5 Characterization of Bent Maps

In these section we summarize the properties of bent functions and maps proven in the former sections.

Theorem 1 For a Boolean function $f : \mathbb{F}_2^n \longrightarrow \mathbb{F}_2$ the following statements are equivalent:

- (i) f is bent, i. e., $\hat{\chi}_f^2 = 2^n$ constant.
- (ii) f is perfectly nonlinear, i. e., the difference function $\Delta_u f$ is balanced for all $u \in \mathbb{F}_2^n - \{0\}$.
- (iii) The linear potential of f has the (smallest possible) value $\Lambda_f = 2^{-n}$.
- (iv) The nonlinearity of f has the (largest possible) value $\sigma_f = 2^{n-1} 2^{\frac{n}{2}-1}$
- (v) The differential potential of f has the (smallest possible) value $\Omega_f = \frac{1}{2}$.
- (vi) The linearity distance of f has the (largest possible) value $\rho_f = 2^{n-2}$.

Corollary 1 If f is bent, then:

- (i) n is even.
- (ii) f doesn't have any linear structures $\neq 0$.
- (iii) f has exactly $2^{n-1} \pm 2^{\frac{n}{2}-1}$ zeroes and is not balanced.
- (iv) f fulfils the strict avalanche criterion.

Theorem 2 For a Boolean map $f : \mathbb{F}_2^n \longrightarrow \mathbb{F}_2^q$ the following statements are equivalent:

- (i) f is bent, i. e., for all linear forms $\beta \neq 0$ on \mathbb{F}_2^q the function $\beta \circ f$ is bent.
- (ii) $\max_{(\mathbb{F}_2^n \times \mathbb{F}_2^q) \{(0,0)\}} |\hat{\vartheta}_f| = 2^{n/2}.$
- (iii) $\hat{\vartheta}_f^2$ is constant = 2^n on $\mathbb{F}_2^n \times (\mathbb{F}_2^q \{0\})$.
- (iv) The linear potential of f has the (smallest possible) value $\Lambda_f = 2^{-n}$.
- (v) The nonlinearity of f has the (largest possible) value $\sigma_f = 2^{n-1} 2^{\frac{n}{2}-1}$.
- (vi) f is perfectly nonlinear, i. e., the differential potential has the (smallest possible) value $\Omega_f = 2^{-q}$.
- (vii) The differential profile δ_f is constant = 2^{-q} on $(\mathbb{F}_2^n \{0\}) \times \mathbb{F}_2^q$.

Corollary 2 If f is bent, then:

- (i) n is even.
- (ii) f doesn't have any linear structures $\neq 0$.
- (iii) f is not balanced.
- (iv) Each coordinate function of f fulfils the strict avalanche criterion.

[Extension of (i) without proof: ... and $n \ge 2q$; see the note in section 3.1.]

Corollary 3 A balanced map $f : \mathbb{F}_2^n \longrightarrow \mathbb{F}_2^q$ is not bent, in particular its differential potential $\Omega_f > 2^{-q}$, and its linear potential $\Lambda_f > 2^{-n}$.