
Boolean Functions, Boolean Maps, and Boolean

Circuits

Klaus Pommerening
Fachbereich Physik, Mathematik, Informatik

der Johannes-Gutenberg-Universität
Saarstraße 21

D-55099 Mainz

February 2, 2003—English version August 30, 2003
last change March 6, 2021

1 Elementary Operations on Bits

On the lowest software level computers process bits or groups of bits. Ex-
amples of such groups are bytes that usually consist of 8 bits, or “words”,
usually 32 or 64 bits, depending on the processor architecture.

Bits have a logical interpretation as truth values “true” (T) or “false”
(F). They also have an algebraic interpretation as values 0 (corresponding
to F) or 1 (corresponding to T). As mathematical objects they are elements
of the two element set {0, 1}, denoted by F2. This notation comes from the
algebraic context:

Consider the residue class ring of Z modulo 2. This ring has two elements
and is a field since 2 is a prime number. Addition in this field is the same as
the logical operation XOR, multiplication is the same as the logical operation
AND, see Table 1.

The algebraic structure as field is of fundamental importance in Cryp-
tography. Therefore, as usual in Algebra, we use the notation Fq for finite
fields where q is the number of elements (often also written as GF(q) for
“Galois Field”). In this context we also use the algebraic symbols + (for
XOR), and · (for AND) for the operations, and often omit the multiplica-
tion dot. Cryptographers sometimes like to use the symbols ⊕ and ⊗ that
unfortunately have a quite different meaning in Mathematics (direct sum
or tensor product of vector spaces). We use these circled symbols only in
diagrams.

1

logical algebraic

bits operation bits operation

x y OR AND XOR x y + ·
F F F F F 0 0 0 0
F T T F T 0 1 1 0
T F T F T 1 0 1 0
T T T T F 1 1 0 1

Table 1: The elementary operations on bits

2 Description of Boolean Functions

Let’s start with the naive definition: A Boolean function is a rule (or a
formula or an algorithm) that takes a certain number of bits and produces
a new bit. Before making this definition mathematically precise we try to
depict it in an appealing manner.

A first simple example is the function AND: It takes two bits and pro-
duces a new bit by the logical operation AND, see Table 1.

For a slightly more complicated example we consider the function f0 that
takes three bits x1, x2 und x3 and produces the value

(1) f0(x1, x2, x3) = x1 AND (x2 OR x3).

An illustration of an (abstract) Boolean function is a “black box”:

XgXXXXXXXXXX

. . .
n input bits

output bit

What happens inside this “black box” has different specifications:

• mathematically by a formula,

• informatically by an algorithm,

• technically by a circuit (or plugging diagramm),

• pragmatically by a truth table (the value table of the function).

For the sample function f0 the formula is in the definition (1). The algorithm
likewise is conveniently described by this formula because it has no branch
points or conditional instructions. A visualization of f0 as a circuit is in
Figure 1. The truth table simply lists the values of f0 for each input triple,
see Table 2. (It is called “truth table” because it tells whether the complete
expression is true (= 1) or false (= 0) depending on the input bits.)

The connection between logical calculus and electric circuits essentially
goes back to Shannon.

2

AND

?
f0(x1, x2, x3)

x1 x2 x3

OR

�	

�	@R@
@
@@R

Figure 1: Circuit for f0

x1 x2 x3 f0(x1, x2, x3)

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

Table 2: Truth table for f0

3 The Number of Boolean Functions

The truth table of f0 suggests a simple enumeration of all Boolean functions:
For three variables there are 8 = 23 different input triples—each single
input bit can assume the values 0 or 1 independently of the other two bits.
Furthermore a Boolean function f can assume the values 0 or 1 for each
triple independently of the other seven triples. Hence there are 256 = 28

Boolean functions of three variables.
The general formula is:

Theorem 1 There are exactly 22
n

different Boolean functions of n vari-
ables.

For four variables this number is 216 = 65536. The number grows super-
exponentially with n, even the exponent grows exponentially.

For a list of all 16 Boolean functions of two variables see Table 3 in
Section 7.

3

4 Bitblocks and Boolean functions

For arrangements of bits there are different denotations depending on the
context: vector, list, (n-) tuple, . . . For certain special sizes we even have
special names such as bytes (for 8 bits), words (for 32 or 64 bits depending on
the processor architecture). In this text we prefer the denotation “bitblock”
that is common in Cryptography. A bitblock of length n is an ordered list
(x1, . . . , xn) of bits. There are eight different bitblocks of length 3. Here they
are:

(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1).

Sometimes we write them as bitstrings without parantheses or commas:

000, 001, 010, 011, 100, 101, 110, 111,

sometimes as columns (n × 1-matrices) when the interpretation as vector
is the main aspect. Often we abbreviate (x1, . . . , xn) by x. The 2n different
bitblocks of length n form the cartesian product Fn

2 = F2×· · ·×F2. This has
a “natural” structure as vector space: We can add bitblocks x and y ∈ Fn

2 ,
and multiply them by scalars a ∈ F2:

(x1, . . . , xn) + (y1, . . . , yn) = (x1 + y1, . . . , xn + yn),

a · (x1, . . . , xn) = (a · x1, . . . , a · xn).

Here is the mathematically exact definition:

Definition A Boolean function of n variables is a map

f: Fn
2 −→ F2.

We denote the set of all Boolean functions on Fn
2 by Fn. By Theorem 1

it has 22
n

elements.

Convention When we describe a Boolean function by its truth table in
general we order it lexicographically for x ∈ Fn

2 , as seen in the example
above. This order is the natural order of the integers a = 0, . . . , 2n− 1
in binary representation

a = x1 · 2n−1 + · · ·+ xn−1 · 2 + xn

corresponding to the bitblocks (x1, . . . , xn) ∈ Fn
2 .

4

5 Logical Expressions and Conjunctive Normal
Form

The mathematical description of Boolean functions—by formulas—
essentially follows two ways:

• Logic expresses Boolean functions by disjunctions (the operation OR,
also written ∨), conjunctions (the operation AND, also written ∧),
and negations (the operation NOT, also written ¬). Compositions of
these operations are called logical expressions.

• Algebra expresses Boolean functions by additions + and multiplica-
tions · in the field F2. Compositions of these operations are called
(binary) polynomial expressions.

We’ll soon see that both ways lead to a description of all Boolean functions,
and that in both cases additional requirements are possible leading to so
called normal forms.

For cryptologic purposes the algebraic form seems to be somewhat more
useful due to its structure (that is yet to explore). On the other hand the
logical form leads to an easy implementation in hardware by circuits because
the elementary Boolean operations have direct realizations in logic gates.

In this text the logical form plays a minor role. Therefore we state the
following result without proof. The weaker statement of representability by
logical operations (without normalization) will come out as a side result in
Section 7, see Theorem 5.

Theorem 2 Each Boolean function f of n variables x1, . . . , xn admits a
representation (conjunction) as

f(x) = s1(x) ∧ . . . ∧ sr(x)

with a suitable r where the sj(x) for j = 1, . . . , r each have the form (dis-
junction)

sj(x) = tj1(x) ∨ . . . ∨ tjnj (x)

with a certain number nj of terms tjk(x) (j = 1, . . . , r and k = 1, . . . , nj)
that are of the form xi (input bit) or ¬xi (negated input bit) for a suitable
index i.

In particular nj ≤ n for j = 1, . . . , r. Each individual input bit xi occurs
in each of the tjk(x) either directly or negated or not at all.

In other words: We can build an arbitrary Boolean function by forming
some expressions (the sj(x)) by ORing some of the input bits or nega-
tions thereof, and then composing these expressions by AND (“conjunc-
tion of disjunctions”). This “normal form” cleanly separates AND- and

5

OR-operations into two layers without further mixing. The defining equa-
tion f0(x1, x2, x3) = x1 ∧ (x2 ∨ x3) of our example f0 from Section 2 is
already in “conjunctive” form, but not when written in expanded form
f0(x1, x2, x3) = (x1 ∧ x2) ∨ (x1 ∧ x3). This example has no negated input
bits. But Table 3 contains some.

A Boolean function is in conjunctive normal form (CNF) if it has
the form of Theorem 2. This form is not unique. Without further explanation
we remark that the CNF may be further refined to a “canonical CNF” that
gives some kind of uniqueness. In analogy there is a disjunctive normal form
(DNF) (“disjunction of conjunctions”).

6 Polynomial Expressions and Algebraic Normal
Form

For (binary) polynomial expressions in the variables x1, . . . , xn, such as
x21x2 +x2x3 +x23, we need as coefficients the constants 0 and 1 only since we
operate in the field F2, and we need not write down these coefficents explic-
itly. Furthermore we observe that a2 = a for all elements a ∈ F2 (note 02 = 0
and 12 = 1) and so ae = a for all exponents e ≥ 1. This leads to another sim-
plification of binary polynomial expressions: The variables x1, . . . , xn occur
at most with exponent 1. Thus an equivalent expression of our sample poly-
nomial is x1x2+x2x3+x3. Another example: x31x2+x1x

2
2 = x1x2+x1x2 = 0.

In general a monomial expression (or simply “monomial”) has the
form

xI :=
∏
i∈I

xi with a subset I ⊆ {1, . . . , n},

in other words, it is the product of some of the variables where the subset
I describes the choice of “some of the variables”. An example with n = 3
illustrates this:

I = {2, 3} =⇒ xI = x2x3,

There are exactly 2n of such monomial expressions—as many as subsets we
can extract from an n-element set, or form partial products from n potential
factors. The empty set corresponds to the product of 0 factors, and this we
consider, as common, as being equal to 1. Thus:

I = ∅ =⇒ xI = 1.

A monomial expression admits a direct interpretation as a Boolean function.
We don’t yet know whether these functions are different (but we’ll see it
immediately).

A polynomial expression is a sum of monomial expressions (as coefficients
we only need 0 or 1 because we are in the binary case). Thus the most general

6

(binary) polynomial expression has the form∑
I⊆{1,...,n}

aIx
I

where all coefficients aI are 0 or 1. This means that we have to take the
sum over a subset of all 2n possible monomial expressions. The number of
possibilities is 22

n
. The Boolean functions generated by this method are all

different, but we have to prove this fact. As a first step we prove that we get
all Boolean functions in this way.

Theorem 3 Let f : Fn
2 −→ F2 be a Boolean function. Then there are co-

effizients aI ∈ F2 (hence = 0 oder 1) where I runs through all subsets of
{1, . . . , n} such that f can be written as a polynomial expression in n vari-
ables of the form:

(2) f(x1, . . . , xn) =
∑

I⊆{1,...,n}

aIx
I .

Proof. (Induction on n) Let n = 1. The four possible Boolean functions of
a single variable x are the constants 0 and 1, and the non-constants x and
1 + x (= the negation of x). They all have the desired form.

Now let n ≥ 1. In the following we abbreviate x′ = (x2, . . . , xn) ∈ Fn−1
2

when x = (x1, . . . , xn) ∈ Fn
2 . Then x = (x1, . . . , xn) may be written as

x = (x1, x
′).

Take a function f ∈ Fn. For an arbitrary fixed value b for the first
variable x1 (i. e. b = 0 or 1) we consider the function x′ 7→ f(b, x′) of the
remaining n− 1 variables in x′. By induction these two functions (for b = 0
as well as for b = 1) have the form

f(b, x′) = pb(x
′) for all x′ ∈ Fn−1

2

where p0, p1 are polynomial expressions in x′ of the required form. Therefore

f(x1, x
′) =

{
p0(x

′), if x1 = 0,

p1(x
′), if x1 = 1,

for all x = (x1, x
′) ∈ Fn

2 ,

since x1 can only assume the values 0 or 1. Write this as

(3) f(x1, x
′) = (1 + x1)p0(x

′) + x1p1(x
′) for all x ∈ Fn

2 ,

to get a polynomial expression in x. Expand this and remove monomials
that occur twice, since these cancel out. 3

The second column of Table 3 illustrates the mathematically compact
statement of this theorem. Note that the variables in the table are denoted

7

by x and y instead of x1 and x2, and the coefficients by a, b, c, d instead of
a∅, a{1}, a{2}, a{1,2}. Each row of the table describes a Boolean function of
two variables as sum of those terms 1, x, y, xy that have coefficient 1 in the
representation of Equation (2), suppressing terms with coefficients 0.

The representation of a Boolean function as polynomial expression given
by Theorem 3 is called the algebraic normal form (ANF). Note that it
is unique: Since there are 22

n
polynomial expressions, and these represent

all the 22
n

different Boolean functions, first all these polynomial expressions
must be different as functions, secondly the representation of a Boolean
function as a polynomial expression in ANF must be unique. We have shown:

Theorem 4 The representation of a Boolean function in algebraic normal
form is unique.

Definition The degree of a Boolean function f ∈ Fn as polynomial expres-
sion in algebraic normal form,

deg f = max{#I | aI 6= 0},

is called the (algebraic) degree of f . It is always ≤ n.

The degree is the maximum number of variables that occur in a monomial
of the ANF.

Example The Boolean function given by x 7→ x1x2+x2x3+x3 has degree 2.

Remark A high degree of a Boolean function is not caused by high powers
of variables but “only” by products of different variables. Each single
variable occurs at most in the first power in each monomial of the
ANF. In other words all partial degrees—that are the degrees in the
single variables xi without accounting for the remaining variables—are
≤ 1.

7 Boolean Functions of Two Variables

The 24 = 16 Boolean functions of two variables x and y are listed in Table 3.
The table contains the polynomial expressions in algebraic normal form
a+ bx+ cy + dxy as well as logical expressions in conjunctive form.

As we saw already each Boolean function in any number of variables has
a polynomial expression. To prove the existence of a logical expression we
only have to show that the algebraic operations + and · can be expressed by
the logical operations ∨, ∧, ¬. This is evident from the corresponding rows
of Table 3. This shows (a weak form of the here unproven Theorem 2):

Theorem 5 Each Boolean function admits a logical expression, i. e. may
be defined by a formula in the logical operations ∨, ∧, ¬.

8

a b c d ANF logical operation CNF

0 0 0 0 0 False constant x ∧ ¬x
1 0 0 0 1 True constant x ∨ ¬x
0 1 0 0 x x projection x

1 1 0 0 1 + x ¬x ¬x
0 0 1 0 y y projection y

1 0 1 0 1 + y ¬y ¬y
0 1 1 0 x+ y x XOR y XOR (x ∨ y) ∧ (¬x ∨ ¬y)

1 1 1 0 1 + x+ y x⇐⇒ y equivalence (x ∨ ¬y) ∧ (¬x ∨ y)

0 0 0 1 xy x ∧ y AND x ∧ y
1 0 0 1 1 + xy ¬(x ∧ y) NAND (¬x) ∨ (¬y)

0 1 0 1 x+ xy x ∧ (¬y) x ∧ (¬y)

1 1 0 1 1 + x+ xy x =⇒ y implication (¬x) ∨ y
0 0 1 1 y + xy (¬x) ∧ y (¬x) ∧ y
1 0 1 1 1 + y + xy x⇐= y x ∨ (¬y)

0 1 1 1 x+ y + xy x ∨ y OR x ∨ y
1 1 1 1 1 + x+ y + xy ¬(x ∨ y) NOR (¬x) ∧ (¬y)

Table 3: The 16 operations on two bits (= Boolean functions of 2 variables)

Hint The logical negation ¬ corresponds to the addition of 1 in the algebraic
interpretation.

Remark In analogy we may write the ANF of a Boolean function of three
variables x, y, z in the form

(x, y, z) 7→ a+ bx+ cy + dz + exy + fxz + gyz + hxyz.

This involves 8 coefficients a, . . . , h, and fits the observation that there
are 22

3
= 28 = 256 such functions.

Example What does the ANF of the function f0 from Section 2 look like
(here written as f0(x, y, z) = x ∧ (y ∨ z) using the variables x, y, z)?
By Table 3 we have y ∨ z = y+ z+ yz, whereas the AND operation ∧
simply is the product in the field F2. Hence

f0(x, y, z) = x · (y + z + yz) = xy + xz + xyz.

By the way this shows that f0 has degree 3.

Remark The table shows:

• Every logical operation may be replaced by at most 3 algebraic
operations.

9

• Every algebraic operation may be replaced by at most 5 logical
operations.

• Every binary operation (= function of 2 bits) may be replaced by
at most 4 algebraic operations.

8 Boolean Maps

Most cryptographic applications involve processes that produce several bits
at once, not only a single one. An abstract description uses the concept of
a Boolean map, that is a map

f : Fn
2 −→ Fq

2

with natural numbers n and q, illustrated by the following figure

XgXXXXXXXXXX

. . .

. . .

n input bits

q output bits

Note that the conceptual differentiation between “function” and “map” is
somewhat arbitrary. We follow a common usage in Mathematics for express-
ing the property that the range is one- or multidimensional where “map” is
the superordinate concept.

The images of f are bitblocks of length q. If we decompose them into
their components

f(x) = (f1(x), . . . , fq(x)) ∈ Fq
2,

then we see that a Boolean map to Fq
2 in a canonical way simply is a q-tuple

of Boolean functions
f1, . . . , fq : Fn

2 −→ F2.

Definition The (algebraic) degree of a Boolean map f: Fn
2 −→ Fq

2 is the
maximum of the algebraic degrees of its components,

deg f = max{deg fi | i = 1, . . . , q}.

Theorem 6 Each Boolean map f : Fn
2 −→ Fq

2 has a unique representation
in the form

f(x1, . . . , xn) =
∑

I⊆{1,...,n}

xIaI

with aI ∈ Fq
2 and monomials xI as in Theorem 3.

10

Like for functions this representation of a Boolean map is called algebraic
normal form. It arises by combining the algebraic normal forms of the
component functions f1, . . . , fq. Compared with Theorem 3 the xI and aI
changed their positions for by convention usually the “scalars” (the xI ∈ F2)
precede the “vectors” (the aI ∈ Fq

2). The aI simply are the combinations of
the corresponding coefficients of the component functions.

Example

Consider the Boolean map g : F3
2 −→ F2

2 defined by the following pair of
logical expressions in three variables x, y, z:

g(x, y, z) :=

(
x ∧ (y ∨ z)
x ∧ z

)
where we write the components below each other, that is, in a column. In the
first component we recognize the function f0, in the second one the product
x · z. Thus the ANF of g is

g(x, y, z) =

(
xy + xz + xyz

xz

)
= xy ·

(
1
0

)
= xz ·

(
1
1

)
= xyz ·

(
1
0

)
.

The algebraic degree is 3, and the value table is in Table 4. In the table we
write the values g(x, y, z) ∈ F2

2 of g as bitstrings of length 2—the different
notations of bitblocks, sometimes as column vectors, sometimes as bitstrings
are chosen by convenience and are considered as equivalent, see the first
subsection of Section 11.

x y z g(x, y, z)

0 0 0 00
0 0 1 00
0 1 0 00
0 1 1 00
1 0 0 00
1 0 1 11
1 1 0 10
1 1 1 11

Table 4: The value table of a Boolean map

9 Linear Forms and Linear Maps

A Boolean function f : Fn
2 −→ F2 is called a linear form, if it has degree

1 and absolute term 0. This means that the algebraic normal form contains

11

only linear terms, thus it has the form

f(x) =
n∑

i=1

sixi for all x = (x1, . . . , xn) ∈ Fn
2

where si ∈ F2 for i = 1, . . . , n. Since the si can only be 0 or 1 a linear form
is a partial sum

αI(x) =
∑
i∈I

xi for all x = (x1, . . . , xn) ∈ Fn
2

over a subset I ⊆ {1, . . . , n} of the set of all indices, namely

I = {i | si = 1}.

We immediately conclude that there are exactly 2n Boolean linear forms in
n variables, and they correspond to the power set P({1, . . . , n}) in a natural
way.

Other common notations are (for I = {i1, . . . , ir}):

αI(x) = x[I] = x[i1, . . . , ir] = xi1 + · · ·+ xir .

The following theorem connects linear forms with the usual notation of
Linear Algebra:

Theorem 7 A Boolean function f : Fn
2 −→ F2 is a linear form if and only

if the following two conditions hold:
(i) f(x+ y) = f(x) + f(y) for all x, y ∈ Fn

2 .
(ii) f(ax) = af(x) for all a ∈ F2 and x ∈ Fn

2 .

Proof. For each linear form the conditions hold as immediately seen by the
representation as partial sum.

For the reverse direction let f be a Boolean function that fulfills (i)
and (ii). Let e1 = (1, 0, . . . , 0), . . . , en = (0, . . . , 1) be the “canonical unit
vectors”. Then each x = (x1, . . . , xn) ∈ Fn

2 is a sum

x = x1e1 + · · ·+ xnen.

From this we get

f(x) = f(x1e1) + · · ·+ f(xnen) = x1f(e1) + · · ·+ xnf(en),

a partial sum of the xi for which the constant value f(ei) is not 0, hence 1.
Thus f is a linear form in the sense of our definition. 3

A Boolean map f : Fn
2 −→ Fq

2 is called linear if all of its component
functions f1, . . . , fq are linear forms. As in the case q = 1 we see:

12

Theorem 8 A Boolean map f : Fn
2 −→ Fq

2 is linear if and only if the fol-
lowing two conditions hold:

(i) f(x+ y) = f(x) + f(y) for all x, y ∈ Fn
2 .

(ii) f(ax) = af(x) for all a ∈ F2 and x ∈ Fn
2 .

Theorem 9 A Boolean map f: Fn
2 −→ Fq

2 is linear if and only if it has the
form

f(x) =
n∑

i=1

xisi

with si ∈ Fq
2.

A Boolean map is called affine if its algebraic degree is ≤ 1 or, equiva-
lently, if it is the sum of a linear map and a constant.

In the case q = 1, for functions, the only constants are 0 and 1. Adding
the constant 1 is the same as the logical negation that “toggles” the bits.
In other words: The affine Boolean functions are the linear forms and their
negations.

10 Systems of Boolean Linear Equations

Algebra over the field F2 is quite easy. Many complications known from
other mathematical domains break down. This is the case for the solution
of systems of linear equations, systems of the form

a11x1 + · · · + a1nxn = b1
...

...
...

am1x1 + · · · + amnxn = bm

where aij and bi ∈ F2 are given and the xj are the unknowns to be solved
for. In matrix notation the equations become

Ax = b

where x and b are column vectors, that is (n× 1)- or (m× 1)-matrices.

Systems of Linear Equations in Sage

As a link with “ordinary” Linear Algebra we consider an example over the
rational numbers Q, the system

x1 + 2x2 + 3x3 = 0
3x1 + 2x2 + x3 = −4
x1 + x2 + x3 = −1

This is treated by Sage Example 1. The single steps are:

13

1. Define the “coefficient matrix” A =

1 2 3
3 2 1
1 1 1

.

2. Define the “image vector” b = (0,−4, 1).

3. Let Sage find a “solution vector” x.—Having written the left-hand
side of the system as matrix product Ax we have to apply the method
solve right().

4. The system could have other solutions. We find these by solving the
corresponding “homogeneous” system Az = 0. If z is a solution of
the homogeneous system, then A · (x + z) = Ax + Az = b + 0 =
b, hence x + z is another solution of the original (“inhomogeneous”)
system. In this way we get all solutions: For if Ax = b and Ay = b,
then A · (y − x) = 0, hence the difference y − x is a solution of the
homogeneous system. The Sage method right kernel() determines
all solutions of the homogeneous system.

5. The output of right kernel() is somewhat cryptic. It says that all
solutions of the homogeneous system are multiples of the vector z =
(1,−2, 1). (Since all coefficients are integers Sage considers the system
as defined over Z (= Integer Ring).)

6. Finally we verify that y = x− 4z really is a solution, i. e. Ay = b.

In the general case (over an arbitrary field) the solution of a system of
linear equations is constructed by Gaussian elimination. The Sage method
solve right() also uses this algorithm.

sage: A = Matrix([[1,2,3],[3,2,1],[1,1,1]])

sage: b = vector([0,-4,-1])

sage: x = A.solve_right(b); x

(-2, 1, 0)

sage: K = A.right_kernel(); K

Free module of degree 3 and rank 1 over Integer Ring

Echelon basis matrix:

[1 -2 1]

sage: y = x - 4*vector([1,-2,1]); y

(-6, 9, -4)

sage: A*y

(0, -4, -1)

Sage Example 1: Solution of a system of linear equations over Q

14

Systems of Linear Equations in the Boolean Case

In the Boolean case (over the field F2) the solution by Gaussian elimination is
extremely simple since the only coefficients are 0 and 1, and multiplications
or divisions are completely obsolete. There are no complicated coefficients
(like fractions over Q) or inexact coefficients (like floating point numbers).
So simple is the method that even for six unknowns the solution by “pencil
and paper” is faster then writing the corresponding program in Sage. Here
is an illustrative example.

The basic idea of elimination is reducing to a system with only n − 1
unknowns by “elimination” of one unknown.

1. case: All coefficients ain = 0 for i = 1, . . . ,m, that is xn doesn’t occur
at all. Then the system is already reduced.

2. case: xn has coefficient 1 in one of the equations. Then we solve this
equation for xn:

xn = ai1x1 + · · · ai,n−1xn−1 + bi,

and substitute the resulting term for xn in the other m− 1 equations.
These then only contain the unknowns x1, . . . , xn−1. (If xn occurs in
more then one equation it doesn’t matter which one we choose—in
contrast to the situation over other fields where finding an optimal
“pivot element” is an essential part of the algorithm.)

We continue this approach recursively until only one unknown or one equa-
tion is left (whatever happens first). Now a concrete example.

Example

x1 +x3 +x6 = 1
x1 +x2 +x4 +x6 = 0

x2 +x3 +x5 +x6 = 0
x1 +x4 +x5 = 1

x2 +x4 +x5 = 1

The first equation yields x6 = x1 + x3 + 1. The remaining system from
equations 2 to 5 after elimination is (using x1 + x1 = 0 etc.):

x2 +x3 +x4 = 1
x1 +x2 +x5 = 1
x1 +x4 +x5 = 1

x2 +x4 +x5 = 1

We solve the second equation of the remaining system for x5 = x1 + x2 + 1
and substitute, getting

x2 +x3 +x4 = 1
x2 +x4 = 0

x1 +x4 = 0

15

The last two equations yield x4 = x2 = x1, and the first one then gives
x3 = 1. Now we have the complete solution:

x1 = x2 = x4 = x6 = a with arbitrary a ∈ F2, x3 = 1, x5 = 1.

Since a may assume the values 0 or 1 there are exactly two solutions:
(0, 0, 1, 0, 1, 0) and (1, 1, 1, 1, 1, 1).

The Example in Sage

Sage code for this example is in Sage Example 2. The Sage method
solve right() gives only the one solution (0, 0, 1, 0, 1, 0). To get all so-
lutions we have to solve the homogeneous system: Its solutions are the
multiples of the vector (1, 1, 0, 1, 0, 1), hence the two vectors (0, 0, 0, 0, 0, 0)
and (1, 1, 0, 1, 0, 1). Thus the second solution of the original system is
(0, 0, 1, 0, 1, 0) + (1, 1, 0, 1, 0, 1) = (1, 1, 1, 1, 1, 1).

sage: M = MatrixSpace(GF(2), 5, 6) # GF(2) = field with two elements

sage: A = M([[1,0,1,0,0,1],[1,1,0,1,0,1],[0,1,1,0,1,1],[1,0,0,1,1,0],\

[0,1,0,1,1,0]]); A

[1 0 1 0 0 1]

[1 1 0 1 0 1]

[0 1 1 0 1 1]

[1 0 0 1 1 0]

[0 1 0 1 1 0]

sage: b = vector(GF(2),[1,0,0,1,1])

sage: x = A.solve_right(b); x

(0, 0, 1, 0, 1, 0)

sage: K = A.right_kernel(); K

Vector space of degree 6 and dimension 1 over Finite Field of size 2

Basis matrix:

[1 1 0 1 0 1]

Sage Example 2: Solution of a system of Boolean linear equations

Cost Estimate

What about the costs for a solution of a system of Boolean linear equations?
Consider m equations for n unknowns. The matrix A of coefficients has size
m× n, the extended matrix (A, b) has size m× (n+ 1).

Since we only want a coarse estimate we don’t bother about optimiza-
tions, and assume that m = n. In the case of m > n we ignore surplus
equations (at the end one has to check whether the found solutions fulfill

16

the additional equations). In the case m < n we add “null equations” (of
type 0 · x1 + · · ·+ 0 · xn = 0).

The elimination step, the reduction of the problem size from n to n− 1,
needs one run through all the n columns of the extended matrix:

• At first in column n, that contains the coefficients of xn, we search the
first entry 1. This takes at most n bit comparisions.

• Then the row we found (with the first entry 1 in column n) is added to
all rows below it that also contain a 1 in column n. This costs one bit
comparision and at most n bit addition for each row—we may omit
the n-th entry because we know there will be a 0.

On the whole we need n bit comparisons and at most n·(n−1) bit additions,
a total of at most n2 bit operations. Let us denote the number of needed bit
operations for the complete solution of the system by N(n). Then we have
the inequality:

N(n) ≤ n2 +N(n− 1) for all n ≥ 2.

Clearly N(1) = 1: We check the one coefficient of the one unknown whether
it is 0 or 1 and decide whether the equation has a unique solution (coefficient
1), or whether it is fulfilled for no or for arbitrary values of the unknown
(coefficient 0, right-hand side b = 1 or 0).

Then we conclude N(2) ≤ 22 + 1, N(3) ≤ 32 + 22 + 1 etc. By induction
we immediately get

N(n) ≤
n∑

i=1

i2.

The value of this sum is explicitly known, and we have shown:

Theorem 10 The number N(n) of bit comparisons and bit additions needed
for the solution of a system of n binary linear equations with n unknowns
has the upper bound

N(n) ≤ 1

6
· n · (n+ 1) · (2n+ 1).

A slightly coarser statement is that the cost is O(n3). In any case it
is “polynomial of small degree” in the size n of the problem. Note that
the asymptotic complexity over F2 is not smaller than over any other field,
although the single steps are much cheaper.

17

11 The Representation of Boolean Functions and
Maps

Some Interpretations of Bitblocks

We used bitblocks b = (b1, . . . , bn) ∈ Fn
2 to represent different objects. A

bitblock can stand for:

• a vector b ∈ Fn
2 (that is itself as a bitblock, written as row or as

column),

• the argument of a Boolean function or map, for example as the row
key in a value table (or truth table),

• a bitstring of length n,

• a subset I ⊆ {1, . . . , n} that is defined by the indicator b via the
equivalence i ∈ I ⇔ bi = 1,

• a linear form on Fn
2 , expressed as sum of the variables xi for which

bi = 1,

• a monomial in n variables x1, . . . , xn with all partial degrees ≤ 1; here
bi is the exponent 0 or 1 of the variable xi,

• an integer between 0 and 2n−1 in binary representation; the sequence
of the binary “digits” (= bits) is identical with the corresponding bit-
string. Conversely the integer is the index (starting with 0) of the
bitstring if the bitstrings are ordered alphabetically in increasing or-
der.

Of course there could be yet other interpretations—each information even-
tually has a binary encoding. The bitblocks for n = 3 are listed in Table 5.
Some conversion routines are in Sage Example A.1 (part of the module
Bitblock.sage).

Representation of the Truth Table of a Boolean Function

The interpretation of bitblocks as integers in binary representation leads
to an economical representation of the truth table of a Boolean function
f : Fn

2 −→ F as bitblock b = (b0, . . . , b2n−1) of length 2n:

f(x) = bi(x), where i(x) = x1 · 2n−1 + · · ·+ xn−1 · 2 + xn

for x = (x1, . . . , xn) ∈ Fn
2 .

At first sight this looks complicated, however it simply means: “Interpret x
as the binary representation of an integer i(x), look at the bitblock b, and

18

Integer Bitstring Subset Linear form Monomial

0 000 ∅ 0 1
1 001 {3} x3 x3
2 010 {2} x2 x2
3 011 {2, 3} x2 + x3 x2x3
4 100 {1} x1 x1
5 101 {1, 3} x1 + x3 x1x3
6 110 {1, 2} x1 + x2 x1x2
7 111 {1, 2, 3} x1 + x2 + x3 x1x2x3

Table 5: Interpretations of bitblocks of length 3

x1 x2 x3 i(x) f0(x1, x2, x3)

0 0 0 0 0
0 0 1 1 0
0 1 0 2 0
0 1 1 3 0
1 0 0 4 0
1 0 1 5 1
1 1 0 6 1
1 1 1 7 1

Table 6: An extended truth table

19

pick up the bit at position i(x)”. This correspondence is illustrated by an
additional column in the truth table, Table 2, of the function f0, see the
extended Table 6.

Thus for example the truth table of f0 is simply given by the bitblock
(0, 0, 0, 0, 0, 1, 1, 1), or even more economically by the bitstring

00000111

of length 23 = 8.

Representation of the Algebraic Normal Form

For the description of the algebraic normal form (ANF) also 2n bits suffice:
the coefficients of the 2n different monomials. The monomials also are in the
list of interpretations of bitblocks, see Table 5. Using this we may interpret
a bitblock a = (a0, . . . , a2n−1) as representation of the ANF of a Boolean
function f : Fn

2 −→ F in the following way:

f(x) =

2n−1∑
i=0

aix
e1(i)
1 · · ·xen(i)n where i = e1(i) · 2n−1 + · · ·+ en(i)

with e1(i), . . . , en(i) = 0 or 1.

Expressed in words this means: “Interpret the n-tuple e of exponents of a
monomial as the binary representation of an integer i. Look at position i in
the bitblock a whether this monomial occurs in the ANF of f or not.”

For the example f0 we already saw that the ANF is

f0(x) = x1x3 + x1x2 + x1x2x3,

the sum of the monomials with exponent triples 101, 110, 111, corresponding
to the integers 5, 6, 7. Thus the economical representation of the ANF by a
bitstring is

00000111.

Caution! This is the same bitstring as for the truth table by accident—a
special property of the function f0! The function f(x1, x2) = x1 has
the truth table 0011 and the ANF 0010.

For determining the ANF from the truth table in the general case we
use the Sage module boolF.sage, see Appendix A. This transformation that
transforms a bitstring of length 2n (the truth table) into another bitstring of
length 2n (the list of coefficients of the ANF) is sometimes called the Reed-
Muller transformation or the binary Moebius transformation. Its application
to f0 is demonstrated in Sage Example 3.

20

sage: attach(’Bitblock.sage’)

sage: attach(’boolF.sage’)

sage: bits = "00000111"

sage: x = str2bbl(bits); x

[0, 0, 0, 0, 0, 1, 1, 1]

sage: f = BoolF(x)

sage: y = f.getTT(); y

[0, 0, 0, 0, 0, 1, 1, 1]

sage: z = f.getANF(); z

[0, 0, 0, 0, 0, 1, 1, 1]

Sage Example 3: A Boolean function with truth table and ANF

Remark Naively evaluating a Boolean function f for all arguments x ∈ Fn
2

costs 2n evaluations f(x) each with at most 2n summands with at
most n − 1 multiplicatios. Therefore the total cost is about n · 2n ·
2n. If we relate the cost to the size of the input—that is N = 2n—
we get the quasi-quadratic cost function N2 · log2(N). As is often
the case also here a binary recursion—dividing the problem into two
partial problems of half the size—leads to a significantly more efficient
algorithm. The starting point is Equation (3). The end effect is the
quasi-linear cost 3N · log2N . This algorithm (also called fast binary
Moebius transformation) is implemented in the module boolF.sage,
see Appendix A.2.

Object Oriented Implementation

An implementation of Boolean functions in Sage (or Python) is
given in Appendix A.2 (module boolF.sage). Sage itself has a class
sage.crypto.boolean function that contains many of the needed meth-
ods, but not the fast Moebius transformation. Our implementation is inde-
pendent.

In general in the object oriented paradigma one defines a class as an
abstraction of the structure of an object “Boolean function”:

Class BoolF:

Attributes:

• blist: truth table as a list of bits (= bitblock in the “natu-
ral” order); we use this as the internal representation of the
Boolean function.

• dim: the dimension of the domain

Methods:

21

• setTT: fill the truth table with a bitblock (“TT” for Truth
Table)

• setANF: read the ANF and internally transform it to a truth
table

• setDim: read the dimension of the domain

• getTT: return the truth table as a bitblock

• value: return the value of the Boolean function for a given
argument

• getDim: return the dimension of the domain

• getANF: return the algebraic normal form (ANF) as bitblock
(in the “natural” order)

• deg: return the algebraic degree

The first three of these, the “set methods”, are only implicitly needed during
initialization. For a “human readable” output we additionally define the
methods printTT and printANF.

Functions for transforming bitlists into integers or bitstrings, or vice
versa, are in the module Bitblock.sage.

The implementation of Boolean maps builds on functions: Define a class
BoolM as a list of objects of the class BoolF with (at least) the analogous
methods.

12 Boolean Circuits

A Boolean circuit describes an algorithm in the form of a flow chart that
connects the single bit operations. This concept leads to an alternative ap-
proach to complexity theory, based on circuit complexity and somewhat
different from Turing complexity, that goes back to Shannon in 1949.

A circuit is an acyclic directed labeled graph all of whose nodes have
indegree 0 or 2.

The nodes are connected by arrows. There is no closed directed
path. All nodes have labels. Each node is the target of 0 or 2
arrows.

An input node is a node of indegree 0. An output node is a node of
outdegree 0. Thus an output node is not the tail (or starting point) of any
arrow. Each node has one of the labels ⊕ or ⊗, corresponding to addition
or multiplication of two bits in the field F2, or “variable” or “constant” for
an input node.

Thus a circuit represents what in Section 2 was called the tech-
nical specification of a Boolean function or map.

22

Some input nodes are defined as constant: They always represent a constant
bit 0 or 1. Since we allow for unbounded outdegrees in principle two con-
stant input nodes 0 and 1 suffice, even a single constant node 1. However
it is convenient to allow more constant input bits, say a constant integer
expressed in base-2 representation.

Notes

• Alternatively we could also label the nodes by the logical operations or
even by any of the 16 Boolean functions of two variables, see Section 7.
For complexity results this wouldn’t make a noteworthy difference:
The size of the circuit would at the worst expand (or shrink) by a
small constant factor, for example by a factor of at most 5 if logical
nodes would replace algebraic nodes, or 3 for the opposite direction,
see Figure 2 for x ∨ y.

• For building circuits of logical operations it would be convenient to
allow nodes with indegree 1 to account for the NOT-operation.

• A circuit may re-use intermediate results many times due to the
unbounded outdegree. This corresponds to unbounded storage on a
real computer. A more narrow concept that avoids this is a Boolean
formula—or a circuit whose underlying graph is a tree. Then each node
has outdegree 1 (except that the output nodes have outdegree 0). A
circuit of this kind reflects the structure of a one-line formula com-
posed of operations on two bits where each intermediate result can be
used only once. In particular each bit must be repeatedly calculated
as many times as needed.

• Sometimes the definition of circuits allows for an unbounded indegree.
However bounding it by 2 makes sense since real machines process
only a bounded number of bits in each step. Whether we take 2 as
bound or some larger number is irrelevant for the following complexity
assessments.

An input is an assignment of a bit tuple x = (x1, . . . , xr) ∈ F r
2 to the r

nonconstant (labelled “variable”) input nodes. An internal node (or “gate”)
adds or multiplies (mod 2) its two input bits, depending on its label. After
traversing the complete circuit the s output nodes contain the output y ∈
F s
2 . Thus the circuit defines a Boolean map

C : F r
2 −→ F s

2

representing its algorithmic decomposition into single bit operations and
immediately leading to the truth table.

Conversely, since every Boolean map F r
2 −→ F s

2 is polynomial, it has a
description by a circuit.

23

Every Boolean map has an algorithmic description as a Boolean
circuit. The Algebraic Normal Form easily translates to such a
representation.

mx my

?

HHH
HHH

HHHHj ?

���
���

�����mx+ y m
��@@ xy

@
@
@
@
@R

�
�
�

�
�	mx+ y + xy

Figure 2: Boolean circuit for x ∨ y = x+ y + xy

Figure 3 shows an example how an ANF translates to a circuit.
The data structure “Boolean circuit” is represented by a finite set N ,

interpreted as the set of nodes, each node a having the attributes

• label: one of “⊕”, “⊗”, “variable”, “constant”,

• predecessors: ∅ or a pair of other nodes P (a) ∈ N 2.

The set of arrows (= directed edges) is implicitly given by all the predecessor
relations. The acyclicity is a side condition that has to be guaranteed, as
well as the compatibility of labels and indegrees.

13 Circuits for Basic Integer or Logical Opera-
tions

As illustrations we consider circuits for some basic arithmetic operations of
integers that serve as building blocks of more complicated operations. In
this way we can express as a Boolean circuit every algorithm that, beside
bit manipulations, involves integer arithmetic and comparisions.

1. Adding two one-bit integers a, b with mod 2 sum c and carry u, the
“primitive” addition in N of binary digits, is a function C : F 2

2 −→ F 2
2 .

Figure 4 shows a corresponding circuit.

24

m m mx z y

@
@
@
@@R

@
@
@
@@R

�
�
�

��	

�
�

�
��	m

��@@ xz m
��@@ yz

@
@
@
@R

�
�
�
�	mxz + yz

?

�
�
�

�
�
�

�
�
�
�=m

x+ xz + yz

Figure 3: Boolean circuit from ANF, example f(x, y, z) = x+ xz + yz

a b

u c

Figure 4: Circuit for adding two one-bit integers

25

a b u

v

c

Figure 5: Circuit for adding three one-bit integers

2. The basic building block for describing the addition of arbitrary inte-
gers is the addition of three bits a, b, u with mod 2 sum c and carry v.
It is a function C : F 3

2 −→ F 2
2 represented by the circuit in Figure 5.

A formula for v is:

v = a · b+ a · u+ b · u =

{
1 if at least 2 input bits are 1,

0 else.

3. Adding a one-bit integer and an s-bit integer follows a similar, some-
what more bulky scheme and has a representation by a circuit with
3s+ 1 nodes, s+ 1 of which are output nodes.

4. The multiplication of two bits is trivial (one ⊗-gate). More interesting
is the multiplication of two two-bit integers 2a1 +a0 and 2b1 + b0 with
four-bit result 8c3 + 4c2 + 2c1 + c0. The classical algorithm follows the
scheme

c0 = a0 · b0,
t1 = a0 · b1, t2 = a1 · b0, c1 = t2 + t1, u1 = t2 · t1,
t3 = a1 · b1, c2 = t3 + u1, c3 = t3 · u1

with auxiliary (intermediate) bits t1, t2, t3, and u1. The corresponding
circuit is shown in Figure 6.

5. Logical operations reduce to additions and multiplications in F2 ac-
cording to Table 3.

26

6. The simplest case of branching is represented by the function
f : F3

2 −→ F2,

f(x, y, z) =

{
x if z = 0,

y if z = 1.

To construct a representation by a closed formula we note that

z · y =

{
0 if z = 0,

y if z = 1,

(¬z) · x =

{
x if z = 0,

0 if z = 1.

Hence f(x, y, z) = x · (1 + z) + y · z. Figure 7 shows the corresponding
circuit. It contains a constant input node for computing the logical
negation 1 + z.

7. To describe a more general branching we take three circuits C0, C1 :
F r
2 −→ F s

2 , and E : F r
2 −→ F2 and ask for a circuit C : F r

2 −→ F s
2 such

that

C(x) =

{
C0(x) if E(x) = 0,

C1(x) if E(x) = 1.

Substituting C0, C1, and E into the formula of Example 6 we get

C(x) = (1 + E(x)) · C0(x) + E(x) · C1(x).

Figure 8 shows the corresponding circuit.

8. The comparision x ≥ y of two one-bit integers is one of the 16 op-
erations on two bits, namely 1 + y + x · y. More generally we cobble
together the comparision of two n+ 1-bit integers x = (xn . . . x0) and
y = (yn . . . y0) in the following way:

C(x, y) =


1 if xn > yn

or xn = yn and x′ ≥ y′,
0 if xn = yn and x′ < y′

or xn < yn

with x′ = (xn−1 . . . x0) and y′ = (yn−1 . . . y0).

27

a1 a0 b1 b0

t3 t2 t1
c0

u1 c1

c3 c2

Figure 6: Circuit for the multiplication of two two-bit integers

m } m mx 1 z y

?

@
@
@
@@R

@
@
@
@
@
@
@
@
@
@R

�
�

�
��	

?

m1 + z
��

���
���

��� m
��@@yzm

��@@ x · (1 + z)
HHH

HHH
HHH

HHHj

���
���

���
����m

f(x, y, z) =

{
x if z = 0,

y if z = 1.

Figure 7: Boolean circuit for a simple branch

28

x1 xr 1
…

x

bsb1

C0(x)E(x)

…

…

c1 cs

C1(x)

a1 as
…

C1
E

C0

Figure 8: Circuit for branching in general

29

14 Circuits and Programs

Intuitively it is clear, but also easy to prove, that each algorithm has a
description by a circuit. Note that this corresponds to how computers work
on the lowest level by bit operations. Thus “the circuit” may serve as a
universal machine model—we don’t need this result in this text but observe
that this model involves a different circuit for each computation. More on
this subject in Parts III and IV of these lecture note. An advantage over
other machine models is that a circuit allows for a fairly realistic count of
elementary operations.

A circuit computes a Boolean map C : Fr
2 −→ Fs

2. To derive an algorithm,
say expressed in a programming language, we proceed as follows:

1. Enumerate the nodes (the set N) in a consistent way.

2. Run through all nodes according to this enumeration and perform the
corresponding bit operation.

To see that there is a consistent enumeration we partition the circuit into
layers, that is we exhibit a canonical function L : N −→ N, and then choose
an enumeration N : N −→ {1, . . . ,#N} ⊆ N that is compatible with L in
the sense that L(a) < L(b) implies N(a) < N(b). We proceed as follows:

• Layer 0 consists of the input nodes.

• For i ≥ 1 layer i consists of the nodes that can be reaches from each
input node via a path of length at most i or via no path at all, and
don’t belong to layer i− 1.

• Run through the layers 1, 2, . . . in order, and in each layer enumerate
the nodes in any order, using the smallest numbers that are not yet
used.

(In graphical illustrations the “high” layers usually lie below the “low” lay-
ers.) Obviously, if a is a predecessor of b, then L(a) < L(b), and a forteriori
N(a) < N(b). If s = 1, that is if C defines a Boolean function, then there
is only one output node, and this must be the unique node in the highest
layer.

Now the algorithm defined by the circuit runs as follows:

• Assume an enumeration N compatible with the layer function L such
that 1, . . . , n0 correspond to the variable input nodes, and n0+1, . . . , n1
to the constant input nodes.

• Assign values xh ∈ F2 to the variable input nodes with numbers
1, . . . , n0.

30

• Loop over h = n1 +1, . . . ,#N (omitting the input layer 0): For each h
select the node a ∈ N with N(a) = h and its pair (b, c) of predecessors
with numbers j, k < h and assign the value xh = xj ∗ xk to a, where ∗
is the operation corresponding to the label “⊕” or “⊗” of a.

• Output the bits from the output nodes.

Example 1

For the circuit of Figure 3 we have

Layer 0: input nodes

• 1 (filled with x)

• 2 (filled with y)

• 3 (filled with z)

Layer 1: nodes

• 4 (evaluating to xz)

• 5 (evaluating to yz)

Layer 2: node 6 (evaluating to xz + yz)

Layer 3: output node 7 (evaluating to x+ xz + yz)

Example 2

For the circuit of Figure 7 we have

Layer 0: variable input nodes

• 1 (filled with x)

• 2 (filled with y)

• 3 (filled with z)

plus the constant input node 4 (occupied by 1)

Layer 1: nodes

• 5 (evaluating to 1 + xz)

• 6 (evaluating to yz)

Layer 2: node 7 (evaluating to x · (1 + z))

Layer 3: output node 8

31

15 Measuring the Complexity of Circuits

Two key figures for assessing the complexity of a circuit are #C, its size, =
the number #N of its nodes, and d(C), its depth, or the length of the largest
path = the index of the highest layer. The size counts the number of bit
operations and thus measures the complexity of serial execution, the depth
measures the complexity of unbounded parallel execution of the algorithm,
where in each step all the nodes of a complete layer are evaluated.

Examples

1. The circuit for adding two bits, Figure 4, has size 4 and depth 1.

2. The circuit for adding three bits, Figure 5, has size 10 and depth 3.

3. From Example 3 from Section13 above we get a simple (not yet opti-
mal) circuit for adding s one-bit integers with A(s) nodes, among them
a(s) output nodes. By Example 1 A(2) = 4, a(2) = 2, by Example 3
from Section13 we have the recursive formulas a(s) = a(s− 1) + 1 and
A(s) = A(s − 1) + 2a(s − 1) + 1. Hence by induction a(s) = s and
A(s) = s2.

4. The circuit for multiplying two two-bit integers, Figure 6, has size 12
and depth 3.

5. To evaluate a Boolean function of r bits in ANF we need at most
1 constant input node (for the constant monomial 1), r input nodes
and at most

(
r
k

)
multiplicative nodes for calculating all monomials of

degree k. Then we have to add all the monomials, using at most 2r−1
additive nodes. In summary we can represent each Boolean function
of r variables by a circuit of size at most 2r + 2r−1 = 2r+1−1, noting
that

r∑
k=0

(
r

k

)
= 2r.

And for a Boolean map F r
2 −→ F s

2 we need at most s ·(2r+1−1) nodes.
Clearly this general result leaves ample room for optimization in each
single case.

6. For the circuit for branching, Figure 8, we have the formulas

#C = #C1 + #C2 + #E − 2r + 3s+ 2,

d(C) = max{d(C0) + 2, d(C1) + 2, d(E) + 3}.

7. The size V (n) of the circuit for comparing two n + 1-bit inte-
gers in Example 8 from Section13 satisfies the recursive formula
V (n) = V (n− 1) + 11 with V(2) = 6, hence V (n) = 11n− 5.

32

8. Estimating the costs of the integer operations in the binary number
system we see that pairs of n-bit integers can be added or subtracted
with circuits of size O(n), and multiplied or divided with circuits of
size O(n2).

These results allow us to re-interpret results on the cost of algorithms
in terms of integer operations as statements in terms of Boolean operations
or, equivalently, of circuit complexity. Note that the O’s are due to laziness.
With some additional effort we could derive more concrete estimates.

33

A Appendix: Boolean Maps in Sage

A.1 Conversion of Bitblocks

def int2bbl(number,dim):

"""Converts number to bitblock of length dim via base-2

representation."""

n = number

b = []

for i in range(0,dim):

bit = n % 2

b = [bit] + b

n = (n - bit)//2

return b

def bbl2int(bbl):

"""Converts bitblock to number via base-2 representation."""

ll = len(bbl)

nn = 0

for i in range(0,ll):

nn = nn + bbl[i]*(2**(ll-1-i))

return nn

def str2bbl(bitstr):

"""Converts bitstring to bitblock."""

ll = len(bitstr)

xbl = []

for k in range(0,ll):

xbl.append(int(bitstr[k]))

return xbl

def bbl2str(bbl):

"""Converts bitblock to bitstring."""

bitstr = ""

for i in range(0,len(bbl)):

bitstr += str(bbl[i])

return bitstr

Sage Example 4: Conversion of bitblocks (in Bitblock.sage)

34

A.2 Class for Boolean Functions

class BoolF(object):

"""Boolean function

Attribute: a list of bits describing the truth table of the function

Attribute: the dimension of the domain"""

__max = 4096 # max dim = 12

def __init__(self,blist,method="TT"):

"""Initializes a Booelan function with a truth table

or by its algebraic normal form if method is ANF."""

ll = len(blist)

assert ll <= self.__max, "BoolF_Error: Bitblock too long."

dim = 0 # dimension

m = 1 # 2**dim

while m < ll:

dim = dim+1

m = 2*m

assert ll == m, "booltestError: Block length not a power of 2."

self.__dim = dim

if method=="TT":

self.__tlist = blist

else:

self.__tlist=self.__convert(blist)

def __convert(self,xx):

"""Converts a truth table to an ANF or vice versa."""

x = copy(xx) # initialize auxiliary bitblock

y = copy(xx) # initialize auxiliary bitblock

mi = 1 # actual power of 2

for i in range(0,self.__dim): # binary recursion

for k in range(0,2**(self.__dim)):

if ((k//mi) % 2 == 1): # picks bit nr i

y[k] = (x[k-mi] + x[k]) % 2 # XOR

else:

y[k] = x[k]

for k in range(0,2**(self.__dim)):

x[k] = y[k]

mi = 2*mi # equals 2**i in the next step

return x

Sage Example 5: Class for Boolean functions (in boolF.sage)

35

def getTT(self):

"""Returns truth table as bitlist."""

return self.__tlist

def value(self,xx):

"""Evaluates Boolean function."""

ll = len(xx)

assert ll == self.__dim, "booltestError: Block has false length."

index = bbl2int(xx)

return self.__tlist[index]

def getDim(self):

"""Returns dimension of definition domain."""

return self.__dim

def getANF(self):

"""Returns algebraic normal form as bitlist."""

y = self.__convert(self.__tlist)

return y

def deg(self):

"""Algebraic degree of Boolean function"""

y = self.__convert(self.__tlist)

max = 0

for i in range (0,len(y)):

if y[i] != 0:

b = int2bbl(i,self.__dim)

wt = sum(b)

if wt > max:

max = wt

return max

Sage Example 6: Boolean functions—continued

36

def printTT(self):

"""Prints truth table to stdout."""

for i in range(0,2**(self.__dim)):

bb = int2bbl(i,self.__dim)

print "Value at " + bbl2str(bb) + " is " + repr(self.__tlist[i])

def printANF(self):

"""Prints algebraic normal form to stdout."""

y = self.__convert(self.__tlist)

for i in range(0,2**(self.__dim)):

monom = int2bbl(i,self.__dim)

print "Coefficient at " + bbl2str(monom) + " is " + repr(y[i])

Sage Example 7: Boolean functions—human readable output

37

A.3 Class for Boolean Maps

class BoolMap(object):

"""Boolean map

Attribute: a list of Boolean functions

Attribute: the dimensions of domain and range"""

__max = 8 # max dim = 8

def __init__(self,flist):

"""Initializes a Boolean map with a list of Boolean functions."""

qq = len(flist)

assert qq <= self.__max, "BoolMap_Error: Too many components."

ll = len(flist[0].getTT())

dim = 0 # dimension

m = 1 # 2**dim

while m < ll:

dim = dim+1

m = 2*m

assert ll == m, "BoolMap_Error: Block length not a power of 2."

assert dim <= self.__max, "BoolMap_Error: Block length exceeds maximum."

self.__dimd = dim

self.__dimr = qq

for i in range(1,qq):

li = len(flist[i].getTT())

assert li == ll, "BoolMap_Error: Blocks of different lengths."

self.__flist = flist

def getFList(self):

"""Returns component list."""

return self.__flist

def getDim(self):

"""Returns dimension of definition domain."""

return [self.__dimd, self.__dimr]

Sage Example 8: Class for Boolean maps (in boolF.sage)

38

def getTT(self):

"""Returns truth table as list of bitlists."""

nn = 2**(self.__dimd)

qq = self.__dimr

clist = []

for j in range(0,qq):

clist.append(self.__flist[j].getTT())

transp = []

for j in range(0,nn):

trrow = []

for i in range(0,qq):

trrow.append(clist[i][j])

transp.append(trrow)

return transp

def value(self,xx):

"""Evaluates Boolean map."""

ll = len(xx)

assert ll == self.__dimd, "boolF_Error: Block has false length."

index = bbl2int(xx)

vlist = []

for j in range(0,self.__dimr):

vlist.append(self.__flist[j].getTT()[index])

return vlist

Sage Example 9: Boolean maps—continued

39

	Elementary Operations on Bits
	Description of Boolean Functions
	The Number of Boolean Functions
	Bitblocks and Boolean functions
	Logical Expressions and Conjunctive Normal Form
	Polynomial Expressions and Algebraic Normal Form
	Boolean Functions of Two Variables
	Boolean Maps
	Linear Forms and Linear Maps
	Systems of Boolean Linear Equations
	The Representation of Boolean Functions and Maps
	Boolean Circuits
	Circuits for Basic Integer or Logical Operations
	Circuits and Programs
	Measuring the Complexity of Circuits
	Appendix: Boolean Maps in Sage
	Conversion of Bitblocks
	Class for Boolean Functions
	Class for Boolean Maps

