Y dEDT| (=)

z€Fp | vEF?

= | D e@) (D" d(w)
z€Fy

~

= P(u)(u).
Proposition 3 (Convolution theorem) For ¢,v : F§ — R we have
p*Y =@

Corollary 2 C,,, with * as multiplication is a R-algebra C}; in particular *
is commutative and associative, and ® : C, — C is a homomorphism of
R-algebras.

Since &1 = 2% ®, up to the factor 2" also ® is a homomorphism C;; —
Cp, in other words:

Corollary 3 For ¢,¢: Fy — R we have &/} = 2% L px.

Corollary 4 For f,g: Fy — Fa we have

_ 1.
Xf+g = XfXg = QTLXf * Xg»
_ I B
2Xrg = P(L+x7+Xg—XfXg) =1+ X5+ Xg — 5,XF * Xg-

2n
Corollary 5 The Walsh transform of the autocorrelation ky is given by
A 1 ~92

16

There are two ways to calculate the value of a convolution product at 0;
first:

prp(0) = Y p()v(z).

z€Fy
Secondly, by the corollary 1 of the inversion formula (proposition 1):

]_ —_—]_ ~
0 (0) = oo ZF o (u) = o ZF ()b (u).
uelFy uely

We have shown:

Proposition 4 (Parseval’s equation) For ¢,v¢: Fy — R

Y () =2") p(z)i().

uelFy zeFy

2.4 Bent functions

Parseval’s equation, applied to the character form of a Boolean function
f:Fy — Fy yields:

D xpw)?=2") xp(x)? =27,

u€lfy zeFy

because in the last sum all summands are = 1. Therefore in the first sum
there must be at least one of the 2" summands X ¢(u)? > 2". Hence:

Proposition 5 For every Boolean function f:F5 — Fy we have
maz|x | > /2,
with equality, if and only if)ch = 2" constant.
These functions are well-known in combinatorics since many years:

Definition 5 (ROTHAUS, ca 1965, published in 1976) A Boolean function
f:F3 — Fy is called bent, if ({7)* = 2" constant.

In particular the spektrum y s of a bent function can only assume the
values £2™/2: these must be integers:

Xp(u) =" xp(@)(-1)"" € Z.

zelFy

Corollary 1 If a bent function f:Fy — Fo exists, then n must be even.

17

Remarks

1. The correlation of a Boolean function f with the linear form « that

corresponds to u € Fy is
.
5(f0) = 5 Xs(w).

While constructing stream ciphers (or pseudorandom generators) by
combining linear shift registers one tries to avoid correlations with
linear functions. But because the sum of squares over all such corre-
lations is constant = 1, the correlation 0 is possible only, if there are
higher correlations with other linear forms. It’s better to minimize all

these correlationen in a uniform way, that means to minimize max |y |.
That’s what bent functions fulfil.

Exercise 1 Find a bent function of 2 or 4 variables.

Exercise 2 Show that for every bent function f there is a bent function g
such that x; = 2”/2)(9. (Duality of bent functions.)

Exercise 3 Let n = 2m be even. Let 7 : FJ' — ' be bijective, and
g: FJ' — Ty be any Boolean function. Let f: F}' x Fy* — Fo be
defined by f(z,y) = 7(z) - y + g(x). Show that f is bent. (Maiorana-
McFarland construction.)

2.5 An algorithm for the Walsh transformation

Let ¢ : F§ — R be a function. We assume that ¢ is given by it’s value
table—that is, all the values ¢(x) are known. We want to calculate the value
table of the transformed function ¢. To this end we construct an algorithm
via binary recursion that strongly resembles the algorithm in section 1.4.
We start from the observation: For v € F},, w € F5 7 and 0 < j <n

We define

o) (y,w) := Z (=1)"%p(y,2) for y € F} and w € Fy ™
zeFy ™7

(partial Walsh transformation). Then
PpV(w) = @(w) forweFy,
P"y) = ely) foryeFy,

and we have:

18

Lemma 3 For allv € IFJ2 and w € Fgfj

pv,w) =Y (=1)") (y, w).

yer)
This gives a recursion: For y € Féfl, nelfy, we]F;“j

U ymw) = > > (=)™ 0(y,¢,2) = (1) 0 (y, ¢ w),

.
EFQZE]F(L 7) (E[g
Th(il“(ifOl“(i.

Proposition 6 (Recursion for the partial Walsh transformation)
Fory e Ty and w e Ty

Uy, 0,w) = oV (y,0,w) + o (y,1,w),
@(J_l) (y7 17 ’IU) = @(j)(y, 07 ’IU) - 90(]) (y7 17 w)

In order to get an iterative procedure for the Walsh transformation from
this formula, we take i := n — j. The initial vector 2(0) = (Tu)uery consists
of the value table z, = ¢(u) of ¢. Via the intermediate vectors z(?, i =
1,...,n — 1, we get the final reasult (™ the value table of the Walsh
transform ¢. For the step from 2 to 20+ we decompose the n-bit index
as uév with n — ¢ — 1 bits u, 1 bit £, and ¢ bits v; then by proposition 6 we
have:

- . 4
b= @l i,
it1 i i

T = e~ Tul,

To implement this procedure in a common programming language, as
before we interpret the indices as natural numbers k& = an_ﬂi in the
integer interval [0...2" — 1] as in table 1. Then in the above equations we
have ulv = u0v+2' and in analogy with 1.4 get the formula for the iteration:

x(iJrl) o x]E;Z) =+ x](;j,zia if kn—i = 07
: x](ﬂZlQi - ‘/I‘lgl)a if kn—i = 17

for k =0,...,2™ — 1. The entire algorithm reads as follows:

Procedure [WT]
Input and output parameters: A vector x of length 2",
z[0],...,z[2" —1].

Local variables: A vector y of length 27, y[0],...,y[2" — 1].
Loop counters i =0,...,n—1,and k=0,...,2" — 1.

19

Instructions:
Fori=0,...,n—1:
For k=0,...,2" — 1:
If (((k > i) mod 2) = 1) then y[k] := x[k — 2] — z[k]
else y[k] := z[k] + z[k + 27]
For k=0,...,2" — 1:
alk] = ylk]

Of course this procedure makes sense only with exact arithmetic, say
with integer vectors. One has to take care of errors by overflow.

Note that, if ¢ takes values only in a subring of R (say Z or Q), then
the entire procedure works in this subring.

The expense as function of the input size N = 2" is—as in 1.4—almost
linear: 3N - 2log N (as usual for the fast Fourier transform). We need roughly
2N memory cells for elements of the base ring (with exact arithmetic).

The corresponding C procedure in the sources is called wt.

2.6 An algorithm for the convolution

The naive application of definition 2 requires 22" products of (complex or

integer, depending on the context) numbers: multiply each value of ¢ with
each value of 1. The expense is quadratic in the input size N = 2",

Using the convolution theorem we reduce the expense to N log N: Let’s
denote the intermediate result by g := m = @12) Then § = 2. There-
fore we may use the following algorithm:

1. a) Calculate ¢,
b) Calculate 1),

2. Multiply ¢ = ¢ (for each argument),
3. Transform back ¢ x ¢ = %g}.

The effort essentially consists of 3 Walsh transformations, each with 3n -
2™ elementary operations; plus additionally 2™ multiplications in step 2.
Togehter we asymptotically need some 9N - 2log N elementary operations.
For this we essentially need 3N memory units.

Note. An analoguous procedure performs the efficient multiplication of
polynomials via the fast Fourier transformation.

20

