
1 The Algebraic Normal Form

Boolean maps can be expressed by polynomials—this is the algebraic nor-
mal form (ANF). The degree as a polynomial is a first obvious measure of
nonlinearity—linear (or affine) maps have degree 1.

In this section we show how to determine the ANF and the degree of a
Boolean map that is given by its value table.

1.1 Boolean functions and maps

We denote by F2 the Galois field with two elements. We use algebraic no-
tation: + is the addition in the field F2 and in vector spaces over F2. We
reserve the character ⊕ for direct sums.

A Boolean function of n variables is a function

f : Fn
2 −→ F2.

A Boolean map (or vector valued Boolean function) is a map

f : Fn
2 −→ Fq

2.

Cryptologists like to call this an “S-box” or “substitution box”.
Let Fn be the set of all Boolean functions on Fn

2 . We identify the set of
all mappings Fn

2 −→ Fq
2 with Fq

n in a natural way.
Usually a Boolean function is given by its truth table—that is by its

value table or the graph of the function. This table is—in a canonical way—
lexicographically ordered by the arguments x ∈ Fn

2 . In other words, by the
natural order of the numbers a = 0, . . . , 2n − 1, represented in base 2 as

a = x1 · 2n−1 + · · ·+ xn−1 · 2 + xn

and identified with the vectors (x1, . . . , xn) ∈ Fn
2 .

The logical negation of the function f ∈ Fn is the function f̄ = f + 1.
Let Ln be the set of all linear forms, that is the dual space of Fn

2 . Let
{e1, . . . , en} be the canonical basis of Fn

2 and · the canonical dot product.
The identification of the linear form x �→ u · x with the vector u ∈ Fn

2 gives
the (basis dependent) isomorphism Fn

2
∼= Ln of vector spaces.

Let An be the set of affine functions Fn
2 −→ F2. There are 2n+1 of

them—the linear functions and their negations, that is the functions

f(x) = α(x) + c where α ∈ Ln and c ∈ F2.

Let χ : F2 −→ C× be the only nontrivial group homomorphism (“char-
acter”): χ(0) = 1, χ(1) = −1, or χ(a) = (−1)a = 1 − 2a, the last equation
“par abus de notation” (identifying 1 ∈ F2 with 1 ∈ R). In particular χ

3

is real valued. With each Boolean function f : Fn
2 −→ F2 we associate its

character form as χf := χ ◦ f : Fn
2 −→ R× ⊆ C×, in short

χf (x) = (−1)f(x).

Obviously χf+g = χfχg. The formula for the product of two Boolean func-
tion is slightly more complicated. From the table

a b a+ b ab χ(a) χ(b) χ(a+ b) χ(ab)
0 0 0 0 1 1 1 1
0 1 1 0 1 −1 −1 1
1 0 1 0 −1 1 −1 1
1 1 0 1 −1 −1 1 −1

we get the formula

χ(a+ b) + 2χ(ab) = 1 + χ(a) + χ(b) for all a, b ∈ F2.

Therefore for f, g ∈ Fn we have the product formula

2χfg = 1 + χf + χg − χfχg.

Definition 1 For two Boolean functions f, g : Fn
2 → F2 the Hamming

distance is the number of arguments where the functions differ:

d(f, g) := #{x ∈ Fn
2 | f(x) �= g(x)};

in other words: the number of ones in the truth table of f + g.

Remarks

1. d is a metric on Fn. The transitivity of d for f, g, h ∈ Fn is shown as
follows: If f(x) �= h(x), then f(x) �= g(x) or g(x) �= h(x); therefore

d(f, g) + d(g, h) = #{x | f(x) �= g(x)}+#{x | g(x) �= h(x)}
≥ #{x | f(x) �= h(x)} = d(f, h).

2. If ḡ = g + 1 is the negation of g, then d(f, ḡ) = 2n − d(f, g) = the
number of arguments, where f and g coincide.

1.2 Boolean linear forms

For u, x ∈ Fn
2 we can write the canonical dot product as

u · x =
n�

i=1

uixi =
�

ui=1

xi =
�

i∈Supp(u)

xi

4

with the “support” of u,

Supp(u) = {i = 1, . . . , n | ui �= 0} = {i = 1, . . . , n | ui = 1}.

This means that the dot product with a fixed vector u is the partial sum
over the coordinates of x in the support I ⊆ {1, . . . , n} of u or the parity

of x over I. Since every linear form on a finite dimensional vector space can
be written as a dot product with a fixed vector, we have shown:

Proposition 1 The linear forms on Fn
2 are the parity functions over the

subsets I ⊆ {1, . . . , n}.

In other words every linear form can be written as

αI(x) =
�

i∈I
xi for all x = (x1, . . . , xn) ∈ Fn

2

with a subset I ⊆ {1, . . . , n}. Thereby we have a natural bijection between
the 2n element set Ln and the power set P({1, . . . , n}).

Other common expressions are—for I = {i1, . . . , ir}—:

αI(x) = x[I] = x[i1, . . . , ir] = xi1 + · · ·+ xir .

1.3 Functions and polynomials

Let T = (T1, . . . , Tn) be an n-tuple of indeterminates. Every polynomial
p ∈ F2[T] defines a function Ψ(p) ∈ Fn by substitution:

Ψ(p)(x1, . . . , xn) := p(x1, . . . , xn).

The substitution homomorphism

Ψ : F2[T] −→ Fn,

is a homomorphism of F2-algebras.

Lemma 1 Ψ is surjective.

Proof. (By induction over n) The induction begin n = 0 is trivial—the
two constant polynomials correspond to the two constant functions. Now
let n ≥ 1. Let x� = (x1, . . . , xn−1) ∈ Fn−1

2 be the first n − 1 components of
x = (x1, . . . , xn) ∈ Fn

2 . Consider a function f ∈ Fn. By induction we have
for b = 0, 1

f(x�, b) = pb(x
�) for all x� ∈ Fn−1

2

where p0, p1 ∈ F2[T1, . . . , Tn−1]; in the case n = 1 these are constants. Then

f(x�, xn) = (1 + xn)p0(x
�) + xnp1(x

�) for all x =∈ Fn
2 .

5

Therefore f = Ψ(p) with p = p0 + (p0 + p1)Tn. ✸

Note. An analogous statement holds over any finite field. The proof in
the general case is slightly more complicated and uses interpolation; this
is useful in cryptology too, since—over the Galois field F2n—it is the ba-
sis for interpolation attacks on block ciphers. The following proposition 2
generalizes in the same way.

What is the kernel of the homomorphism Ψ? Since b
2 = b for all b ∈ F2,

all the polynomials T 2
1 − T1, . . . , T

2
n − Tn are in the kernel, so is the ideal

a✂ F2[T]

they generate. The induced homomorphism

Ψ̄ : F2[T]/a −→ Fn

is surjective. Each element of the factor algebra F2[T]/a can be written as
a linear combination of the monomials that have a degree ≤ 1 in each Ti.
There are 2n of these, namely the products

T
I := Ti1 · · ·Tir

for arbitrary subsets

I = {i1, . . . , ir} ⊆ {1, . . . , n}.

So the pre-image of Ψ̄ is a vector space of dimension ≤ 2n over F2. Therefore
its dimension must be = 2n, and Ψ̄ must be an isomorphism. We have shown:

Proposition 2 (Algebraic normal form, ANF) Every Boolean func-

tion

f : Fn
2 −→ F2

can uniquely be written as a polynomial in n indeterminates that has degree

≤ 1 in each single indeterminate:

f(x1, . . . , xn) =
�

I⊆{1,...,n}

aIx
I
,

where the monomial x
I
is the product

x
I =

�

i∈I
xi,

and aI = 0 or 1.

6

k ∈ N u ∈ F3
2 I ⊆ {1, 2, 3} monomial

0 000 ∅ 1
1 001 {3} T3

2 010 {2} T2

3 011 {2, 3} T2T3

4 100 {1} T1

5 101 {1, 3} T1T3

6 110 {1, 2} T1T2

7 111 {1, 2, 3} T1T2T3

Table 1: Various interpretations of a binary vector, example n = 3

The various interpretations of a binary vector u ∈ Fn
2 are illustrated by

a simple example in table 1, as well as the “canonical”’ associations between
them.

There is an alternative derivation of the algebraic normal form using
normalization of Boolean expressions. This however doesn’t generalize to
other finite fields.

Corollary 1 Every Boolean map f : Fn
2 −→ Fq

2 is given by a q-tuple of

polynomials (p1, . . . , pq) ∈ F2[T1, . . . , Tn] that have all partial degrees ≤ 1.

(By “partial degree” we mean the degree in a single indeterminate Ti.)

Corollary 2 Every Boolean map f : Fn
2 −→ Fq

2 has a unique expression as

f(x1, . . . , xn) =
�

I⊆{1,...,n}

x
I
aI

with coefficients aI ∈ Fq
2.

Definition 2 The degree of a Boolean map f as a polynomial,

Deg f = max{#I | aI �= 0},

is called (algebraic) degree of f .

Remarks

1. In general Deg f ≤ n.

2. f is affine ⇔ Deg f ≤ 1.

3. The degree of a Boolean map f is the maximum of the degrees of its
component polynomials p1, . . . , pq.

7

The algebraic degree is a first measure of nonlinearity of f . It is obviously
invariant under affine transformations in preimage and image.

Exercise How many functions F2
2 −→ F2 are there? Enumerate them all.

1.4 Evaluation and interpolation

The algebraic normal form has the advantage that we can immediately read
off the algebric degree. We also easily recognize the “structure” of a Boolean
map, moreover we could comfortably classify orbits under the action of affine
transforms and find “reduced” normal forms. On the other hand the truth
table more clearly shows the “behaviour” of a map, and—as we shall see—
leads to better detection of hidden linearity.

Therefore a method of switching between these two representations is
hihgly needed. The transition from the algebraic normal form to the truth
table is the evaluation of the component polynomials at all arguments. The
inverse transformation is interpolation as in the proof of proposition 2. Here
we show how to do this by an efficient algorithm.

The naive evaluation of a Boolean function f ∈ Fn, or f : Fn
2 −→ F2,

at all arguments x ∈ Fn
2 costs 2n evaluations f(x) each with up to 2n sum-

mands with up to n− 1 multiplications. This makes an order of magnitude
of n · 2n · 2n; since the size of the input is N = 2n, the expense is essen-
tially quadratic: N2 · 2log(N). A binary recursion or “divide and conquer
strategy”—a recursive division in two partial tasks of half the input size—
will lead to a significantly faster algorithm.

To begin with let’s write the algebraic normal form in a slightly modifyed
way:

f =
�

u∈Fn
2

αf (u)T
(u) with the monomial T

(u) =
�

i∈Supp(u)

Ti.

The association between a binary vector u and a monomial T (u) is as in
table 1. Then the αf (u) themselves form a function αf ∈ Fn that we call
the coefficient representation of f . On the other hand the truth table is
represented by the family (f(x))x∈Fn

2
, that means simply by f ∈ Fn itself.

With this interpretation the evalution is the transformation

Θn : Fn −→ Fn, αf �→ f.

The binary recursion starts with the unique decomposition

f = f0 + T1f1 with f0, f1 ∈ F2[T2, . . . , Tn]

from the proof of lemma 1 (where the notation was different). Then for
y ∈ Fn−1

2 we have

f(0, y) = f0(y),

f(1, y) = f0(y) + f1(y).

8

In general let 0 ≤ i ≤ n, u ∈ Fn−i
2 , and fu ∈ F2[Tn−i+1, . . . , Tn] be

defined by

fu :=
�

v∈Fi
2

αf (u, v)T
(v)

.

Then in the case i = n and u = 0 ∈ F0
2

fu =
�

v∈Fn
2

αf (v)T
(v) = f.

On the other extreme, in the case i = 0 and u ∈ Fn
2 , we have

fu = αf (u) constant.

In between, for 1 ≤ i ≤ n and u ∈ Fn−i
2 , we have

fu = f(u,0) + Tn−i+1f(u,1).

Therefore the evaluation follows the recursion (for y ∈ Fi−1
2)

fu(0, y) = f(u,0)(y),

fu(1, y) = f(u,0)(y) + f(u,1)(y).

We convert this recursion into an iterative procedure by defining a se-

quence of vectors x(i) = (x(i)u)u∈Fn
2
with coefficients in F2 as follows: Let

x
(0) := (αf (u))u∈Fn

2
,

be the initial vector. For i = 1, . . . , n let the n-bit index decompose into uξv

with n− i bits u, one bit ξ, and i− 1 bits v, and let

x
(i)
u0v := x

(i−1)
u0v ,

x
(i)
u1v := x

(i−1)
u0v + x

(i−1)
u1v .

By induction we get:

Proposition 3 Let (x(i)) be the recursively defined sequence as above. Then

x
(i)
(u,y) = fu(y) for all u ∈ F

n−i
2 , y ∈ Fi

2;

in particular

x
(n) = (f(u))u∈Fn

2

is the truth table of f .

9

In the opposite direction the iteration has the same structure:

x
(i−1)
u0v := x

(i)
u0v,

x
(i−1)
u1v := x

(i)
u0v + x

(i)
u1v.

Therefore the inverse transformation of Θn, the construction of the coeffi-
cient representation given the truth table, follows exactly the same proce-
dure, so it must be identical to Θn:

Corollary 1 The evaluation transformation Θn is an involution of Fn.

In particular the inverse application of Θn also determines the algebraic

degree of a Boolean function that is given by its truth table.
To implement the evaluation procedure in a common programming lan-

guage we interpret the indices as natural numbers k =
�

kn−i2i in the
integer interval [0 . . . 2n − 1] as in table 1. Then in the iteration formula we
have u1v = u0v + 2i, and the equations become

x
(i+1)
k =

�
x
(i)
k , if kn−i = 0,

x
(i)
k−2i + x

(i)
k , if kn−i = 1,

for k = 0, . . . , 2n − 1. The bit kn−i is extracted from k by the formula

kn−i =

�
k

2i

�
mod 2 = (k � i) mod 2,

where k � i is the i bit shift to the right. Now the entire algorithm in
“pidgin Pascal” looks as follows:

Prozedur [REV] (Recursive evaluation)
Input and output parameters: A vector x of length 2n,

x[0], . . . , x[2n − 1].

Local variables: A vector y of length 2n, y[0], . . . , y[2n − 1].
Loop counters i = 0, . . . , n− 1 and k = 0, . . . , 2n − 1.

Instructions:

For i = 0, . . . , n− 1:
For k = 0, . . . , 2n − 1:

If (((k � i) mod 2) = 1) then y[k] := x[k − 2i] XOR x[k]
else y[k] := x[k]

For k = 0, . . . , 2n − 1:
x[k] := y[k]

10

Here x and y are vectors over F2, that means bit sequences, and the
addition in F2 is represented by the Boolean operator XOR.

The expense is n · 2n loop executions, each with one binary addition,
one shift, and one single bit complement. In summary that makes 3n · 2n
“elementary” operations. The procedure essentially needs 2 ·2n bits of mem-
ory. Expressed as a function if the input size N = 2n, the expense is almost
linear: 3N · 2logN .

The corresponding C procedure in the sources is called rev.

11

