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For the encryption of computer data we need algorithms that operate on
bitblocks, are fast—and thereby suited for large data sets and high transfer
speeds—and optimally resist sophisticated cryptanalysts. Therefore subjects
of Part II of these cryptology lecture notes are:

• Construction principles for bitblock ciphers

– Product ciphers, SP networks, Feistel networks, nonlinearity

• Example ciphers of special relevance

– Lucifer, DES, AES

• The most important cryptanalytic approaches

– Algebraic, linear, and differential cryptanalysis

The mathematical appendix C gives a gentle introduction to Boolean
functions and Boolean maps for beginners that might not feel comfortable
with the algebraic treatment of Boolean algebra.

The mathematical appendix under the title “Fourier Analysis of Boolean
Maps” focusses on nonlinearity: How to recognize, measure, and prevent
unwanted linearity in encryption functions or in their building blocks.

Our goals are:

1. Describe the general mathematical framework for defining encryption
functions on bitblocks, that is on vectors in a vector space Fl2 over the
two element field F2.

2. Develop some criteria that help in assessing the strength of encryption
functions.



Chapter 1

Composition of Ciphers

A first approach to constructing strong ciphers is the composition of several
simple transformation steps. We saw some examples of this approach al-
ready in classical cryptography, and we saw how this often resulted in much
stronger ciphers. But this effect is not guaranteed, and does not crop up
in all cases. In this section we consider some basic aspects of this approach
that is an essential ingredient of the construction of strong bitblock ciphers.

Terminologically we distinguish between

Multiple ciphers: combinations of instances of the same encryption func-
tion but with different keys.

Cascades: combinations of different encryption functions (also called prod-
uct ciphers).

2
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1.1 Multiple Ciphers and Group Structures

Multiple Ciphers

Let F = (fk)k∈K be a cipher over the alphabet Σ, where fk : Σ∗ −→ Σ∗ is
the encryption function corresponding to the key k ∈ K. The set of all of
encryption functions is denoted by

F̃ = {fk | k ∈ K} ⊆ Map(Σ∗,Σ∗).

By forming the double cipher

F (2) = (fh ◦ fk)h,k∈K

the key space is significantly enlarged from K to K ×K. In the same way
we can construct the triple cipher F (3), . . ., the n-fold cipher F (n). All this
makes sense only when

(A) F̃ is not a semigroup.

If F̃ is a semigroup, then for each pair of keys h, k ∈ K there exists a key
x ∈ K such that fh◦fk = fx, and we don’t get any new encryption functions
by this kind of composition—a typical case of an “illusory complication”,
the effective keysize didn’t increase at all!

We observe an even better effect when

(B) F̃ generates a subsemigroup of Map(Σ∗,Σ∗) of large size.

And the best we can hope for is:

(C) The map K ×K −→ F̃ (2) ⊆ Map(Σ∗,Σ∗) is injective.

For a finite key space K we can express this also in the form:

(C’) #F̃ (2) = #{fh ◦ fk | h, k ∈ K} = (#K)2.

The Group Property of a Block Cipher

A block cipher is uniquely characterized by its effect on Σr for a given
exponent r, the blocksize. (For the moment we don’t care about continuing
it to strings of arbitrary lengths or about “padding” shorter strings to full
blocklength.)

A block cipher preserves lengths if it transforms Σr to itself. Then in
a canonical way F̃ is a subset of the symmetric group S(Σr), hence finite,
and without restriction we may assume that also the keyspace K is finite.
For such block ciphers the semigroup property (the converse of (A) above) is
equivalent with the group property. This follows from the well-known simple
lemma:
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Lemma 1 Let G be a finite group, H ≤ G a subsemigroup, that is H 6= ∅
and HH ⊆ H. Then H is a group, in particular 1 ∈ H.

Proof. Each g ∈ G has finite order, gm = 1 for some m. If g ∈ H, then
1 = gm ∈ H, and g−1 = gm−1 ∈ H. 3

This proves:

Proposition 1 Let F be a length preserving block cipher over a finite al-
phabet. Then the following statements are equivalent:

(i) For any two keys h, k ∈ K there exists an x ∈ K such that fh◦fk = fx.

(ii) The set F̃ of encryption functions is a group.

Remark

The probability that two random elements of the symmetric group Sn gen-
erate the whole group Sn or at least the alternating group An is

> 1− 2

(ln lnn)2
for large n.

Source: John Dixon, The probability of generating the symmetric group.
Mathematische Zeitschrift 110 (1969), 199–205.

For n = 264, a typical size for a block cipher, this lower bound is ≈
0.86. With high probability it should generate the full or at least the “half”
permutation group on the blocks. The concrete proof however might be
difficult. One would try to determine the order of some concrete encryption
functions by their effect on certain concrete messages, and then take the
lowest common multiple as a lower bound for the group order.

In any case it seems that in general a multiple cipher is stronger than
the underlying simple cipher. We’ll discuss this again in Sections 1.3 and
1.4.
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1.2 Examples of Multiple Ciphers

Examples of Groups

Each of the following length preserving ciphers forms a group:

• The shift ciphers over Σ with respect to a group structure on Σ

• The monoalphabetic substitutions over Σ

• The Bellaso ciphers with a fixed period

• The block transpositions of a fixed length

DES

DES is a block cipher on F64
2 with keyspace F56

2 . Campbell and Wiener
in (Crypto 92) proved that DES generates the alternating group of order
264. Shortly before Coppersmith had shown that the group order is at
least 10277. Only much later someone noted that Moore and Simmons in
Crypto 86 had published the lengths of several cycles that would have
sufficed to show that DES is not a group—a fact that for several years was
viewed as an open conjecture.

Historical Examples

The composition of a polyalphabetic cipher of period l and another one of
period q has period lcm(l, q). Application: Key generating machines as
mentioned in Part I, see the web page http://www.staff.uni-mainz.de

/pommeren/Cryptology/Classic/4 Cylinder/LongPeriods.html.
Another historical example: the double columnar transposition that is

considerably stronger than the simple columnar transposition.

Composition of Bellaso Cipher

The composition of two Bellaso ciphers of periods l and q has period
lcm(l, q), essentially the product lq. However its security amounts at most
to the sum l + q in view of an attack with known plaintext:

Assume known plaintext of length l+ q (over the alphabet Z/nZ). This
yields l + q linear equations for l + q unknows—the characters of the two
keys. Assume that l < q. Then the situation is

Plaintext a0 a1 . . . al−1 al . . . aq−1 . . .
Key 1 h0 h1 . . . hl−1 h0 . . . . . . . . .
Key 2 k0 k1 . . . kl−1 kl . . . kq−1 . . .

Ciphertext c0 c1 . . . cl−1 cl . . . cq−1 . . .
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Taken together this is a Bellaso cipher with key

(h0 + k0, h1 + k1, . . .)

and period lcm(l, q).
Let the known plaintext be (a0, . . . , al+q−1). Then the system of linear

equations for the l + q unknowns h0, . . . , hl−1, k0, . . . , kq−1 ∈ Z/nZ is:

h0 + k0 = c0 − a0,

h1 + k1 = c1 − a1,
...

hl−1 + kl−1 = cl−1 − al−1,

h0 + kl = cl − al,
...

hl+q−1 mod l + kl+q−1 mod q = cl+q−1 − al+q−1.

This cannot have a unique solution: If we add a fixed value x to all hi, and
subtract x from all kj , then we get another solution. Therefore for simplicity
we may assume h0 = 0. If the keys are not randomly chosen but built from
keywords, then a simple “Caesar exhaustion” will reveal the “true” keys
later. For decryption the shifted keys are equivalent. And since we eliminated
one unknown quantity, in general even l+ q − 1 known plaintext letters are
enough for uniquely solving the remaining l+ q − 1 equations. We won’t go
into the details but give an exercise for interested readers.

Exercise

Consider the ciphertext

CIFRX KSYCI IDJZP TINUV GGKBD CWWBF CGWBC UXSNJ LJFMC

LQAZV TRLFK CPGYK MRUHO UZCIM NEOPP LK

For an attack with known plaintext assume that

• the plaintext (is in German and) starts with “Sehr geehrter ...” (a
common beginning of a letter)

• some keylengths are already ruled out by trial & error; the actual
lengths to test for a double Belaso cipher are 42 = 6× 7.

(A coincidence analysis, even if it doesn’t give enough confidence in a defi-
nite period, should suffice to exclude all but a few combinations of possible
keylengths.)
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1.3 Cryptanalysis of Double Ciphers

Meet in the Middle

The name of this attack against double encryption goes back to Merkle
and Hellman in 1981. (Don’t confuse it with the “Man in the Mid-
dle” attack against cryptographic protocols.) They formalized an attack
that worked in “classical times” against rotor machines, see the web
page http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic

/5 Rotor/AnalRot.html.
Consider the composition of two encryption functions with different keys:

Σ∗
fk−→ Σ∗

fh−→ Σ∗

a 7→ b 7→ c.

Assume a pair (a, c) of corresponding plaintext and ciphertext is known,
and assume that the exhaustion of the simple cipher is feasible. Then the
attacker builds two tables:

• all fk(a), k ∈ K,

• all f−1
h (c), h ∈ K,

and compares them. Each coincidence yields a possible pair (h, k) ∈ K2

of keys that can be further inspected, say with further known (or guessed)
plaintext.

Expenses

This attack needs

• 2 ·#K encryptions (not (#K)2),

• 2 ·#K memory cells.

Noting that we need only store one of the two tables we even halve the
number of memory cells.

With the usual prefixes for memory sizes

210 220 230 240 250 260

Kilo Mega Giga Tera Peta Exa

and using 1 byte = 8 bits we see that 60 bit keys need memory that ex-
ceeds the (actually) available capacities. However for cryptanalysis the time
requirements are more critical than memory requirements. Therefore as a
general finding we may state:

The security of a double cipher is not significantly better than
the security of the underlying simple cipher. In particular the
bitlength of a key exhaustion is not doubled but only increased
by 1 bit.
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False Alarms

One question yet awaits an answer: How many of the coincidences in com-
paring the two tables lead to a wrong pair of suspected keys? That is, how
likely are false alarms?

Here is a heuristic consideration: Assume we encrypt n-bit blocks with l-
bit keys. Then the tables have 2l entries, resulting in 22l comparisions. Since
the number of possible values is 2n we expect about N1 = 22l−n coincidences.
(Implicitly assuming that the values behave like random. By the Birthday
Paradox we expect the first coincidence after 2n/2 trials, but this is irrelevant
in the present context.)

If we test the pitched key pairs with a second known plaintext block,
then we are left with N2 = N1/2

n = 22l−2n candidates. After testing t
known plaintext blocks we expect to keep Nt = 22l−tn candidates—but of
course at least one, the right one.

Thus in general we find a unique solution as soon as

t ≥ 2l

n
.

Examples

1. DES, n = 64, l = 56: N1 = 248, N2 = 2−16. We need about 2 blocks of
known plaintext.

2. IDEA, n = 64, l = 128: N1 = 2192, N2 = 2128, N3 = 264, N4 = 1. We
need about 4 blocks.

3. AES, n = 128, l = 128: N1 = 2128, N2 = 1. We need about 2 blocks.
But the number #K = 2128 will by far exceed our time and memory
resources (as in Example 2).

Time-Memory-Tradeoff

A more general consideration yields a “Time Memory Tradeoff”: Under-
taking a Meet in the Middle attack we may spare memory, allowing more
execution time, by generating only partial tables:

If during a pass we fix s bits of both h and k, then we need 2l−s memory
cells for both of the tables of fk(a)’s and f−1

h (c)’s. As a compensation we
have to go through 22s passes. The expenses are:

2 · 2l−s encryptions for building one pair of tables,
22s comparisions of one pair of tables, in total

2 · 2l+s encryptions,
2 · 2l−s memory cells.
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Multiplying the number of encryptions and the number of needed mem-
ory cells we get 4 · 22l, independently from s. This gives the attacker some
freedom in using her resources in a flexible way.

Example DES: If the attacker owns 128 terabytes of memory, she can
generate 2 tables of 240 blocks each, hence choose s = 56 − 40 = 16. Then
she needs 2 · 272 encryptions. This is feasible, at least for the world’s largest
secret service.

Summary

Double ciphers don’t improve the security of encryption in a worthwile way.
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1.4 Triple Ciphers

The last section unveiled a principal weakness of double encryption. There-
fore, to get a real improvement, we move on to triple encryption. An often
used scheme is “EDE” (Encryption, Decryption, Encryption)

fg ◦ f−1
h ◦ fk for g, h, k ∈ K.

Why is fh inverted? The advantage of this scheme is its compatibility with
simple encryption by choosing keys g = h = k.

The Meet in the Middle attack also applies to this scheme. Thus the
effective key length (for exhaustion) is not tripled but only doubled, but
that’s OK for 56 or 64-bit keys.

Often the scheme is somewhat simplified as “two-key triple encryption”:

f = fk ◦ f−1
h ◦ fk for h, k ∈ K.

This scheme has a weakness under an attack with chosen plaintext that
however worries only paranoiacs. Consider the scenario

Σ∗
fk−→ Σ∗

f−1
h−→ Σ∗

fk−→ Σ∗,
a 7→ b 7→ b′ 7→ c.

Step 1: Using #K encryptions and #K memory cells precalculate the table

{f−1
h (b0) | h ∈ K}

for a fixed intermediate value of b0.

Step 2: Then calculate for all keys k ∈ K:

ak := f−1
k (b0) (the chosen plaintext),

ck := f(ak),

bk := f−1
k (ck).

The second assignment is possible in an attack with chosen plaintext,
which implies that we can evaluate f with any plaintexts. The expenses
are 5 ·#K simple encryptions. If bk = f−1

h (b0), then we keep the pair
(h, k) of keys for further examination.

Σ∗ -fk Σ∗ -
f−1
h

Σ∗ -fk Σ∗

ak -
f

ck

b0 -
f−1
h bkk

�
�

�	

f−1
k

@
@

@I f−1
k

f−1
h (b0)

?
= f−1

k (ck)
i��
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The most efficient known attack is described in:

• Van Oorschot/Wiener: A known plaintext attack on two-key triple
encryption. Eurocrypt 90.
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1.5 Cascades of Different Ciphers

Examples

1. Monoalphabetic substitutions and transpositions commute. Combin-
ing more than one of each doesn’t make sense since each of these two
types forms a group. Composing one monoalphabetic substitution and
one (simple) transposition makes a weak cipher. Solving it by a cipher-
text only attack starts with a frequency count that reveals the most
common letters.

2. The same remark applies to periodic polyalphabetic ciphers and trans-
positions. But if we take different period lengths for each step we get a
fairly complex cipher, however it is too complex for manual operation.

3. The Enigma composed a monoalphabetic cipher with several polyal-
phabetic substitutions of different periods, followed by one more
monoalphabetic substitution. The result was a single polyalphabetic
substitution with a very large period.

4. The ADFGVX cipher used by the German army in WW I consisted of a
substitution followed by a columnar transposition. For the substitution
the 26 letters and 10 digits were distributed into a 6-by-6 square in
an order defined by the key. Then each character was replaced by its
coordinates in this square that were denoted by A, D, F, G, V, X. The
French (Painvin und Givierge) had many successes in breaking this
cipher.

5. Composing a monoalphabetic cipher with an autokey cipher is one of
the “modes” that make block ciphers a little bit harder, see Chapter 3.

6. Finally recall that Porta’s disk cipher had a representation as com-
position of a monoalphabetic substitution with a Bellaso (aka Vi-
genère) cipher.

As a résumé we may state that cascades of different ciphers in general
increase the security, but not always. In any case the situation requires a
careful analysis before we trust a newly constructed product cipher.



Chapter 2

Bitblock Ciphers and Feistel
Networks

This chapter contains basic facts about bitblock ciphers and some ap-
proaches to their construction.

13
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2.1 Bitblock Ciphers—Introduction

Description

Bitblock ciphers operate over the alphabet Σ = F2 = {0, 1}, and basically
encrypt blocks of fixed length conserving this length, controlled by a key
that itself is a bitblock of a certain length l. The encryption functions are
defined as maps of the set Fn2 into itself, and the set Fl2 serves as key space.

For constructing and analyzing bitblock ciphers we usually view Fn2 as
a vector space of dimension n over the two-element field F2. Sometimes we
equip Fn2 with the structure of the field F2n , on rare occasions we structure
it as cyclic group of order 2n, thinking of integer addition “with carry”
mod 2n.

Thus we describe a bitblock cipher as a map

F : Fn2 × Fl2 −→ Fn2

or as a family (Fk)k∈K of maps

Fk : Fn2 −→ Fn2 for k ∈ K = Fl2

where Fk(a) = F (a, k).

Note In this chapter the mathematical symbol n is used for the length of
the bitblocks, not for the size of the alphabet.

We might also view a bitblock cipher as a monoalphabetic substitution
over the alphabet Σ′ = Fn2 .

The extension of a cipher to bitstrings of arbitrary lengths is subject of
Chapter 3 on “modes”, and is of no concern for the moment, and likewise
we don’t care how to pad shorter bitstrings.

Choice of the Block Length

The block length should be large enough to preclude the methods that break
monoalphabetic substitutions, in particular analyses of patterns and fre-
quencies. Moreover we would like to avoid any kind of leaks that reveal
information about the plaintext, for example repeated ciphertext blocks.

If the sender didn’t systematically prevent repetitions, an attacker could
mount a codebook attack by collecting pairs of ciphertext and known
plaintext for a fixed (but unknown) key. In this way she would construct
her own codebook. A large codebook would allow breaking many future
messages even if it didn’t reveal the key. To prevent this attack we require:

• #Σ′ = 2n should be larger than the number of available memory cells,
even assuming a very powerful attacker.
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• Keys should be changed quite regularly.

In view of the Birthday Paradox an even stronger criterion is adequate:
If the attacker has collected in her codebook about

√
#Σ′ = 2n/2 plaintext-

ciphertext pairs, the probability of a “collision” is approximately 1
2 . There-

fore we require that the number 2n/2 surpasses the available storage. And
keys should be changed long before this number of blocks is encrypted.

In the “pre-AES” age bitblock ciphers usually had 64-bit blocks. From
our point of view this is by far insufficient, at best justified by frequent key
changes. We prefer 128 bits as block length. This is also the block length of
the new standard AES.

This consideration might look somewhat paranoid. But it is a typical
example of the security measures in modern cryptography: The cipher de-
signers work with large security margins and avoid any weaknesses even far
away from a practical use by an attacker. Thus the security requirements of
modern cryptography by far surpass the requirements typical for classical
cryptography. This may sound exaggerated. But the modern algorithms—
that in fact offer these huge security margins—can also resist future progress
of cryptanalytic capabilities.
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2.2 Polynomials over Finite Fields

In this section bitblock cryptography is “reduced” to algebra with polyno-
mials.

Let K be a field. Given a polynomial ϕ ∈ K[T1, . . . , Tn] in n indeter-
minates T1, . . . , Tn, we define a function Fϕ : Kn −→ K by evaluating the
polynomial ϕ at n-tuples (x1, . . . , xn) ∈ Kn,

Fϕ(x1, . . . , xn) := ϕ(x1, . . . , xn).

Note that we carefully distinguish between polynomials and polynomial
functions. Polynomials are elements of the polynomial ring K[T1, . . . , Tn]
where the elements Ti—the “indeterminates”—are a set of algebraically
independent elements. That means that the infinitely many monomials
T e11 · · ·T enn are linearly independent over K.

In general (for infinite fields) there are many more (“non-polynomial”)
functions on Kn. But not so for finite fields—in other words, over a finite
field all functions are polynoms:

Theorem 1 Let K be a finite field with q elements, and n ∈ N. Then every
function F : Kn −→ K is given by a polynomial ϕ ∈ K[T1, . . . , Tn] of partial
degree ≤ q − 1 in each Ti.

The proof of Theorem 1 is in Appendix B, a more elementary proof for
the case K = F2 is in Appendix C.

Corollary 1 Let m,n ∈ N. Then every map F : Kn −→ Km is given by
an m-tuple (ϕ1, . . . , ϕm) of polynomials ϕi ∈ K[T1, . . . , Tn] of partial degree
≤ q − 1 in each Ti.

Corollary 2 Every map F : Fn2 −→ Fm2 is given by an m-tuple (ϕ1, . . . , ϕm)
of polynomials ϕi ∈ F2[T1, . . . , Tn] all of whose partial degrees are ≤ 1.

From this the algebraic normal form (ANF) of a Boolean function
F : Fn2 −→ F2 derives: For a subset I = {i1, . . . , ir} ⊆ {1, . . . , n} let xI be
the monomial

xI = xi1 · · ·xir .

Then F has a unique representation as

F (x1, . . . , xn) =
∏
I

aIx
I for all x = (x1, . . . , xn) ∈ Kn where aI = 0 or 1.

In particular the 2n monomial functions x 7→ xI constitute a basis of the
vector space Map(Fn2 ,F2) over F2, and the number of these functions is 22n .
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2.3 Algebraic Cryptanalysis

Attacks with Known Plaintext

Consider a bitblock cipher, given by the map

F : Fn2 × Fl2 −→ Fn2

Then F is an n-tuple F = (F1, . . . , Fn) of polynomial functions in n + l
variables all of whose partial degrees are ≤ 1.

An attack with known plaintext a ∈ Fn2 and corresponding ciphertext
c ∈ Fn2 leads to a system

F (a, x) = c

of n polynomial equations for the unknown key x ∈ Fl2.
Systems of polynomial equations (over arbitrary fields) are one of the

subjects of algebraic geometry. A rule of thumb says

The solution set for x has dimension 0 “in general” for n ≥ l.

(I. e. it consists of a few isolated solutions. Otherwise, if the solution set
allows for free parameters—or has dimension ≥ 1—, the attacker needs
some more blocks of known plaintext.)

The general theory of polynomial equations is quite deep, in particular if
we search for concrete solution procedures. But maybe the observation that
only partial degrees ≤ 1 occur makes a difference?

Examples

Example 1: Let n = l = 2,

F (T1, T2, X1, X2) = (T1 + T2X1, T2 + T1X2 +X1X2),

a = (0, 1), c = (1, 1) ∈ F2
2. Then the system of equations for the key

(x1, x2) ∈ F2
2 is (

1
1

)
=

(
0 + x1

1 + 0 + x1x2

)
.

The obvious solution is x1 = 1, x2 = 0.

Example 2, linear maps: If F is a linear map, then the system of equations
has an efficient solution by the methods of linear algebra (n linear
equations in l unknowns). For this method to work F needs to be
linear only in x.

Example 3, substitution: The complexity (or simplicity) of a polynomial
equation is not always clear at first sight. Here is an example (over
F2):

x1x2x3 + x1x2 + x1x3 + x2x3 + x2 + x3 = 0.
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The substitutions xi = ui + 1 transform it to

u1u2u3 + u1 = 0

(for an easy proof look in the reverse direction). The solutions are

u1 = 0, u2, u3 arbitrary or u1 = u2 = u3 = 1.

Thus the complete solution of the original equation is

x1 = 1, x2, x3 arbitrary or x1 = x2 = x3 = 0.

The Complexity of the Algebraic Attack

In the examples the solutions were easily found. But in general this task is
too complex.

There are two powerful general approaches for solving systems of (poly-
nomial) equations over F2:

• SAT solvers. SAT denotes the satisfiability problem of propositional
logic. Consider a logical expression in Boolean variables x1, . . . , xn and
ask if there exist values of the variables that make the expression
“True”. In other words consider a Boolean function f and ask if it
assumes the value 1. A SAT solver is an algorithm that takes a log-
ical expression and decides the satisfiability by finding a solution x,
or showing there’s no solution. The naive algorithm uses the truth ta-
ble and exhausts the 2n possible arguments. However there are much
faster algorithms, the most popular being the DPLL algorithm (after
Davis, Putnam, Logemann, and Loveland) and BDD based algorithms
(Binary Decision Diagram).

• Elimination using Groebner bases.

Both methods work well for a small number of unknowns. With a growing
number of unknowns their complexity becomes unmanageable. Of course we
always find a solution by searching through the complete value table. But
this naive method is inefficient (exponential in the number of unknowns,
hopeless for 80 or more unknowns). But also the costs of SAT solvers and
Groebner-basis methods grow exponentially with the number of unknowns.
Not even the fact that all partial degrees are ≤ 1 is of vital help. The basic
resault is:

Theorem 2 (Garey/Johnson) The problem of finding a common zero of
a system of polynoms f1, . . . , fr ∈ F2[T1, . . . Tn] is NP-complete.

Proof. See [2]. 3

What “NP-complete” means will be answered later in this lecture (see
Part III, Chapter 6). In fact SAT was the first problem in history shown to
be NP-complete.
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Interpretation

A common interpretation of this theorem is: For an appropriately chosen
block cipher F : Fn2 × Fl2 −→ Fn2 the attack with known plaintext (against
the key k ∈ Fl2) is not efficient. However from a strict mathematical point
of view the theorem doesn’t prove anything of practical relevance:

1. It relates to an algorithm for arbitrary polynomial equations (over F2).
It doesn’t contain any assertion for special classes of polynomials, or
for a concrete system of equations.

2. It gives a pure proof of (non-) existence, and provides no hint as how
to construct a concrete example of a “difficult” system of equations.
Note that we know that some concrete systems admit easy solutions.

3. Even if we could find concrete examples of “difficult” systems the the-
orem would not make any assertion whether only some rare instances
(the “worst cases”) are difficult, or almost all (the “generic cases”)—
and this is what the cryptologist wants to know. Maybe there is an
algorithm that solves polynomial systems for almost all tuples of un-
knowns in an efficient way, and only fails for a few exceptional tuples.

Despite these critical comments the theorem raises hope that there are “se-
cure” bitblock ciphers, and the designers of bitblock ciphers follow the

Rule of thumb Systems of linear equations for bits admit very efficient
solutions. Systems of nonlinear equations for bits in almost all cases
admit no efficient solution.

A recent article on the difficulty of systems of polynom equations is

• D. Castro, M. Giusti, J. Heintz, G. Matera, L. M. Pardo:
The hardness of polynomial equation solving. Found. Comput. Math.
3 (2003), 347–420.

Interpolation Attack

A variant of algebraic cryptanalysis with known plaintext is the interpolation
attack, developed in

• Thomas Jakobsen, Lars R. Knudsen: The interpolation attack on
block ciphers, FSE 1997.

The idea is simple: Equip the vector space Fn2 with a suitable multiplication
and interpret it as the finite field K = F2n of characteristic 2. An encryption
function with a fixed key k ∈ Fl2 then is a function Fk : K −→ K, hence
a polynomial in one indeterminate over K. Let d be its degree. Then using
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interpolation this polynomial is determined by d+1 known plaintext blocks.
The same is true for the inverse function. Using this the attacker can encrypt
and decrypt without knowing the key explicitly.

The cipher designer who wants to prevent this attack should take care
that encryption and decryption functions for every fixed key have large de-
grees as polynomials over K. This is realistic since polynomials over K may
have (effective) degrees up to 2n − 1.

But beware that this attack may also work for some polynomials of high
degree, for example for “sparse” polynomials having only a few coefficients
6= 0.

Linearisation of Overdetermined Systems of Equations

Systems of equations of higher order are sometimes solvable, if they are
overdetermined, consisting of much more equations than unknowns. Then
one simply treats some monomials as additional independent unknowns.
Let’s illustrate this by a simple example of three equations with two un-
knowns x and y:

x3 + xy + y5 = 1,

2x3 − xy = 0,

xy + 3y5 = 3.

We substitute all occuring monomials: u := x3, v := xy, w := y5 and get
the linear system

u+ v + w = 1

2u− v = 0

v + 3w = 3

consisting of three equations involving three unknowns. The solution (in
this case even manually derived) is u = 0, v = 0, w = 1. It is unique over a
field K of characteristic 6= 7. From here we get the complete solution of the
original system: x = 0, y = 1 or any 5th root of unity of K.

This attack gained some popularity in 2002 when there was a rumor that
the new AES be vulnerable under this attack. However this rumor didn’t
survive a closer examination. As it turned out there were much too many
dependencies between the linear equations.
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2.4 SP Networks

In an ideal world we would know how to reliably measure the security of a
bitblock cipher

F : Fn2 × Fl2 −→ Fn2
for realistic values of the block length n and the key length l, say of an order
of magnitude of 128 bits or more.

In fact we know explicit measures of security, for example the linear
potential, or the differential potential, that quantify the deviation from lin-
earity, or the algebraic immunity, or others. Unfortunately all of these only
give necessary, not sufficient, conditions for security, and moreover the ef-
ficient computability of these measures is limited to small block lengths n,
about 8 or slightly larger.

Lacking a general efficient approach to security the design of bitblock
ciphers usually relies on a structure that, although not obligatory, in practice
seems to provide plausible security according to verifiable criteria. Most of
the generally approved standard ciphers, such as DES and AES, follow this
approach.

Rounds of Bitblock Ciphers

This common design scheme starts by constructing Boolean maps of small
dimensions and then extending them to the desired block length in several
steps:

1. Define one or more Boolean maps of small dimension q (= block length
of the definition domain), say q = 4, 6, or 8, that are good for sev-
eral security criteria. These maps are called S-boxes (“S” stands for
Substitution), and are the elementary building blocks of the cipher.

2. Mix the round input with some of the key bits and then apply m S-
boxes in parallel (or apply the one S-box m times in parallel) to get a
map with the desired input width n = mq.

3. Then permute the complete resulting bitblock over its total width.

4. These steps together are a “round” of the complete scheme. Asset the
weaknesses of the round map, that mainly result from using S-boxes
of small dimension. Then reduce these weaknesses in a reasonably
controlled way by iterating the scheme over several rounds of the same
structure but with a changing choice of key bits.

5. Don’t stop as soon as the security measures give satisfying values but
add some surplus rounds to get a wide security margin.

Figure 2.1 outlines the scheme for a single round.
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round input (n bits)

???
. . . . . .

??? key

k
n = mq of l bits�����[⊕ or other composition]

?
. . .
?

. . . . . .
?
. . .
?

S

?
. . .
?

. . . . . .

. . . . . .

S

?
. . .
?

P

???
. . . . . .

???
round output (n bits)

Figure 2.1: A single round of a bitblock cipher (S is a, maybe varying, S-box,
P , a permutation, k, the key)

Shannon’s Design Principles

The complete scheme is a special case of a somewhat more general proposal
that goes back to Shannon who required two basic features of block ciphers:

Diffusion The bits of the plaintext block “smear” over all parts of the block.
This is done by applying permutations (a. k. a. as transpositions).

Confusion (complex dependencies) The interrelation between plaintext
block and key on the one hand, as well as ciphertext block on the
other hand should be as complex as possible (in particular as nonlin-
ear as possible). Basic building blocks for this are substitutions.

The overall effect of both requirements, taken together, should result in an
unforeseeable change of ciphertext bits for a slight change of the key.

The attacker should have no means to recognize whether a
guessed key is “nearly correct”.

Product Ciphers after Shannon

For the construction of strong block ciphers Shannon proposed an alternat-
ing sequence of Substitutions and transpositions (= Permutations), so-called
SP-networks:

Fn2
S1(•,k)−→ Fn2

P1(•,k)−→ Fn2 −→ . . .

. . . −→ Fn2
Sr(•,k)−→ Fn2

Pr(•,k)−→ Fn2
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depending on a key k ∈ Fl2. In this scheme

Si = i-th substitution

Pi = i-th permutation

Pi ◦ Si = i-th round

Alltogether the encryption function consists of r rounds.

Example: Lucifer I (Feistel 1973)

Note that the permutations are special linear maps P : Fn2 −→ Fn2 . Some
recent bitblock ciphers, the most prominent being AES, replace permuta-
tions by more general linear maps that provide an even better diffusion.
However the proper term “LP-network” is not yet in use.
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2.5 Feistel Networks

Horst Feistel was the first (in the open world) who explicitly applied Shan-
non’s design principles when he constructed the Lucifer ciphers.

The Kernel Map

Assume the blocksize is even: n = 2s. Decompose blocks a ∈ Fn2 into their
left and right halves:

a = (L,R) ∈ Fs2 × Fs2
(We use uppercase letters to avoid confusion with the dimension l of the
keyspace.) Moreover we have to agree on the order of the bits in a block:

• The natural order has the LSB (Least Significant Bit) always at the
right end and assigns it the index 0, the MSB (Most Significant Bit)
at the left end with index n− 1:

b = (bn−1, . . . , b0) ∈ Fn2 .

This corresponds to the base 2 representation of natural numbers in
the integer interval [0 . . . 2n[:

bn−1 · 2n−1 + · · ·+ b1 · 2 + b0 ∈ N

This is the order we use in most situations.

• The IBM order has the bits in reverse (LSB at left, MSB at right)
and assigns them the indices 1 to n:

a = (a1, . . . , an) ∈ Fn2 .

This corresponds to the usual indexing of the components of a vector.
Sometimes, in exceptional cases, the indices 0 to n− 1 are used.

The elemantery building blocks of a Feistel cipher are represented by
a kernel map

f : Fs2 × Fq2 −→ Fs2,

that need not fulfill any further formal requirements. In particular we don’t
require that the f(•, k) be bijective.

However to get a useful cipher we should choose a kernel map
f that already provides good confusion and diffusion. It should
consist of a composition of substitutions and transpositions and
be highly nonlinear.
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Description of the Rounds

A Feistel cipher consists or r rounds. Each round uses a q-bit round key
that is derived from the key k ∈ Fl2 by a process called the key schedule:

αi : Fl2 −→ Fq2 for i = 1, . . . , r.

Then round i has this form:

Li−1 Ri−1 ∈ Fs2 × Fs2

k ∈ Fl2

f(Ri−1, αi(k))

⊕
(XOR, bitwise addition)

Li = Ri−1 Ri

?

?

?

?

@
@
@
@
@
@@R

�
�

�
�

�
�

�

?

We recognize the autokey principle in form of the addition of the left
half and the transformed right half of a bitblock.

Algorithmic Description

From the graphical description we easily derive an algorithmic description:

Input −→ a = (a0, a1) ∈ Fs2 × Fs2
a2 := a0 + f(a1, α1(k))

– 1st round, result (a1, a2)
...

...
ai+1 := ai−1 + f(ai, αi(k))

– i-th round, result (ai, ai+1)
– [ai = Ri−1 = Li, ai+1 = Ri]

...
...

Output ←− c = (ar, ar+1) =: F (a, k)

Decryption

The decryption is done by the formula

ai−1 = ai+1 + f(ai, αi(k)) for i = 1, . . . , r.

This boils down to the same algorithm, but the rounds in reverse order. Or
in other words: The key schedule follows the reverse direction.

In particular we proved:
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Theorem 3 (Feistel) Let F : F2s
2 ×Fl2 −→ F2s

2 be the block cipher with ker-
nel map f : Fs2×F

q
2 −→ Fs2 and key schedule α = (α1, . . . , αr), αi : Fl2 −→ Fq2.

Then the encryption function F (•, k) : F2s
2 −→ F2s

2 is bijective for every
key k ∈ Fl2.

Addendum. Decryption follows the same algorithm with the same ker-
nel map f but the reverse key schedule (αr, . . . , α1).

Note When the deryption starts with c = (ar, ar+1), then as a first step
the two halves must be swapped because the algorithm starts with
(ar+1, ar). To simplify this, in the last round of a Feistel cipher the
interchange of L and R is usually dropped.

Remarks

• If f and the αi are linear so is F .

• Usually the αi are only selections, hence as maps projections
Fl2 −→ Fq2.

• Other graphical descriptions of the Feistel scheme are:

a) a ladder

-
L0

-R0 L1

?

f1

∗ -
R1 L2

6

f2

∗

∗

-R2

?

f3

-

6
∗ -

· · ·

· · · Ri = Li−1 ∗ fi(Ri−1)

Li = Ri−1

fi = f(•, αi(k))

b) a twisted ladder

- - - -? ? ? ?
∗ ∗ ∗ ∗

@
@
@
@
@

@
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@

@
@
@
@
@

@
@
@
@
@�
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· · ·

· · ·

L0

R0

f1

L1

R1

f2

L2

R2

f3

Generalizations

1. Replace the group (Fs2,+) by an arbitrary group (G, ∗). Then the
formulas for encryption and decryption are:

ai+1 = ai−1 ∗ f(ai, αi(k))),

ai−1 = ai+1 ∗ f(ai, αi(k)))−1.
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2. Unbalanced Feistel ciphers (Schneier/Kelsey): Divide the
blocks into two different halves: Fn2 = Fs2 × Ft2, x = (λ(x), ρ(x)).
Then the encryption formula is:

Li = ρ(Li−1, Ri−1) ∈ Fs2,
Ri = λ(Li−1, Ri−1) + f(Li, αi(k))) ∈ Ft2.

Examples

1. Lucifer II (Feistel 1971, published in 1975),

2. DES (Coppersmith et al. for IBM in 1974, published as US
standard in 1977),

3. many newer bitblock ciphers.

The usefulness of Feistel networks relies on the empirical observations:

• By the repeated execution through several rounds the “(s, q)-bit secu-
rity” (or “local security”) of the kernel map f is expanded to “(n, l)-bit
security” (or “global security”) of the complete Feistel cipher F .

• The complete cipher is composed of manageable pieces that may be
“locally” optimized for security.

Luby/Rackoff underpinned the first of these observations by a theo-
retical result: A Feistel cipher with at least four rounds is not efficiently
distinguishable from a random permutation, if its kernel map is random. This
means that by Feistel’s construction a map with good random properties
but too small block length expands to a map with good random properties
and sufficient block length.

Michael Luby, Charles Rackoff: How to construct pseudoran-
dom permutations from pseudorandom functions. SIAM Journal
on Computing 17 (1988), 373–386

Two words of caution about the Luby/Rackoff result:

• It doesn’t say anything about an attack with known or chosen plain-
text.

• It holds for true random kernel maps. However concrete Feistel ci-
phers usually restrict the possible kernel maps to a subset defined by
a choice of 2q keys.
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2.6 Algebraic Attacks for Few Rounds

Formulas for Few Rounds

We write the recursion formula for a Feistel cipher as

(Li, Ri) = (Ri−1, Li−1 + f(Ri−1, ki))

where ki = αi(k) is the round key.

Proposition 2 The results (Lr, Rr) of a Feistel cipher after r = 2, 3, or
4 rounds satisfy the equations

L2 − L0 = f(R0, k1),

R2 −R0 = f(L2, k2);

L3 −R0 = f(L0 + f(R0, k1), k2),

R3 − L0 = f(L3, k3) + f(R0, k1);

L4 − L0 = f(R0, k1) + f(R4 − f(L4, k4), k3),

R4 −R0 = f(L4, k4) + f(L0 + f(R0, k1), k2).

We used minus signs in order to make the formulas valid also for a gen-
eralization to abelian groups. In the (present) binary case plus and minus
coincide. The purpose of the formulas is that beside the round keys ki they
involve only the plaintext (L0, R0) and the ciphertext (Lr, Rr), data that
are assumed as known for algebraic cryptanalysis.

Proof. In the case of two rounds the equations are

L1 = R0,

R1 = L0 + f(R0, k1),

L2 = R1 = L0 + f(R0, k1),

R2 = L1 + f(R1, k2) = R0 + f(L2, k2);

the assertion follows immediately.
In the case of three rounds we have

L1 = R0,

R1 = L0 + f(R0, k1),

L2 = R1 = L0 + f(R0, k1),

R2 = L1 + f(R1, k2) = R0 + f(L2, k2),

L3 = R2 = R0 + f(L0 + f(R0, k1), k2),

R3 = L2 + f(R2, k3) = L0 + f(R0, k1) + f(L3, k3).

The case of four rounds is left to the reader. 3
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Two-Round Ciphers

For a known plaintext attack assume that L0, R0, L2, R2 are given. We have
to solve the equations

L2 − L0 = f(R0, k1)

R2 −R0 = f(L2, k2)

for k1 and k2. Thus the security of the cipher only depends on the difficulty
of inverting the kernel function f . Since usually q, the bitlength of the partial
keys, is much smaller than the total key length l the 2q+1 evaluations of f
for an exhaustion could be feasible. Note that this consideration doesn’t
depend on the key schedule α—the attacker simply determines the actually
used keybits (k1, k2).

Example: We equip Fs2 with the multiplication “·” of the field Ft, t = 2s,
[see Appendix A] and take

f(x, y) = x · y.

(Note that f is non-linear as a whole, but linear in the key bits.)
Assume the key schedule is defined by l = 2q and ki = left or right
half of k, depending on whether i is odd or even. Then the equations
become

L2 − L0 = R0 · k1,

R2 −R0 = L2 · k2,

hence are easily solved. (If one of the factors R0 or L2 vanishes, we
need another known plaintext block.)

Of course chosing a kernel map f that is linear in the key bits was a
bad idea anyway. But we could solve also slightly more complicated
equations, say quadratic, cubic, or quartic.

Three-Round Ciphers

In the case of three rounds the equations are considerably more complex
because f is iterated. However the attacker can mount a Meet-in-the-Middle
attack with a single known plaintext, if the bit length q of the partial keys
is not too large: She calculates the intermediate results (L1, R1) of the first
round for all possible partial keys k1, and stores them in a table. Then she
performs an exhaustion over the last two rounds as described for two-round
ciphers above. The total expenses are 3 ·2q evaluations of f , and 2q memory
cells.
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These considerations suggest that Feistel ciphers should have at least
four rounds and support the above mentioned result by Luby and Rack-
off. We see how the resistance of the scheme against an algebraic attack
increases with the number of rounds, at least if the kernel map f is suffi-
ciently complex.

For the example above with kernel map = multiplication of F2s the
equations become:

L3 −R0 = [L0 +R0 · k1)] · k2,

R3 − L0 = [R0 +R3] · k1.

They are nonlinear in the key bits but easily solved in the field F2s .

Four-Round Ciphers

The equations are much more complex. Even in the example they are
quadratic in two unknowns:

L4 − L0 = [R0 +R4 + L4 · k2] · k1,

R4 −R0 = [L4 + L0 +R0 · k1] · k2.

However in this trivial example they can be solved: eliminating k1 yields a
quadratic equation for k2 [Exercise].
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2.7 Lucifer

History and Relevance

Lucifer was the first published bitblock cipher. Horst Feistel at IBM
developed it around 1970. It is in fact a Feistel cipher, and is a predecessor
of the standard cipher DES that was developed shortly after. Compared with
DES Lucifer seems stronger at first sight, but has some decisive weaknesses
that became apparent in the meantime.

Here we describe the variant that is called “Lucifer II” because
of its publication date in 1975. First published (1973 in Scientific
American) was a somewhat different variant called “Lucifer I”.

These are the characteristics of Lucifer (compare the figures below):

• 128-bit key. This is a large enough key space even for today’s require-
ments.

• 128-bit blocks. This is also considered sufficent down to the present
day.

• For processing the 128-bit blocks (of keys and texts) are divided into
16 bytes. (From a historic point of we should say “octets” instead of
“bytes” since in early computers a byte not necessarily consisted of
exactly 8 bits.)

• The Feistel scheme consists of 16 rounds.

• In each round the 8 bytes of the right half Ri of a block (= 64 Bits)
are processed quasi in parallel. In other words, every round processes
8 blocks à 1 byte, each one independently from the other ones.

• Each of the rounds consists of a substitution and a permutation. In
between some key bits are added (XORed).

• Nonlinearity enters the algorithm only by the substitution. The newly
added key bits are processed in a linear way in the actual round, but
then are input to the nonlinear substitution of the next round.

• The substitution of a byte starts with a decomposition into two halves
à 4 bit each of which is separately transformed by a substitution

S0, S1 : F4
2 −→ F4

2.

S0 and S1 are fixed substitutions used during the whole encryption
process. Only the assignement of S0 and S1 to the 4-bit halves varies
depending on a certain key bit. It is common use to call such non-
linear BOOLEean maps “S-boxes” when they occur as even more
elementary building blocks of a kernel map.
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The algorithm is very well suited for an implementation in hardware,
in particular for 8-bit architectures. It is not so efficient in software for its
many bit permutations.

Composing the kernel map of many small (identical or similar) S-boxes
is a way followed often also today. A rule of thumb: the smaller the S-boxes,
the more rounds are needed to achieve security.

The presentation of the algorithm follows the paper

• Arthur Sorkin: Lucifer, a cryptographic algorithm. Cryptologia 8
(1984), 22–41.

The Key Schedule

Denote the 16 bytes of the key k ∈ F128
2 by

k = (k0, . . . , k15) ∈ (F8
2)16

(IBM order but beginning with 0). Round i involves the selection

αi(k) = (αij(k))0≤j≤7 of 8 bytes αij(k) = k7i+j−8 mod 16.

This formula looks complicated but describes a quite simple selection
scheme:

Round Position
0 1 2 3 4 5 6 7

1 0 1 2 3 4 5 6 7
2 7 8 9 10 11 12 13 14
3 14 15 0 1 2 3 4 5
4 5 6 7 8 9 10 11 12
5 12 13 14 15 0 1 2 3
6 3 4 5 6 7 8 9 10
7 10 11 12 13 14 15 0 1
8 1 2 3 4 5 6 7 8
9 8 9 10 11 12 13 14 15

10 15 0 1 2 3 4 5 6
11 6 7 8 9 10 11 12 13
12 13 14 15 0 1 2 3 4
13 4 5 6 7 8 9 10 11
14 11 12 13 14 15 0 1 2
15 2 3 4 5 6 7 8 9
16 9 10 11 12 13 14 15 0

With each new round the selection is cyclically shifted by 7 positions.
Note that each byte occurs at each position exactly once. The position de-
fines to which byte of the actual 64-bit blocks the actual key byte applies.
Furthermore the byte αi0(k) in position 0 serves as “transformation control
byte”.
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The Round Map

In round i the input, that is the right 64-bit part of the actual block, is
divided into eight bytes

r = (r0, . . . , r7).

L R

64 64

r0 r1 r2 r3 r4 r5 r6 r7

8 8 8 8 8 8 8 8

Byte number j is transformed as follows by this round:

r′j

?

⊕
?

?P
⊕
?

?
Sx

?
S1−x

rjl′′j

-

αij(k)

�

Here l′′j is a fixed selection of eight bits from the left part of the actual block.
The transformation control byte

αi1(k) = (b0, . . . , b7)

is taken from right to left, and x = b7−j .
The definition of the kernel map f is clear from this picture. The explicit

formula is not quite compact, therefore we omit it.

The S-Boxes

The S-boxes
S0, S1 : F4

2 −→ F4
2

are given by their value tables. Here the 4-bit blocks are written in hexadec-
imal notation, for example 1011 = B.
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x = 0 1 2 3 4 5 6 7 8 9 A B C D E F

S0(x) = C F 7 A E D B 0 2 6 3 1 9 4 5 8

x = 0 1 2 3 4 5 6 7 8 9 A B C D E F

S1(x) = 7 2 E 9 3 B 0 4 C D 1 A 6 F 8 5

The Permutations

The permutation P permutes the bits of a byte as follows:

P : F8
2 −→ F8

2,

(z0, z1, z2, z3, z4, z5, z6, z7) 7→ (z2, z5, z4, z0, z3, z1, z7, z6).

The bitwise addition of the left half to the transformed right half follows
a permutation whose description is: Divide the left half of the actual block
into eight bytes:

L = (l0, l1, l2, l3, l4, l5, l6, l7).

Rotate these cyclically after each step. Then for rj they are in the positions

(l′0, . . . , l
′
7) = (lj , . . . , l7+j mod 8).

Finally construct the byte l′′j as

l′′j = (Bit 0 of l′7,Bit 1 of l′6,Bit 2 of l′2, . . .)

etc. in the order (7, 6, 2, 1, 5, 0, 3, 4), and add it to rj .



Chapter 3

Modes of Operation of Block
Ciphers

A bitblock encryption function f: Fn2 −→ Fn2 is primarily defined on blocks
of fixed length n. To encrypt longer (or shorter) bit sequences the sender
must

1. split the sequence into n-bit blocks,

2. pad the last block if necessary with

• zeroes or

• random values or

• context information.

Then each block is encrypted by f , but in general one uses some sort of
“chaining”. Four chaining procedures, called “modes of operation” were
standardized together with DES:

• ECB,

• CBC,

• CFB,

• OFB.

These chaining procedures apply to each block cipher. The standardization
in the context of AES added two more modes:

• CTR,

• XTS.

35



K. Pommerening, Bitblock Ciphers 36

For a description of the modes a suitable general framework is a “block
alphabet” Σ, with Fn2 as most important example, equipped with a group
composition ∗. Furthermore we fix an encryption function

f : Σ −→ Σ.

The dependence on the key doesn’t matter in this context and therefore is
dropped in the notation.
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3.1 ECB = Electronic Code Book

Description

Let r be the number of blocks of the plaintext (a1, . . . , ar).

Encryption: In ECB mode each block is encrypted independently of the
other blocks:

a = (a1, . . . , ar) 7→ c = (c1, . . . , cr) ∈ Σr with ci = f(ai).

a1 - c1

a2 - c2

...
...

ar - cr

Decryption: ai = f−1(ci).

Properties

ECB mode simply is a monoalphabetic substitution on Σ. For sufficiently
large #Σ this is secure from a ciphertext-only attack. But there are several
disadvantages:

• ECB encryption leaks information on identical blocks. Even
if the plaintext is not random, the rule of thumb from the
Birthday Paradox applies in the interpretation (for Σ = Fn2 ):
“After 2n/2 bits ECB encryption begins to leak informa-
tion.” Wikipedia has a nice illustration of this effect, see
http://en.wikipedia.org/wiki/Block cipher mode of operation

The other modes significantly enlarge this bound.

• Building a “codebook” from known plaintext blocks is not unrealis-
tic. For structured messages, say bank transactions, there occur many
blocks of known plaintext.

• An active attack by exchanging or inserting single blocks of ciphertext
(for example with known, “sympathic” plaintext) is possible. For ex-
ample an attacker who knows which block contains the receiver of a
money transfer could exchange this block with a corresponding block
from another transfer for another receiver. He doesn’t need to know
the key.

http://en.wikipedia.org/wiki/Block_cipher_mode_of_operation
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• If the situation allows for an attack with chosen plaintext (as in a black
box analysis), trial encryption and dictionary attacks can be mounted.

In view of these problems generating diffusion between the plaintext blocks
seems a much better approach. In the following sections we look at modes
of operation that achieve this effect.
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3.2 CBC = Cipher Block Chaining

Description

Choose a start value c0 at random (also called IV = “Initialization Vector”).
Then the procedure looks like this:

c0����9
a1 - ∗ -f c1����9
a2 - ∗ -f c2

...
...

����9
ar - ∗ -f cr

Encryption: In CBC mode the formula for encryption is:

ci := f(ai ∗ ci−1) for i = 1, . . . , r

= f(ai ∗ f(ai−1 ∗ · · · f(a1 ∗ c0) . . .)).

Decryption: ai = f−1(ci) ∗ c−1
i−1 for i = 1, . . . , r.

Properties

• Each ciphertext block depends on all previous plaintext blocks (diffu-
sion).

• An attacker is not able to replace or insert text blocks unnoticeably.

• Identical plaintext blocks in general encrypt to different ciphertext
blocks.

• On the other side an attack with known plaintext is not more difficult,
compared with ECB mode.

• Each plaintext block depends on two ciphertext blocks.

• As a consequence a transmission error in a single ciphertext block
results in (only) two corrupted plaintext blocks (“self synchronisation”
of CBC mode).

Question: Does it make sense to treat the initialization vector c0 as secret
and use it as an additional key component? (Then for the example
of DES we had 56 proper key bits plus a 64 bit initialization vector,
making a total of 120 key bits.)
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Answer: No!

Reason: In the decryption process only a1 depends on c0. This means that
keeping c0 secret conceals known plaintext only for the first block. If
the attacker knows the second or a later plaintext block, then she may
determine the key as in ECB mode (by exhaustion, or by an algebraic
attack, or by any other attack with known plaintext).

Remarks

1. CBC is the composition f◦ (ciphertext autokey). In the trivial case
f = 1Σ only the (completely unsuited) ciphertext autokey cipher with
key length 1 is left.

2. (John Kelsey in the mailing list cryptography@c2.net, 24 Nov 1999)
If there occurs a “collision” ci = cj for i 6= j, then f(ai ∗ ci−1) =
f(aj∗cj−1), hence ai∗ci−1 = aj∗cj−1 and therefore a−1

j ∗ai = cj−1∗c−1
i−1.

In this way the attacker gains some information on the plaintext.

By the Birthday Paradox this situation is expected after about
√

#Σ
blocks.

The longer the text, the more such collisions will occur. This effect
reassures the rule of thumb for the frequency of key changes: change
the key in good time before you encrypt

√
#Σ blocks.
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3.3 Variants of CBC

Plaintext Autokey

Replacing the ciphertext autokey encryption for CBC mode by plaintext
autokey yields the following scheme:

a0 XXXXz
a1 XXXXz

- ∗ -f c1

XXXXz

a2 - ∗ -f c2

...
...

ar - ∗ -f cr

that sometimes is called PBC = Plaintext Block Chaining.

Encryption: After choosing an initialization vector a0 the formula for en-
cryption is:

ci := f(ai ∗ ai−1) for i = 1, . . . , r.

Decription: The formula is:

ai = f−1(ci) ∗ a−1
i−1 for i = 1, . . . , r.

However this method seems not to be in widely accepted use, and there
seem to be no relevant results on its security.

PCBC = error-Propagating CBC

This procedure mixes CBC and PBC. It follows the scheme:

c0����9

XXXXz

a1 - ∗ -f c1����9
a2 - ∗ -f c2

...
...

XXXXz
����9

ar - ∗ -f cr
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Encryption: After choosing the initialization vector a0 = e (neutral ele-
ment of the group) encryption is by the formula

ci := f(ai ∗ ai−1 ∗ ci−1) for i = 1, . . . , r.

In the case of a bitblock cipher we choose a0 = 0, the null block.

Decryption: The formula is

ai = f−1(ci) ∗ c−1
i−1 ∗ a

−1
i−1 for i = 1, . . . , r.

This mode was implemented in early versions of Kerberos but then aban-
doned.

Generalization by Meyer/Matyas

ci := f(ai ∗ h(ai−1, ci−1)) for i = 1, . . . , r,

where in the case Σ = Fn2 addition modulo 2n is suggested for h.

BCM = Block Chaining Mode

This mode follows the scheme:

c0 - d1
���������9

a1 - ∗ -f c1 - ∗
?

d2
���������9

a2 - ∗ -f c2 - ∗
?

d3

...
...

���������9
ar - ∗ -f cr

Formula for encryption:

di := c0 ∗ . . . ∗ ci−1,

ci := f(ai ∗ di) for i = 1, . . . , r.



K. Pommerening, Bitblock Ciphers 43

An Application of CBC

CBC-MAC (= “Message Authentication Code”) is a key-dependent “hash
function” that serves for checking the integrity of messages. It is standard-
ized in ISO/IEC 9797 and used in electronic banking.

Sender and receiver of the message—these could be the same person if
the MAC used for securing the integrity of a stored file—share the key k
and use the encryption function f = fk.

The MAC of a text a = (a1, . . . , ar) is the last ciphertext block where a
is encrypted in CBC mode. Hence

MAC(a) = cr = f(ar ∗ f(ar−1 ∗ · · · f(a1 ∗ c0) . . .)).

If MAC(a) is sent together with a, then the receiver may check the authen-
ticity of the sender and the integrity of the content. Only someone who has
the key can calculate this value correctly.

The disadvantage of this procedure is the need of sharing a secret k. In
a legal dispute each of the two parties can contend a forgery by the other
one.
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3.4 CFB = Cipher Feedback

Description (of the simplest version)

c0����9
a1 - ∗ -

f
c1����9

a2 - ∗ -
f

c2

...
...

����9
ar - ∗ -

f
cr

Encryption in CFB mode is by the formula

ci := ai ∗ f(ci−1) for i = 1, . . . , r

= ai ∗ f(ai−1 ∗ f(· · · a1 ∗ f(c0) . . .)).

Decryption: ai = ci ∗ f(ci−1)−1 for i = 1, . . . , r.

Properties

• As before the initialization vector is unsuited as additional key com-
ponent.

• As before this mode doesn’t make an attack with known plaintext
more difficult.

• Note that also decryption uses f , not f−1. Therefore:

– CFB mode doesn’t make sense for asymmetric ciphers.

– On the other hand CFB mode may be used with a (key depen-
dent) one-way or hash function f .

• For the identical map f = 1Σ CFB again reduces to ciphertext autokey.

• (David Wagner) ECB ◦CFB = CBC:

For a proof take c0 as initialization vector for CFB, and c′0 := f(c0) as
initialization vector for CBC. Then

c1 = CFB(a1) = a1 ∗ f(c0),

c′1 = ECB(c1) = f(a1 ∗ f(c0)) = f(a1 ∗ c′0) = CBC(a1),

c2 = CFB(a2) = a2 ∗ f(c1),

c′2 = ECB(c2) = f(a2 ∗ f(c1)) = f(a2 ∗ c′1) = CBC(a2),

etc.
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The Standardized Version

. . . uses a shift register, hence is defined only in the case of Σ = Fn2 . Here
1 ≤ t ≤ n, and the encryption procedure uses blocks ai ∈ Ft2 of length t.
The current ciphertext block ci of length t is shifted from the right into the
shift register (drawn in red):

q0 c0 -f p1 q1

?
a1 - -

⊕
c1

?
q1 c1 -f p2 q2

?
a2 - -

⊕
c2

...
...

?
qr−1 cr−1 -f pr qr

?
ar - -

⊕
cr

The qi are bitblocks of length n− t.
As it turned out later the security of this more general version decreases

with t. Therefore its use is not recommended.
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3.5 OFB = Output Feedback

Description (of the simplest version)

s0

?
f

a1 ∗ s1 = c1

?
f

a2 ∗ s2 = c2

?
...

...
...

?
f

ar ∗ sr = cr

This mode also was originally defined as shift register version. Here too using
a blocklength of t < n weakens the security [Jueneman, Crypto 82].

Encryption in OFB mode is by the formula

ci := ai ∗ si, si := f(si−1) for i = 1, . . . , r.

Decryption by the formula

ai = ci ∗ s−1
i , si := f(si−1) for i = 1, . . . , r.

Properties

• There is no diffusion. However identical plaintext blocks in general
yield different ciphertext blocks.

• In the case Σ = Fs2 OFB simply is a bitstream cipher where f serves
as “random generator”.

• If encryption or decryption is time critical, the sender or the receiver
(or both) might precalculate the “key stream” si.

• Here too the decryption uses only f , not f−1.

• For Σ = Fs2 the cipher is an involution, that is encryption and decryp-
tion are the same function. More generally this holds when the group
Σ has exponent 2.
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• Under an attack with known plaintext the pair (a1, c1) reveals the
value of s1, the next pair (a2, c2), the value of s2 = f(s1). This leads
to an attack with known plaintext against the function f itself.

• Keeping the initialization vector s0 secret doesn’t increase the security
of the cipher for OFB (like for the other modes).

Variant: Counter Mode CTR

The simplest case is

ci := ai ∗ f(i) for i = 1, . . . , r.

There are same slight variants, for example starting with another number
than 1.



Chapter 4

DES

The “Data Encryption Standard” (DES) is essentially a development by
an IBM research group around Feistel and Coppersmith. The NSA was
involved: It arranged for a modification of the S-boxes and a reduction of
the key length to 56 bits. Contrary to all speculations both of these changes
didn’t weaken the security.

DES was published in 1975, and standardized by NBS (National Bureau
of Standards—now NIST) in the USA in 1977. The objective was to provide
a reliable cipher for sensitive (but not top secret) data of the administration
for the next 10 or 15 years.

The standard requires a hardware implementation of the algorithm. The
proper name of the algorithm is DEA, but usually also software implemen-
tations are denoted by DES. From 1989 to 1998 the US administration
restricted the export of DES chips.

DES encrypts 64 bit blocks using a 56 bit key. The encryption of a block
starts with a fixed (known) permutation, and ends with the inverse permuta-
tion. Although this permutation is known it yields a first bit of diffusion. In
between there are 16 rounds that increase diffusion and confusion. The only
difference between the single rounds consists in the selection of a different
48 bit subset from the key.

The decryption algorithm is almost identical with the encryption algo-
rithm with the only difference that it runs through the key selection in the
reverse direction.

In the following sections we describe the algorithmus in steps “out-
wards from the interior”. In the figures⊕ denotes the bitwise addition mod 2
(XOR).

48
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4.1 The Kernel Map

The innermost layer of DES is the “kernel map”

f : F32
2 × F48

2 −→ F32
2 ,

that takes 32 text bits and 48 key bits as input. First some of the 32 text
bits are repeated, blowing them up to 48 bits. This “expansion map”

E : F32
2 −→ F48

2

is given by the following table:

32 1 2 3 4 5
4 5 6 7 8 9
8 9 10 11 12 13

12 13 14 15 16 17
16 17 18 19 20 21
20 21 22 23 24 25
24 25 26 27 28 29
28 29 30 31 32 1

The correct interpretation of this table is

E(b1b2 . . . b32) = b32b1b2b3 . . . b31b32b1.

The expanded 48 bits and the 48 bit partial key are added (as binary vec-
tors). The resulting 48 bits are divided into 8 groups each consisting of 6
bits. These groups are fed into the S-boxes 1 to 8:

Sj : F6
2 −→ F4

2 (j = 1, . . . , 8).

The description of the S-boxes is in the next section.
The S-boxes together make up the substitution

S : F48
2 −→ F32

2 .

Finally we apply the “P-box” (permutation)

P : F32
2 −→ F32

2

that is given by the following table meaning

P (b1b2 . . . b32) = b16b7 . . . b4b25.

16 7 20 21 29 12 28 17
1 15 23 26 5 18 31 10
2 8 24 14 32 27 3 9

19 13 30 6 22 11 4 25
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The complete kernel map is in the following figure:

32-bit input 48-bit partial key

F32
2

?
E E = expansion map

F48
2 F48

2
H
HHHHHj

�
���

���⊕
?

F48
2 = F6

2 × . . .× F6
2

?
S1

?
S8 Sj = j-th S-box

F32
2 = F4

2 × . . .× F4
2

?
P P = P-box

F32
2
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4.2 The S-Boxes

Each of the eight S-boxes Sj is given by a 4×16-matrix defined by the table

S1 14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7
0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8
4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0

15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13

S2 15 1 8 14 6 11 3 4 9 7 2 13 12 0 5 10
3 13 4 7 15 2 8 14 12 0 1 10 6 9 11 5
0 14 7 11 10 4 13 1 5 8 12 6 9 3 2 15

13 8 10 1 3 15 4 2 11 6 7 12 0 5 14 9

S3 10 0 9 14 6 3 15 5 1 13 12 7 11 4 2 8
13 7 0 9 3 4 6 10 2 8 5 14 12 11 15 1
13 6 4 9 8 15 3 0 11 1 2 12 5 10 14 7
1 10 13 0 6 9 8 7 4 15 14 3 11 5 2 12

S4 7 13 14 3 0 6 9 10 1 2 8 5 11 12 4 15
13 8 11 5 6 15 0 3 4 7 2 12 1 10 14 9
10 6 9 0 12 11 7 13 15 1 3 14 5 2 8 4
3 15 0 6 10 1 13 8 9 4 5 11 12 7 2 14

S5 2 12 4 1 7 10 11 6 8 5 3 15 13 0 14 9
14 11 2 12 4 7 13 1 5 0 15 10 3 9 8 6
4 2 1 11 10 13 7 8 15 9 12 5 6 3 0 14

11 8 12 7 1 14 2 13 6 15 0 9 10 4 5 3

S6 12 1 10 15 9 2 6 8 0 13 3 4 14 7 5 11
10 15 4 2 7 12 9 5 6 1 13 14 0 11 3 8
9 14 15 5 2 8 12 3 7 0 4 10 1 13 11 6
4 3 2 12 9 5 15 10 11 14 1 7 6 0 8 13

S7 4 11 2 14 15 0 8 13 3 12 9 7 5 10 6 1
13 0 11 7 4 9 1 10 14 3 5 12 2 15 8 6
1 4 11 13 12 3 7 14 10 15 6 8 0 5 9 2
6 11 13 8 1 4 10 7 9 5 0 15 14 2 3 12

S8 13 2 8 4 6 15 11 1 10 9 3 14 5 0 12 7
1 15 13 8 10 3 7 4 12 5 6 11 0 14 9 2
7 11 4 1 9 12 14 2 0 6 10 13 15 3 5 8
2 1 14 7 4 10 8 13 15 12 9 0 3 5 6 11

Each row is a permutation of the numbers 0, . . . , 15. To get Sj(b1 . . . b6)
we interpret b1b6 as binary representation of a number in {0, 3}, and b2b3b4b5
as binary representation of a number in {0, 15}. Then in the matrix for Sj
we go to row b1b6, column b2b3b4b5, and find a number there. We take the
binary representation of this number. Example:

S3(101100) = 0011 → Row 2, Column 6, number is 3.
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4.3 The Rounds

The 16 rounds of DES consist of maps

Ri : F64
2 × F56

2 −→ F64
2 (i = 1, . . . , 16),

that are defined in the following figure, using the i-th key selection

Ai : F56
2 −→ F48

2 (i = 1, . . . , 16).

li−1 ri−1 k

ri−1

HH
HHH

HHH
HHj

��
���

���
��� ?

�
�
�

�
�	

Ai

li−1 ⊕ f(ri−1, Ai(k))

32 bits 32 bits

The rounds only differ by their key selections Ai(k). We recognize the
Feistel scheme.
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4.4 The Key Selection

To complete the description of the rounds we have yet to describe the key
selection. First we expand the 56 bit key to 64 bits by appending a parity bit
after each 7 bit subblock. However it doesn’t matter which bit we append:
the additional bits never enter the algorithm. In any case the first step is a
map

Par: F56
2 −→ F64

2 .

In the second step we extract the original 56 bits, but in a different order,
given by the following table.

57 49 41 33 25 17 9
1 58 50 42 34 26 18

10 2 59 51 43 35 27
19 11 3 60 52 44 36
63 55 47 39 31 23 15
7 62 54 46 38 30 22

14 6 61 53 45 37 29
21 13 5 28 20 12 4

We have constructed a map

PC1 : F64
2 −→ F56

2

(“Permuted Choice 1”). Now we divide the 56 bits into two 28 bit halves,
and cyclically shift these to the left, all in all 16 times. This gives 16 maps

LSi : F28
2 −→ F28

2 (i = 1, . . . 16).

the amount of the shifts is given by the table:

1 1 2 2 2 2 2 2 1 2 2 2 2 2 2 1

The first two shifts are by one bit, the next 6 ones by two bits, and so on.
To get the i-th key selection Ai we apply the “Permuted Choice 2” after the
i-th shift:

PC2 : F56
2 −→ F48

2

where the 48 bits are chosen in the order of the following table (omitting
the bits 9, 18, 22, 25, 35, 38, 43, 54).

14 17 11 24 1 5
3 28 15 6 21 10

23 19 12 4 26 8
16 7 27 20 13 2
41 52 31 37 47 55
30 40 51 45 33 48
44 49 39 56 34 53
46 42 50 36 29 32
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The complete key selection is

Ai = PC2 ◦LSi ◦ · · · ◦ LS1 ◦PC1 ◦Par .

We summarize this construction in the following diagram:

F56
2

?
Par

F64
2

?
PC1

F56
2 = F28

2 × F28
2

?
LS1

?
LS1

F28
2 × F28

2
-

PC2 F48
2

?
LS2

?
LS2

...

?
LS16

?
LS16

F28
2 × F28

2
-

PC2 F48
2
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4.5 The Complete Algorithm

The last thing to do is to describe the initial permutation

IP: F64
2 −→ F64

2 .

This is done by the following table:

58 50 42 34 26 18 10 2
60 52 44 36 28 20 12 4
62 54 46 38 30 22 14 6
64 56 48 40 32 24 16 8
57 49 41 33 25 17 9 1
59 51 43 35 27 19 11 3
61 53 45 37 29 21 13 5
63 55 47 39 31 23 15 7

The inverse of IP is the final permutation IP−1. For convenience here is the
corresponding table:

40 8 48 16 56 24 64 32
39 7 47 15 55 23 63 31
38 6 46 14 54 22 62 30
37 5 45 13 53 21 61 29
36 4 44 12 52 20 60 28
35 3 43 11 51 19 59 27
34 2 42 10 50 18 58 26
33 1 41 9 49 17 57 25

Now the complete DES algorithm DESk with key k ∈ F56
2 is the compo-

sition

F64
2

IP−→ F64
2

R1(•,k)−→ . . .
R16(•,k)−→ F64

2
T−→ F64

2
IP−1

−→ F64
2 .

Here T is the interchange of the left and right 32 bit halves. The effect of
this additional interchange is that DES−1

k looks exactly like DESk except
that the order of the rounds is reversed.

Remark. The initial and final permutations maybe lead to a convenient
wiring of input and output contacts on small processors. They have
no cryptological effect because the cryptanalyst simply may strip them
off. For a software implementation they function as brakes—but one
must not omit them for a standard conforming implementation.



Chapter 5

Cryptanalysis of Bitblock
Ciphers

For cryptanalyzing bitblock ciphers we know some basic approaches:

1. exhaustion = brute-force searching the complete key space

2. algebraic attack, see Chapter 2

3. statistical attacks against hidden linearity:

(a) linear cryptanalysis (Matsui/Yamagishi 1992), the subject of
the following sections

(b) differential cryptanalysis (Murphy, Shamir, Biham 1990)

(c) generalizations and mixtures of (a) and (b)

Differential cryptanalysis was known at IBM and NSA already in 1974
when designing DES. In contrast apparently linear cryptanalysis—though
conceptually simpler—was unknown to the designers of DES. Accordingly
the resistance of DES against linear cryptanalysis is suboptimal. However
an important design criterion was:

• The S-boxes should be as nonlinear as possible.

In the following years many people developed generalizations and com-
binations of linear and differential cryptanalysis:

• related keys attack (Biham 1992, Schneier)

• differentials of higher order (Harpes 1993, Biham 1994, Lai 1994)

• differential-linear cryptanalysis (Langford/Hellman 1994)

• partial differentials (Knudsen 1995)

56
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• I/O-sum analysis (Harpes/Kramer/Massey 1995)

• S-box-pair analysis (Davies/Murphy 1995, Mirza 1996)

• boomerang attack (Wagner 1999)

• slide attack against (maybe hidden) periodicity in ciphers or key sched-
ules (Biryukov/Wagner 1999)

• impossible differentials (Biham/Biryukov/Shamir 1999)

All these statistical attacks—including linear and differential
cryptanalysis—hardly break a cipher in the sense of classical crypt-
analysis. They usually assume lots of known plaintexts, much more than
an attacker could gather in a realistic scenario. Therefore a more adequate
term is “analysis” instead of “attack”. The analyses make sense for finding
measures for some partial aspects of security of bitblock ciphers. They
measure security for example by the number of known plaintext blocks
needed for the attack. If a cipher resists an attacker even with exaggerated
assumptions on her capabilities, then we feel safe to trust it in real life.

Given an SP-network the analysis starts with the nonlinear components
of the single rounds, in particular with the S-boxes. The next step extends
the potential attack over several rounds. This shows how the cost of the
attack grows with the number of rounds. In this way we find criteria for the
number of rounds for which the cipher is “secure”—at least from this special
attack.

By the way we should never forget that the attack always relates to
a certain fixed algebraic structure; in most cases to the structure of the
plaintext space as a vector space over F2. Of course a similar attack could
relate to another structure. A seemingly complex map could look simple
if considered with the structure as cyclic group Z/nZ in mind—or even
with “exotic” structures invented for the analysis of this single map. In the
following however we only consider the structure as a vector space over F2,
the structure that is best understood.

Security Criteria for Bitblock Ciphers

To escape attacks bitblock ciphers, or their round maps, or their S-boxes,
should fulfill some requirements. For background theory see the mathemat-
ical Appendix D.

• Balance All preimages have the same number of elements, or in other
words, the values of the map are uniformly distributed. Irregularities
of the distribution would provide hooks for statistical cryptanalysis.
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• Diffusion/avalanche effect If a single plaintext bit changes, about
50% of the ciphertext bits change. This effect conceals similarity of
plaintexts.

• Algebraic complexity The determination of preimages or parts
thereof should lead to equations whose solution is as difficult as possi-
ble. This requirement is related to the algebraic degree of the map, but
only in an indirect way. A suitable measure is “algebraic immunity”.

• Nonlinearity We know several criteria that measure linearity, also
“hidden” linearity, and are relatively easy to describe and to handle.
For example they quantify how susceptible Boolean maps are for linear
or differential cryptanalysis.

– The “linear potential” should be as low as possible, the “linear
spectrum” (or “linear profile”) as balanced as possible.

– The “differential potential” should be as low as possible, the “dif-
ferential spectrum” (or “differential profile”) as balanced as pos-
sible.

– The “nonlinearity” (in a narrow sense as the Hamming distance
from affine maps) should be as large as possible.

– The “linearity distance”, the Hamming distance from maps with
“linear structure”, should be as large as possible.

Some of these criteria are compatible with each other, some criteria con-
tradict other ones. Therefore the design of a bitblock cipher requires a bal-
ance between different criteria. Instead of optimizing a map for a single
criterion the designer should aim at a uniformly high level for all criteria.

Cipher designers usually decide the conflict between balance and non-
linearity in favour of balance. But there is no really convincing reason for
this—the psychological reason seems to be that statistical attacks that use
the nonuniform distribution of the output of non-balanced maps are easier
to understand and therefore taken more seriously. The trade-off for nonlin-
earity is then handled by increasing the number of rounds.

In this section we freely use the notations and results from the mathe-
matical appendices A to E—often without explicit reference.
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5.1 The Idea of Linear Cryptanalysis

Consider a bitblock cipher F of block length n and key length l,

F : Fn2 × Fl2 −→ Fn2 .

Imagine the arguments of F as plain texts a ∈ Fn2 and keys k ∈ Fl2, the
values of F as cipher texts c ∈ Fn2 . A linear relation between a plaintext
a ∈ Fn2 , a key k ∈ Fl2, and a ciphertext c = F (a, k) ∈ Fn2 is described by
three linear forms

α : Fn2 −→ F2, β : Fn2 −→ F2, and κ : Fl2 −→ F2

as an equation
κ(k) = α(a) + β(c). (1)

If I = (i1, . . . , ir) is the index set that corresponds to the linear form κ—
that is κ(k) = ki1 + · · · + kir—, then writing (1) more explicitly we get an
equation for the sum of the involved key bits ki1 , . . . , kir :

ki1 + · · ·+ kir = α(a) + β(c),

For an attack with known plaintext a this reduces the number of unknown
key bits to l − 1 by elimination of one of these bits.

In general the odds of the relation (1) for concrete random values of k, a,
and c are about fifty-fifty: both sides evaluate to 0 or 1 with probability 1

2 .
Best for security is a frequency of 50% plaintexts a that make the relation
true for a fixed key k, where c = F (a, k) is the corresponding ciphertext.
This would make the relation indistinguishable from a pure accidental one.
If the probability of the relation,

pF,α,β,κ(k) :=
1

2n
·#{a ∈ Fn2 | κ(k) = α(a) + β(F (a, k))},

is conspicuously larger than 1
2 , this reveals a biased probability for the values

of the bits of k, and would result in a small advantage for the cryptanalyst.
If on the other hand the probability is noticeably smaller than 1

2 , then the
complementary relation κ(k) = α(a) + β(c) + 1 is true more often than
by pure chance. This also is a weakness. Because the situation concerning
the deviation of the probabilities from the ideal value 1

2 is symmetric (and
because the I/O-correlation and the potential are multiplicative, see Propo-
sition 6) it makes sense to consider symmetric quantities, the input-output
correlation:

τF,α,β,κ(k) := 2pF,α,β,κ(k)− 1

(in short: I/O-correlation) and the potential of a linear relation:

λF,α,β,κ(k) := τF,α,β,κ(k)2.



K. Pommerening, Bitblock Ciphers 60

The I/O-correlation takes values between −1 and 1. It is the correlation
of two Boolean functions on Fn2 , namely α + κ(k) and β ◦ Fk. (For fixed k
the value of κ(k) is constant, i. e. 0 or 1.) The first of these functions picks
input bits, the second one, output bits. In general the correlation of Boolean
functions f, g : Fn2 −→ F2 is the difference

c(f, g) :=
1

2n
· [#{x ∈ Fn2 | f(x) = g(x)} −#{x ∈ Fn2 | f(x) 6= g(x)}] .

The potential takes values between 0 and 1, and measures the deviation
of the probability from 1

2 . In the best case it is 0, in the worst, 1. This “bad”
extreme case would provide an exact and directly useable relation for the
key bits. Figure 5.1 illustrates the connection.

Figure 5.1: Connection between probability p, I/O-correlation τ , and poten-
tial λ

Note that the key k is the target of the attack. As long as it is unknown,
the value of pF,α,β,κ(k) is also unknown. Thus for cryptanalysis it makes
sense to average the probabilities of a linear relation over all keys:

pF,α,β,κ :=
1

2n+l
#{(a, k) ∈ Fn2 × Fl2 | κ(k) = α(a) + β(F (a, k))}. (2)

This average probability is determined by the definition of the cipher F
alone, at least theoretically, neglecting efficiency. Calculating it however
amounts to an exhaustion of all plaintexts and keys, and thus is unreal-
istic for a realistic cipher with large block lengths. We extend the definition
for the “average case” also to I/O-correlation and potential:

τF,α,β,κ := 2pF,α,β,κ − 1,
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λF,α,β,κ := τ2
F,α,β,κ.

Note that the I/O-correlation is also a mean value, but the potential is not!
Shamir already in Crypto 85 noticed that the S-boxes of DES ad-

mit linear relations with conspicuous probabilities. However it took another
seven years until Matsui (after first attempts by Gilbert and Chassé 1990
with the cipher FEAL) succeeded in making systematic use of this observa-
tion. For estimating κ(k) he proceeded as follows (in the case pF,α,β,κ >

1
2 ;

in the case pF,α,β,κ <
1
2 take the bitwise complement, in the case pF,α,β,κ = 1

2
the method is useless):

1. Collect N pairs of plaintexts and corresponding ciphertexts
(a1, c1), . . . , (aN , cN ).

2. Count the number

t := #{i = 1, . . . , N | α(ai) + β(ci) = 0}.

3. Decide by majority depending on t:

• If t > N
2 , estimate κ(k) = 0.

• If t < N
2 , estimate κ(k) = 1.

The case t = N
2 is worthless, however scarce—we might randomize the de-

cision between 0 and 1.
If we detect a linear relation whose probability differs from 1

2 in a suf-
ficient way, then this procedure will have a good success probability for
sufficiently large N . This allows to reduce the number of unknown key bits
by 1, applying elimination.

As a theoretical result from these considerations we’ll get a connection
between the number N of needed plaintext blocks and the success probabil-
ity, see Table 5.4.

The more linear relations with sufficiently high certainty the attacker
finds, the more she can reduce the size of the remaining key space until
finally an exhaustion becomes feasible. A concrete example in Section 5.7
will illustrate this.

Example

For a concrete example with n = l = 4 we consider the Boolean map f
that is given by the values in Table 5.1—by the way this is the S-box S0 of
Lucifer—and define the bitblock cipher

F : F4
2 × F4

2 −→ F4
2 by F (a, k) := f(a+ k).



K. Pommerening, Bitblock Ciphers 62

x y = f(x) x4 y1 + y2 + y4

0 0 0 0 1 1 0 0 0 0
0 0 0 1 1 1 1 1 1 1
0 0 1 0 0 1 1 1 0 0
0 0 1 1 1 0 1 0 1 1
0 1 0 0 1 1 1 0 0 0
0 1 0 1 1 1 0 1 1 1
0 1 1 0 1 0 1 1 0 0
0 1 1 1 0 0 0 0 1 0
1 0 0 0 0 0 1 0 0 0
1 0 0 1 0 1 1 0 1 1
1 0 1 0 0 0 1 1 0 1
1 0 1 1 0 0 0 1 1 1
1 1 0 0 1 0 0 1 0 0
1 1 0 1 0 1 0 0 1 1
1 1 1 0 0 1 0 1 0 0
1 1 1 1 1 0 0 0 1 1

Table 5.1: An S-box for f : F4
2 −→ F4

2 and two linear forms (the S-box S0 of
Lucifer)

a a+ k c α(a) β(c) α(a) + β(c)

0010 1010 0011 0 1 1
0101 1101 0100 1 1 0
1010 0010 0111 0 0 0

Table 5.2: Estimating a key bit after Matsui

We encrypt using the key k = 1000 (that we’ll attack later as a test case).
For a linear relation we consider the linear forms

α(a) = a4, β(c) = c1 + c2 + c4, κ(k) = k4.

In Section 5.2 we’ll see that with these linear forms the relation κ(k) =
α(a)+β(c) for F has a quite large probability. Table 5.2 shows the ciphertexts
belonging to three plaintexts a (that later we’ll assume as known plaintexts).
The values of c are taken from Table 5.1. The number t of observed values
0 of α(a) + β(c) is t = 2. Hence the majority decision gives the estimate
k4 = 0 (being in cheat mode we know it’s correct).

How successful will this procedure be in general? We have to analyse the
problems:

1. How to find linear relations of sufficiently high probabilities?
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2. Since in general bitblock ciphers consist of several rounds we ask:

(a) How to find useful linear relations for the round function of an
iterated bitblock cipher?

(b) How to combine these over the rounds as a linear relation for the
complete cipher?

(c) How to calculate the probability of a combined linear relation for
the complete cipher from the probabilities for the single rounds?

The answer to the first question and part (a) of the second one is: from the
linear spectrum, see Section 5.3, that is by Fourier analysis, see Appendix D.
The following partial questions lead to the analysis of linear paths, see Sec-
tion 5.5, and the cumulation of probabilities, see Proposition 7. For (c) finally
we only find a coarse rule of thumb.

Fourier analysis is quite efficient if the cost (time and space) is considered
as function of the input size. Unfortunately this grows exponentially with the
dimension. Therefore Fourier analysis soon becomes infeasible for dimensions
more than 10. For serious block ciphers we have dimensions, or block and
key sizes, of 64 or 128 bits, far out of reach.

At first sight this objection concerns also question 2 (a). However the
single rounds usually consist of processing much smaller pieces, the S-boxes,
in parallel. Hence one tries to reduce the problem to the analysis of the
S-boxes, and this is feasible: Even AES uses S-boxes of dimension 8 only.
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Fn2 - Fn2

⊕Fn2

?
-f Fn2 a - b

k

?
-S c

Figure 5.2: A (much too) simple example—The graphics here and later rep-
resent the map f sometimes by the S-box S in the elementwise assignments.

5.2 Example A: A One-Round-Cipher

We consider examples that are much too simple for real world applications
but illustrate the principles of linear cryptanalysis in an easily intelligible
way. We always assume round functions of the type f(a+k), that is we add
the key—or an n-bit part of it—to the plaintext before applying a bijective
S-box f : Fn2 −→ Fn2 . This is a quite special method of bringing the key into
play but nevertheless realistic. The paradigmatic sample ciphers Lucifer,
DES, and AES do so, the term used with AES [1] is “key-alternating cipher
structure”.

The simplest model is encryption by the formula

c = f(a+ k),

see Figure 5.2. This example is pointless because one block of known plain-
text gives a solution for k:

k = f−1(c) + a.

Note that the attacker knows the inverse map f−1 that is part of the decryp-
tion algorithm. (One-way encryption methods that assume that f−1 is not
efficiently deducible from f are the subject of another part of cryptography,
see Part III, Chapter 6, of these lecture notes.)

The somewhat more involved example A stops this attack:

c = f(a+ k(0)) + k(1)

(see Figure 5.3). This is the simplest example for which the method of linear
cryptanalysis makes sense: Let (α, β) be a pair of linear forms with

β ◦ f(x)
p
≈ α(x), (3)

where the symbol
p
≈ reads as “equal with probability p”, or in other words

p = pf,α,β :=
1

2n
·#{x ∈ Fn2 | β ◦ f(x) = α(x)}.
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Fn2 - Fn2

⊕
Fn2

?
-f Fn2 -

Fn2

?
⊕

Fn2

a - b

k(0)

?
-S b′

k(1)

?
- c

Figure 5.3: Example A

Fn2 -f Fn2

F2

@
@@R

α
�

��	
β

p
≈

Figure 5.4: Diagram for an “approximative” linear relation

The diagram in Figure 5.4 illustrates Formula (3). Note that the linear form
κ of the general theory is implicit in the present context: Since the key
bits are simply added to plaintext and (“intermediary”) ciphertext we have
κ = α for k(0), and κ = β for k(1), hence κ(k(0), k(1)) = α(k(0)) + β(k(1)).

How does this scenario fit the general situation from Chapter 2? In ex-
ample A we have

• key length l = 2n, key space F2n
2 , and keys of the form k = (k(0), k(1))

with k(0), k(1) ∈ Fn2 .

• The cipher is defined by the map

F : Fn2 × Fn2 × Fn2 −→ Fn2 , (a, k(0), k(1)) 7→ f(a+ k(0)) + k(1).

• The linear form κ : Fn2 × Fn2 −→ F2 is κ(k(0), k(1)) = α(k(0)) + β(k(1)).

Hence the probability of a linear relation for a fixed key k = (k(0), k(1)) is

pF,α,β,κ(k) =
1

2n
·#{a ∈ Fn2 | κ(k) = α(a) + β(F (a, k))}

=
1

2n
·#{a ∈ Fn2 | α(k(0)) + β(k(1)) = α(a) + β(f(a+ k(0)) + k(1))}

=
1

2n
·#{a ∈ Fn2 | α(k(0)) = α(a) + β(f(a+ k(0)))},
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where we omitted β(k(1)) that occurs on both sides of the equation inside
the curly set brackets.

This expression is independent of k(1), and the slightly rewritten equation

pF,α,β,κ(k) =
1

2n
·#{a ∈ Fn2 | α(a+ k(0)) = β(f(a+ k(0)))}

shows that it assumes the same value for all k(0): With a also a+ k(0) runs
through all of Fn2 for a fixed k(0). Therefore this value must agree with the
mean value over all k:

pF,α,β,κ(k) = pF,α,β,κ =
1

2n
·#{x ∈ Fn2 | α(x) = β(f(x))} = p.

This consideration shows:

Proposition 3 In the scenario of example A the probability pF,α,β,κ(k) as-
sumes the same value

p =
1

2n
·#{x ∈ Fn2 | α(x) = β(f(x))}

for all keys k ∈ F2n
2 . In particular p coincides with the mean value from

Equation (2).

Using the notations from Figure 5.3 we have

β(c) = β(b′ + k(1)) = β(b′) + β(k(1))
p
≈ α(b) + β(k(1)) = α(a+ k(0)) + β(k(1)) = α(a) + α(k(0)) + β(k(1)).

This yields a linear relation for the bits of the key k = (k1, k2):

α(k(0)) + β(k(1))
p
≈ α(a) + β(c).

Treating the complementary relation

β ◦ f(x)
1−p
≈ α(x) + 1

in an analoguous way we get:

Proposition 4 In the scenario of example A let (α, β) be a pair of linear
forms for f with probability p as in Formula (3). Then p̂ = max{p, 1− p} is
the success probability for determing a single key bit by this linear relation
given one known plaintext block.
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a b b′ c α(a) + β(c)

0000 1000 0010 0011 1
0001 1001 0110 0111 1
0010 1010 0011 0010 0
0011 1011 0001 0000 1
0100 1100 1001 1000 1
0101 1101 0100 0101 1
0110 1110 0101 0100 1
0111 1111 1000 1001 1
1000 0000 1100 1101 1
1001 0001 1111 1110 1
1010 0010 0111 0110 1
1011 0011 1010 1011 1
1100 0100 1110 1111 1
1101 0101 1101 1100 1
1110 0110 1011 1010 1
1111 0111 0000 0001 0

Table 5.3: A linear relation for the key bits

Example

Take n = 4, and for f take the S-box S0 of Lucifer. As the two right-
most columns of Table 5.1 show the linear relation defined by (α, β), where
α(x) = x4 and β(y) = y1 + y2 + y4, has probability pf,α,β = 14

16 = 7
8 (provid-

ing strong evidence that the designers of Lucifer weren’t aware of linear
cryptanalysis).

As concrete round keys take k0 = 1000 and k1 = 0001. Table 5.3, running
through all possible 16 plaintexts, shows that α(a) +β(c) assumes the value
1 = α(k0) + β(k1) for this partial sum of key bits exactly 14 times—as
expected.

How large is the success probability pN of correctly estimating this par-
tial sum, assuming N = 1, 2, . . . random known plaintexts from the set of 2n

possible plaintexts? (For given linear forms α and β with p = pf,α,β .) This is
exactly the scenario of the hypergeometric distribution (for an explanation
of the hypergeometric distribution see Appendix E). Therefore we have:

Proposition 5 In example A let (α, β) be a pair of linear forms that defines
a linear relation for f with probability p. Then the success probability for
determining a key bit by this linear relation from N known plaintexts is

the cumulated probability pN = p
(s)
N of the hypergeometric distribution with

parameters 2n, s = p̂ · 2n, and N where p̂ = max{p, 1− p}.

If we neglect exact mathematical reasoning and work with asymptotic
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Nλ 1 2 3 4 . . . 8 9
pN 84, 1% 92, 1% 95, 8% 97, 7% . . . 99, 8% 99, 9%

Table 5.4: Dependence of the success probability on the number of known
plaintexts

approximations (as is common in applied statistics), then we can replace the
hypergeometric distribution by the normal distribution. The usual (quite
vaguely stated) conditions for this approximation are “p not too different
from 1

2 , N � 2n, but N not too small.” This gives the formula

pN ≈
1√
2π
·
∫ √Nλ
−∞

e−t
2/2 dt, (4)

where λ = (2p − 1)2 is the potential of the linear relation. The values as-
sociated with the normal distribution are well-known and yield Table 5.4.
Instead of the approximation by the normal distribution we could directly
use the hypergeometric distribution. This would, in particular for small N ,
give a more precise value but not a closed formula as simple as (4).

To get a success probability of about 95% we need N ≈ 3
λ known plain-

texts according to the table. In the concrete example above we had p = 7
8 ,

hence λ = 9
16 , and the number of known plaintexts needed for a 95% suc-

cess probability is N ≈ 5. Using Table 5.2 we succeeded with only N = 3
plaintexts. This is not a great surprise because the a-priori probability of
this success is about 90% (for Nλ = 27

16 ≈ 1, 68 . . .).

In this example the condition “N not too small” for the ap-
proximation by the normal distribution is more than arguable.
However determining the exact values for the hypergeometric
distribution is easy: Consider an urn containing 16 balls, 14 black
ones and 2 white ones, and draw 3 balls by random. Then the
probability of all of them being black is 26

40 , the probability of
two being black and one being white is 13

40 . Hence the probability
of at least two balls being black is 39

40 = 97, 5%. This is clearly
more than the 90% from the approximation (4). The remaining
probabilities are 1

40 for exactly one black ball, and 0 for three
white balls.
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 16 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
1 8 6 6 8 8 6 6 8 8 6 6 8 8 14 6 8
2 8 10 8 6 4 6 8 6 6 12 6 8 10 8 6 8
3 8 12 10 6 12 8 10 6 6 6 8 8 10 10 8 8
4 8 8 4 8 8 8 8 4 10 6 6 6 10 6 10 10
5 8 10 10 12 8 10 6 8 10 8 4 10 10 8 8 6
6 8 10 8 10 8 10 8 10 8 10 8 2 8 10 8 10
7 8 8 10 6 8 8 2 6 8 8 10 6 8 8 10 6
8 8 8 6 10 6 10 8 8 4 8 10 10 10 10 12 8
9 8 10 8 10 6 4 10 8 8 6 8 6 6 8 10 4
10 8 6 10 8 6 8 8 10 6 4 8 6 12 6 6 8
11 8 12 8 8 6 6 6 10 10 6 10 10 8 8 8 12
12 8 8 10 10 6 10 8 4 6 6 8 8 4 8 6 10
13 8 6 12 6 6 8 10 8 10 8 6 8 8 10 12 8
14 8 6 10 12 10 4 8 6 8 10 10 8 10 8 8 10
15 8 8 8 8 10 6 6 10 4 8 4 8 6 6 10 10

Table 5.5: Approximation table of the S-box S0 of Lucifer. Row and column
indices are linear forms represented by integers. To get the probabilities
divide by 16.

5.3 Approximation Table, Correlation Matrix,
and Linear Spectrum of a Boolean Map

Linear relations for a Boolean map (or S-box) f : Fn2 −→ Fq2 are true
with certain frequencies (or probabilities). We collect these frequencies in
a matrix of size 2n × 2q, called the approximation table of f . This table
gives, for each pair (α, β) of linear forms, the number of arguments x where
β ◦ f(x) = α(x). Table 5.5 shows the approximation table of the S-box S0 of
Lucifer. The entry 16 in the upper left corner says that the relation 0 = 0
is true in all 16 possible cases. At the same time 16 is the common denom-
inator by which we have to divide all other entries to get the probabilities.
In the general case the upper left corner would be 2n. The remaining entries
of the first column (corresponding to β = 0) are 8 because each non-zero
linear form α takes the value 0 in exactly half of all cases, that is 8 times. (In
the language of linear algebra we express this fact as: The kernel of a linear
form 6= 0 is a subspace of dimension n− 1.) For the first row an analogous
argument is true—provided that f is bijective (or balanced).

The correlation matrix and the linear spectrum (also called linear
profile or linearity profile—not to be confused with the linear complexity
profile of a bit sequence that is defined by linear feedback shift registers and
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 −1

4 −1
4 0 0 −1

4 −1
4 0 0 −1

4 −1
4 0 0 3

4 −1
4 0

2 0 1
4 0 −1

4 −1
2 −1

4 0 −1
4 −1

4
1
2 −1

4 0 1
4 0 −1

4 0
3 0 1

2
1
4 −1

4
1
2 0 1

4 −1
4 −1

4 −1
4 0 0 1

4
1
4 0 0

4 0 0 −1
2 0 0 0 0 −1

2
1
4 −1

4 −1
4 −1

4
1
4 −1

4
1
4

1
4

5 0 1
4

1
4

1
2 0 1

4 −1
4 0 1

4 0 −1
2

1
4

1
4 0 0 −1

4
6 0 1

4 0 1
4 0 1

4 0 1
4 0 1

4 0 2 0 1
4 0 1

4
7 0 0 1

4 −1
4 0 0 2 −1

4 0 0 1
4 −1

4 0 0 1
4 −1

4
8 0 0 −1

4
1
4 −1

4
1
4 0 0 −1

2 0 1
4

1
4

1
4

1
4

1
2 0

9 0 1
4 0 1

4 −1
4 −1

2
1
4 0 0 −1

4 0 −1
4 −1

4 0 1
4 −1

2
10 0 −1

4
1
4 0 −1

4 0 0 1
4 −1

4 −1
2 0 −1

4
1
2 −1

4 −1
4 0

11 0 1
2 0 0 −1

4 −1
4 −1

4
1
4

1
4 −1

4
1
4

1
4 0 0 0 1

2
12 0 0 1

4
1
4 −1

4
1
4 0 −1

2 −1
4 −1

4 0 0 −1
2 0 −1

4
1
4

13 0 −1
4

1
2 −1

4 −1
4 0 1

4 0 1
4 0 −1

4 0 0 1
4

1
2 0

14 0 −1
4

1
4

1
2

1
4 −1

2 0 −1
4 0 1

4
1
4 0 1

4 0 0 1
4

15 0 0 0 0 1
4 −1

4 −1
4

1
4 −1

2 0 −1
2 0 −1

4 −1
4

1
4

1
4

Table 5.6: Correlation matrix of the S-box S0 of Lucifer. Row and column
indices are linear forms represented by integers.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1

16
1
16 0 0 1

16
1
16 0 0 1

16
1
16 0 0 9

16
1
16 0

2 0 1
16 0 1

16
1
4

1
16 0 1

16
1
16

1
4

1
16 0 1

16 0 1
16 0

3 0 1
4

1
16

1
16

1
4 0 1

16
1
16

1
16

1
16 0 0 1

16
1
16 0 0

4 0 0 1
4 0 0 0 0 1

4
1
16

1
16

1
16

1
16

1
16

1
16

1
16

1
16

5 0 1
16

1
16

1
4 0 1

16
1
16 0 1

16 0 1
4

1
16

1
16 0 0 1

16
6 0 1

16 0 1
16 0 1

16 0 1
16 0 1

16 0 9
16 0 1

16 0 1
16

7 0 0 1
16

1
16 0 0 9

16
1
16 0 0 1

16
1
16 0 0 1

16
1
16

8 0 0 1
16

1
16

1
16

1
16 0 0 1

4 0 1
16

1
16

1
16

1
16

1
4 0

9 0 1
16 0 1

16
1
16

1
4

1
16 0 0 1

16 0 1
16

1
16 0 1

16
1
4

10 0 1
16

1
16 0 1

16 0 0 1
16

1
16

1
4 0 1

16
1
4

1
16

1
16 0

11 0 1
4 0 0 1

16
1
16

1
16

1
16

1
16

1
16

1
16

1
16 0 0 0 1

4
12 0 0 1

16
1
16

1
16

1
16 0 1

4
1
16

1
16 0 0 1

4 0 1
16

1
16

13 0 1
16

1
4

1
16

1
16 0 1

16 0 1
16 0 1

16 0 0 1
16

1
4

1
16

14 0 1
16

1
16

1
4

1
16

1
4 0 1

16 0 1
16

1
16 0 1

16 0 0 1
16

15 0 0 0 0 1
16

1
16

1
16

1
16

1
4 0 1

4 0 1
16

1
16

1
16

1
16

Table 5.7: Linear spectrum of the S-box S0 of Lucifer. Row and column
indices are linear forms represented by integers.
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sometimes also called linearity profile) are the analogous matrices whose
entries are the I/O-correlations or the potentials of the corresponding linear
relations. The correlation matrix arises from the approximation table by first
dividing the entries by 2n (getting the probabilities p) and then transforming
the probabilities to I/O-correlations by the formula τ = 2p − 1. To get the
linear spectrum we have to square the single entries of the correlation matrix.

For S0 Table 5.6 shows the correlation matrix, and Table 5.7, the linear
spectrum. Here again the first rows and columns hit the eye: The zeroes tell
that a linear relation involving the linear form 0 has potential 0, hence is
useless. The 1 in the upper left corner says that the relation 0 = 0 holds for
any arguments, but is useless too. In the previous subsection we picked the
pair (α, β) where α(x) = x4 (represented by 0001 =̂ 1) and β(y) = y1+y2+y4

(represented 1101 =̂ 13) in row 1, column 13. It assumes the maximum value
9
16 for the potential that moreover also occurs at the coordinates (6, 11) and
(7, 6). (We ignore the true, but useless, maximum value 1 in the upper left
corner.)
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a = c(0)

?
f�
��� k(1)

?

f(c(0), k(1)) = c(1)

?
f�
��� k(2)

?

c = f(c(1), k(2)) = c(2)

linear relation (α1, β1, κ1)

with κ1(k(1))
p1≈ α1(c(0)) + β1(c(1))

linear relation (α2, β2, κ2)

with κ2(k(2))
p2≈ α2(c(1)) + β2(c(2))

Figure 5.5: General two-round cipher

5.4 Example B: A Two-Round Cipher

As a next step we iterate the round map

f : Fn2 × Fq2 −→ Fn2

of a bitblock cipher over two rounds using round keys k(i) ∈ Fq2 as illustrated
in Figure 5.5.

Remark In a certain sense example A already was a two-round cipher since
we used two partial keys. Adding one more S-box at the right side of
Figure 5.3 would be cryptologically irrelevant, because this non-secret
part of the algorithm would be known to the cryptanalyst who simply
could “strip it off” (that is, apply its inverse to the cipher text) and be
left with example A. In a similar way we could interpret example B as a
three-round cipher. However this would be a not so common counting
of rounds.

We consider linear relations

κ1(k(1))
p1≈ α1(c(0)) + β1(c(1))

with probability p1, I/O-correlation τ1 = 2p1 − 1, and potential λ1 = τ2
1 ,

and
κ2(k(2))

p2≈ α2(c(1)) + β2(c(2))
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with probability p2, I/O-correlation τ2 = 2p2−1, and potential λ2 = τ2
2 . We

can combine these two linear relations if α2 = β1, thereby getting a linear
relation for some key bits expressed by the (known) plaintext c(0) = a and
the ciphertext c(2) = c,

κ1(k(1)) + κ2(k(2))
p
≈ α1(c(0)) + β2(c(2)),

that holds with a certain probability p, and has I/O-correlation τ and po-
tential λ, that in general depend on k = (k(1), k(2)) and are difficult to de-
termine. Therefore we again consider a simplified example B, see Figure 5.6.
Encryption is done step by step by the formulas

b(0) = a+k(0), a(1) = f1(b(0)), b(1) = a(1)+k(1), a(2) = f2(b(1)), c = a(2)+k(2).

(Here f1 is given by the S-box S0, and f2, by the S-box S1 that could be
identical with S0. Note that we allow that the round functions of the differ-
ent rounds differ. The reason is that usually the round function consists of
several parallel S-boxes and the permutations direct an input bit through
different S-boxes on its way through the rounds, see Section 5.7.)

As for example A adding some key bits after the last round prevents
the “stripping off” of f2. Comparing example B with the general settings in
Chapter 2 we have:

• key length l = 3n, key space F3n
2 , and keys of the form k =

(k(0), k(1), k(2)) with k(0), k(1), k(2) ∈ Fn2 .

• Encryption is defined by the map

F : Fn2 × Fn2 × Fn2 × Fn2 −→ Fn2 ,
(a, k(0), k(1), k(2)) 7→ f2(f1(a+ k(0)) + k(1)) + k(2).

• The linear form κ: Fn2 × Fn2 × Fn2 −→ F2 is given by

κ(k(0), k(1), k(2)) = α(k(0)) + β(k(1)) + γ(k(2)).

Here (α, β) is a linear relation for f1 with probability p1, I/O-correlation
τ1, and potential λ1, and (β, γ), a linear relation for f2 with probability p2,
I/O-correlation τ2, and potential λ2 (the same β since we want to combine
the linear relations), where

p1 =
1

2n
·#{x ∈ Fn2 | β ◦ f1(x) = α(x)}

p2 =
1

2n
·#{y ∈ Fn2 | γ ◦ f2(y) = β(y)}
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Figure 5.6: Example B

With the notations of Figure 5.6 we have

γ(c) = γ(a(2)) + γ(k(2))
p2≈ β(b(1)) + γ(k(2)) = β(a(1)) + β(k(1)) + γ(k(2))

p1≈ α(b(0)) + β(k(1)) + γ(k(2)) = α(a) + α(k(0)) + β(k(1)) + γ(k(2))

Hence we get a linear relation for the key bits as a special case of Equation (1)
in the form

α(k(0)) + β(k(1)) + γ(k(2))
p
≈ α(a) + γ(c)

with a certain probability p that is defined by the formula

p = pF,α,β,γ(k)

=
1

2n
·#{a ∈ Fn2 | α(k(0)) + β(k(1)) + γ(k(2)) = α(a) + γ(F (a, k))}.

We try to explicitly determine p. As for the one-round case we first ask how
p depends on k. Insert the definition of F (a, k) into the defining equation
inside the set brackets. Then γ(k(2)) cancels out and we are left with

pF,α,β,γ(k) =
1

2n
·#{a ∈ Fn2 |α(k(0)+a)+β(k(1)) = γ(f2(k(1)+f1(k(0)+a)))}.

This is independent of k(2), and for all k(0) assumes the same value

pF,α,β,γ(k) =
1

2n
·#{x ∈ Fn2 | α(x) = β(k(1)) + γ(f2(k(1) + f1(x)))}

because x = k(0) + a runs through Fn2 along with a. This value indeed
depends on k, but only on the middle component k(1). Now form the mean
value p̄ := pF,α,β,γ over all keys:

p̄ =
1

22n
·#{(x, k(1)) ∈ F2n

2 | α(x) = β(k(1)) + γ(f2(k(1) + f1(x)))}.
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Inside the brackets we see the expression γ(f2(k(1) + f1(x))), and we know:

γ(f2(k(1) + f1(x))) =

{
β(k(1) + f1(x)) with probability p2,

1 + β(k(1) + f1(x)) with probability 1− p2.

Here “probability p2” means that the statement is true for p2 · 22n of all
possible (x, k(1)) ∈ F2n

2 . Substituting this we get

p̄ =
1

22n
·
[
p2 ·#{(x, k(1)) ∈ F2n

2 | α(x) = β(f1(x))}

+(1− p2) ·#{(x, k(1)) ∈ F2n
2 | α(x) 6= β(f1(x))}

]
where now the defining equations of both sets are also independent of k(1).
We recognize the definition of p1 and substitute it getting

p̄ = p1p2 + (1− p1)(1− p2) = 2p1p2 − p1 − p2 + 1.

This formula looks much more beautiful if expressed in terms of the I/O-
correlations τ̄ = 2p̄− 1 and τi = 2pi − 1 for i = 1 and 2:

τ̄ = 2p̄− 1 = 4p1p2 − 2p1 − 2p2 + 1 = (2p1 − 1)(2p2 − 1) = τ1τ2.

In summary we have proved:

Proposition 6 For example B we have:
(i) The probability pF,α,β,γ(k) depends only on the middle component k(1)

of the key k = (k(0), k(1), k(2)) ∈ Fn2 × Fn2 × Fn2 .
(ii) The mean value of these probabilities over all keys k is pF,α,β,γ =

p̄ = 2p1p2 − p1 − p2 + 1.
(iii) The I/O-correlations and the potentials are multiplicative:

τF,α,β,γ = τ1τ2 and λF,α,β,γ = λ1λ2.

In Matsui’s test we face the decision whether to use the linear relation
or its negation for estimating a bit. We can’t do better than use the mean
value pF,α,β,γ since the key and the true probability pF,α,β,γ(k) are unknown.
This could be an error since these two probabilities might lie on different
sides of 1

2 .

Example

Let n = 4, S0 as in example A, and S1 as given in Table 5.8 (in different
order) as transition from column b(1) to column a(2). (By the way this is
the second S-box of Lucifer.) Consider the linear forms α =̂ 0001 and β =̂
1101 as before with p1 = 7

8 , τ1 = 3
4 , λ1 = 9

16 . Furthermore let γ =̂ 1100.
Then the linear relation for f2 defined by (β, γ) (see Table 5.9, row index



K. Pommerening, Bitblock Ciphers 76

a b(0) a(1) b(1) a(2) c β(b(1)) γ(a(2)) α(a) + γ(c)

0000 1000 0010 0011 1001 1111 1 1 0
0001 1001 0110 0111 0100 0010 0 1 1
0010 1010 0011 0010 1110 1000 0 0 1
0011 1011 0001 0000 0111 0001 0 1 1
0100 1100 1001 1000 1100 1010 1 0 1
0101 1101 0100 0101 1011 1101 0 1 1
0110 1110 0101 0100 0011 0101 1 0 1
0111 1111 1000 1001 1101 1011 0 0 0
1000 0000 1100 1101 1111 1001 1 0 1
1001 0001 1111 1110 1000 1110 0 1 1
1010 0010 0111 0110 0000 0110 1 0 1
1011 0011 1010 1011 1010 1100 0 1 1
1100 0100 1110 1111 0101 0011 1 1 0
1101 0101 1101 1100 0110 0000 0 1 1
1110 0110 1011 1010 0001 0111 1 0 1
1111 0111 0000 0001 0010 0100 1 0 0

Table 5.8: The data flow in the concrete example for B, and some linear
forms

13, column index 12) has probability p2 = 1
4 , I/O-correlation τ2 = −1

2 , and
potential λ2 = 1

4 , the maximum possible value by Table 5.10. (Note that the
linear profile of S1 is more uniform than that of S0.)

As concrete round keys take k(0) = 1000, k(1) = 0001—as before—,
and k(2) = 0110. We want to gain the bit α(k(0)) +β(k(1)) +γ(k(2)) (that in
cheat mode we know is 0). Since τ1τ2 < 0 in the majority of cases α(a)+γ(c)
should give the complementary bit 1. Table 5.8 shows that in 12 of 16 cases
this prediction is correct. Therefore 1 − p = 3

4 , p = 1
4 , τ = −1

2 , λ = 1
4 .

Remember that this value depends on the key component k(1). In fact it
slightly deviates from the mean value

p̄ = 2 · 7

8
· 1

4
− 7

8
− 1

4
+ 1 =

7

16
− 14

16
− 4

16
+

16

16
=

5

16
.

Calculating the variation of the probability as function of the partial key
k(1) we get the values 1

4 and 3
8 each 8 times, all lying on the “correct side”

of 1
2 and having the correct mean value 5

16 .
There are other “paths” from α to γ—we could insert any β in between.

Calculating the mean probabilities yields—besides the already known 5
16—

three times 15
32 , eleven times exactly 1

2 , and even a single 17
32 that lies on the

“wrong” side of 1
2 . Thus only the one case we explicitly considered is really

good.
As an alternative concrete example take β =̂ 0001. Here λ1 = 1

16 , p1 = 3
8 ,
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 16 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
1 8 10 8 10 8 6 12 10 10 4 6 8 10 8 10 8
2 8 6 4 10 6 8 6 8 8 10 4 6 10 8 10 8
3 8 8 8 8 6 6 6 6 10 6 6 10 4 8 8 12
4 8 8 8 4 8 8 8 4 6 6 6 10 10 10 10 6
5 8 6 8 10 4 6 8 6 8 6 12 6 8 10 8 6
6 8 10 12 10 6 12 6 8 10 8 6 8 8 10 8 6
7 8 8 8 12 10 10 10 6 4 8 8 8 6 10 10 10
8 8 8 6 10 10 6 8 8 10 10 8 12 8 12 6 6
9 8 6 6 8 6 12 8 10 8 6 10 12 10 8 8 10
10 8 6 6 8 12 10 6 8 10 4 8 6 6 8 8 6
11 8 4 10 10 8 8 10 6 8 8 6 10 8 4 6 6
12 8 8 6 6 6 10 12 8 8 8 6 6 6 10 4 8
13 8 10 6 8 6 8 8 10 6 8 8 10 4 6 10 4
14 8 10 6 8 8 10 10 4 12 10 10 8 8 6 10 8
15 8 4 10 6 8 8 10 10 10 10 8 8 6 10 12 8

Table 5.9: Approximation table of the S-box S1 of Lucifer. Row and column
indices are linear forms represented by integers. For the probabilities divide
by 16.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1

16 0 1
16 0 1

16
1
4

1
16

1
16

1
4

1
16 0 1

16 0 1
16 0

2 0 1
16

1
4

1
16

1
16 0 1

16 0 0 1
16

1
4

1
16

1
16 0 1

16 0
3 0 0 0 0 1

16
1
16

1
16

1
16

1
16

1
16

1
16

1
16

1
4 0 0 1

4
4 0 0 0 1

4 0 0 0 1
4

1
16

1
16

1
16

1
16

1
16

1
16

1
16

1
16

5 0 1
16 0 1

16
1
4

1
16 0 1

16 0 1
16

1
4

1
16 0 1

16 0 1
16

6 0 1
16

1
4

1
16

1
16

1
4

1
16 0 1

16 0 1
16 0 0 1

16 0 1
16

7 0 0 0 1
4

1
16

1
16

1
16

1
16

1
4 0 0 0 1

16
1
16

1
16

1
16

8 0 0 1
16

1
16

1
16

1
16 0 0 1

16
1
16 0 1

4 0 1
4

1
16

1
16

9 0 1
16

1
16 0 1

16
1
4 0 1

16 0 1
16

1
16

1
4

1
16 0 0 1

16
10 0 1

16
1
16 0 1

4
1
16

1
16 0 1

16
1
4 0 1

16
1
16 0 0 1

16
11 0 1

4
1
16

1
16 0 0 1

16
1
16 0 0 1

16
1
16 0 1

4
1
16

1
16

12 0 0 1
16

1
16

1
16

1
16

1
4 0 0 0 1

16
1
16

1
16

1
16

1
4 0

13 0 1
16

1
16 0 1

16 0 0 1
16

1
16 0 0 1

16
1
4

1
16

1
16

1
4

14 0 1
16

1
16 0 0 1

16
1
16

1
4

1
4

1
16

1
16 0 0 1

16
1
16 0

15 0 1
4

1
16

1
16 0 0 1

16
1
16

1
16

1
16 0 0 1

16
1
16

1
4 0

Table 5.10: Linear profile of the S-box S1 of Lucifer. Row and column
indices are linear forms represented by integers.
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τ1 = −1
4 , and λ2 = 1

16 , p2 = 5
8 , τ2 = 1

4 . Hence τ = − 1
16 and p = 15

32 . The

target bit is α(k(0))+β(k(1))+γ(k(2))+1 = 1, and the success probability is
1− p = 17

32 . The mean value of p over all keys is 15
32 for this β in coincidence

with the key-specific value.



K. Pommerening, Bitblock Ciphers 79

Fn2 - Fn2

⊕Fn2

?
-f1 Fn2 - . . . -

Fn2

?
⊕

Fn2 -fr Fn2 -

Fn2

?
⊕

Fn2

F2

@
@@R

β0
�

��	
β1

p1≈

F2

@
@@R

βr−1
�

��	
βr

pr≈

Figure 5.7: Example C

5.5 Linear Paths

Consider the general case where the round map f: Fn2×Fq2 −→ Fn2 is iterated
for r rounds with round keys k(i) ∈ Fq2, in analogy with Figure 5.5. Let
(αi, βi, κi) be a linear relation for round i. Let αi = βi−1 for i = 2, . . . , r.
Set β0 := α1. Then the chain β = (β0, . . . , βr) is called a linear path for
the cipher.

For a simplified scenario, let’s call it example C as a generalization of
example B, again we’ll derive a useful result on the probabilities. So we con-
sider the special but relevant case where the round keys enter the algorithm
in an additive way, see Figure 5.7.

Given a key k = (k(0), . . . , k(r)) ∈ Fn·(r+1)
2 we compose the encryption

function F successively with the intermediate results

a(0) = a | b(0) = a(0) + k(0) | a(1) = f1(b(0)) | b(1) = a(1) + k(1) | . . .

b(r−1) = a(r−1) + k(r−1) | a(r) = fr(b
(r−1)) | b(r) = a(r) + k(r) = c =: F (a, k)

The general formula is

b(i) = a(i) + k(i) for i = 0, . . . , r,

a(0) = a and a(i) = fi(b
(i−1)) for i = 1, . . . , r.

We consider a linear relation

κ(k)
p
≈ β0(a) + βr(c),

where
κ(k) = β0(k(0)) + · · ·+ βr(k

(r)),

and p is the probability

pF,β(k) =
1

2n
·#{a ∈ Fn2 |

r∑
i=0

βi(k
(i)) = β0(a) + βr(F (a, k))}



K. Pommerening, Bitblock Ciphers 80

that depends on the key k. Denote the mean value of these probabilities over
all k by qr. It depends on (f1, . . . , fr) and on the linear path β:

qr :=
1

2n·(r+2)
·#{a, k(0), . . . , k(r) ∈ Fn2 |

r∑
i=0

βi(k
(i)) = β0(a) + βr(F (a, k))}.

Substitute F (a, k) = a(r) + k(r) = fr(b
(r−1)) + k(r) into the defining equa-

tion of this set. Then βr(k
(r)) cancels out, and we see that the count is

independent of k(r). The remaining formula is

qr =
1

2n·(r+1)
·#{a, k(0), . . . , k(r−1) ∈ Fn2 |

r−1∑
i=0

βi(k
(i)) = β0(a)+βr(fr(b

(r−1)))}.

In this formula the probability pr is hidden: We have

βr(fr(b
(r−1))) =

{
βr−1(b(r−1)) with probability pr,

1 + βr−1(b(r−1)) with probability 1− pr,

where “with probability pr” means: in pr · 2n·(r+1) of the 2n·(r+1) possible
cases. Hence

qr =
1

2n·(r+1)
·

[
pr ·#{a, k(0), . . . , k(r−1) |

r−1∑
i=0

βi(k
(i)) = β0(a) + βr−1(b(r−1))}

+(1− pr) ·#{a, k(0), . . . , k(r−1) |
r−1∑
i=0

βi(k
(i)) = 1 + β0(a) + βr−1(b(r−1))}

]
= pr · qr−1 + (1− pr) · (1− qr−1),

for the final counts exactly correspond to the probabilities for r− 1 rounds.
This is the perfect entry to a proof by induction, showing:

Proposition 7 (Matsuis Piling-Up Theorem) In example C the mean

value pF,β of the probabilities pF,β(k) over all keys k ∈ Fn(r+1)
2 fulfills

2pF,β − 1 =
r∏
i=1

(2pi − 1).

In particular the I/O-correlations and the potentials are multiplicative.

Proof. The induction starts with the trivial case r = 1 (or with the case
r = 2 that we proved in Proposition 6).

From the previous consideration we conclude

2qr − 1 = 4prqr−1 − 2pr − 2qr−1 + 1 = (2pr − 1)(2qr−1 − 1),
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and the assertion follows by induction on r. 3

For real ciphers in general the round keys are not independent but derive
from a “master key” by a specific key schedule. In practice however this effect
is negligeable. The method of linear cryptanalysis follows the rule of thumb:

Along a linear path the potentials are multiplicative.

Proposition 7, although valid only in a special situation and somewhat
imprecise for real life ciphers, gives a good impression of how the crypt-
analytic advantage (represented by the potential) of linear approximations
decreases with an increasing number of rounds; note that the product of
numbers smaller than 1 (and greater than 0) decreases with the number of
factors. This means that the security of a cipher against linear cryptanalysis
is the better, the more rounds it involves.
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Figure 5.8: Example D, parallel arrangement of m S-boxes S1, . . . , Sm of
width q

5.6 Parallel Arrangement of S-Boxes

The round map of an SP-network usually involves several “small” S-boxes
in a parallel arrangement. On order to analyze the effect of this construction
we again consider a simple example D, see Figure 5.8.

Proposition 8 Let S1, . . . ,Sm : Fq2 −→ Fq2 be Boolean maps, n = m · q, and
f , the Boolean map

f : Fn2 −→ Fn2 , f(x1, . . . , xm) = (S1(x1), . . . ,Sm(xm)) for x1, . . . , xm ∈ Fq2.

Let (αi, βi) for i = 1, . . . ,m be linear relations for Si with probabilities pi.
Let

α(x1, . . . , xm) = α1(x1) + · · ·+ αm(xm)

β(y1, . . . , ym) = β1(y1) + · · ·+ βm(ym)

Then (α, β) is a linear relation for f with probability p given by

2p− 1 = (2p1 − 1) · · · (2pm − 1).

Proof. We consider the case m = 2 only; the general case follows by a
simple induction as for Proposition 7.

In the case m = 2 we have β ◦ f(x1, x2) = α(x1, x2) if and only if
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• either β1 ◦ S1(x1) = α1(x1) and β2 ◦ S2(x2) = α2(x2)

• or β1 ◦ S1(x1) = 1 + α1(x1) and β2 ◦ S2(x2) = 1 + α2(x2).

Hence p = p1p2 + (1− p1)(1− p2), and the assertion follows as for Proposi-
tion 6. 3

As a consequence the I/O-correlations and the potentials are multi-
plicative also for a parallel arrangement. At first view this might seem a
strengthening of the security, but this appearance is deceiving! We cannot
detain the attacker from choosing all linear forms as zeroes except the “best”
one. And the zero forms have probabilities pi = 1 and potentials 1. Hence
the attacker picks a pair (αj , βj) with maximum potential, and then sets
α(x1, . . . , xm) = αj(xj) and β(y1, . . . , ym) = βj(yj). In a certain sense she
turns the other S-boxes, except Sj , “inactive”. Then the complete linear
relation inherits exactly the probability and the potential of the “active”
S-box Sj .

Example

Once again we consider a concrete example with m = 2 and q = 4, hence
n = 8. As S-boxes we take the ones from Lucifer, S0 at the left, and
S1 at the right, see Figure 5.8. For the left S-box S0 we take the linear
relation with α =̂ 0001 and β =̂ 1101, that we know has probability p1 = 7

8 ,
for the right S-Box S1 we take the relation (0, 0) with probability 1. The
combined linear relation for f = (S0,S1) then also has probability p = 7

8
and potential λ = 9

16 , and we know that linear cryptanalysis with N = 5
pairs of plaintext and ciphertext has 95% success probability. We decompose
all relevant bitblocks into bits:

plaintext: a = (a0, . . . , a7) ∈ F8
2,

ciphertext: c = (c0, . . . , c7) ∈ F8
2,

key: k = (k0, . . . , k15) ∈ F16
2 where (k0, . . . , k7) serves as “initial key” (cor-

responding to k(0) in Figure 5.8), and (k8, . . . , k15) as “final key” (cor-
responding to k(1)).

Then α(a) = a3, β(c) = c0 + c1 + c3, and κ(k) = α(k0, . . . , k7) +
β(k8, . . . , k15) = k3 + k8 + k9 + k11. Hence the target relation is

k3 + k8 + k9 + k11 = a3 + c0 + c1 + c3.

We use the key k = 1001011000101110 whose relevant bit is k3 + k8 +
k9 + k11 = 1, and generate five random pairs of plaintext and ciphertext,
see Table 5.11. We see that for this example Matsui’s algorithm guesses the
relevant key bit correctly with no dissentient.
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a a3 c c0 + c1 + c3 estimate

00011110 1 00000010 0 1
00101100 0 00111111 1 1
10110010 1 01011101 0 1
10110100 1 01010000 0 1
10110101 1 01010111 0 1

Table 5.11: Calculations for example D
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index i 0 1 2 3 4 5 6 7

P(i) 2 5 4 0 3 1 7 6

Table 5.12: Lucifer’s permutation P

5.7 Mini-Lucifer

As a slightly more complex example we define a toy cipher “Mini-Lucifer”
that employs the S-boxes and a permutation of the true Lucifer. Here is
the construction, see Figure 5.9:

• Before and after each round map we add a partial key. We use two
keys k(0) and k(1) in alternating order. They consist of the first or last
8 bits of the 16 bit master key. In particular for r ≥ 3 the round keys
are not independent.

• The round function consists of a parallel arrangement of the two S-
boxes, as in the example of Section 5.6, followed by the permutation
P.

• The permutation P maps a single byte (octet) to itself as defined in
Table 5.12. As usual for SP-networks we omit it in the last round.

Up to now we ignored permutations in linear cryptanalysis. How do they
influence the analysis?

Well, let f be a Boolean map, (α, β), a linear relation for f with proba-
bility p, and P, a permutation of the range of f . Then we set β′ = β ◦ P−1,
a linear form, and immediately see that (α, β′) is a linear relation for P ◦ f
with the same probability p:

p =
1

2n
·#{x ∈ Fn2 | β(f(x)) = α(x)}

=
1

2n
·#{x ∈ Fn2 | (β ◦ P−1)(P ◦ f(x)) = α(x)}.

The assignment β 7→ β′ simply permutes the linear forms β. In other words:
appending a permutation to f permutes the columns of the approximation
table, of the correlation matrix, and of the linear profile.

Inserting a permutation into the round function of an SP-
network affects linear cryptanalysis in a marginal way only.

We’ll verify this assertion for a concrete example, and see how “marginal”
the effect really is. By the way the same argument holds if we replace the
permutation by a more general bijective linear map L: also β 7→ β ◦ L−1

permutes the linear forms.
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Figure 5.9: Mini-Lucifer
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?
P
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a′ + k(1)

?
S0 ?

S1

b′′

?

c = b′′ + k(0)

a0, a1, a2, a3, a4, a5, a6, a7

b0 = a0 + k0, . . . , b7 = a7 + k7

1nb′0 + b′1 + b′3
p1≈ a3 + k3

a′0 = b′2, a′1 = b′5, a′2 = b′4, a′3 = b′0
a′4 = b′3, a′5 = b′1, a′6 = b′7, a′7 = b′6

2na′3 + a′4 + a′5
p1≈ a3 + k3

3nb′′0 + b′′1 + b′′3 + b′′5 + b′′6
p2≈

a′3 + a′4 + a′5 + k11 + k12 + k13

4nc0 + c1 + c3 + c5 + c6
p
≈

a3 + k0 + k1 + k5 + k6 + k11 + k12 + k13

Figure 5.10: Mini-Lucifer with 2 rounds

Example

The concrete example is specified in Figure 5.10. The relation 1, namely

β(b′)
p1≈ α(a+ k(0))

holds with probability p1 = 7
8 between α =̂ 0001 and β =̂ 1101. The permu-

tation P transforms it to the relation 2, namely

β ◦ P−1(a′)
p1≈ α(a+ k(0)) = α(a) + α(k(0)).

But P also distributes the bits from the left-hand side of the relation over
the two S-boxes of the next round. So the cryptanalytic trick of letting only
one S-box per round become active works only for the first round.

Inserting a permutation into the round function of an SP-
network has the effect that linear cryptanalysis has to deal with
more than one parallel S-box becoming active in later rounds.

We’ll soon see in the example that this effect reduces the potential. The
relevant bits a′3, a′4, a′5, or, after adding the key, a′3 + k11, a′4 + k12, a′5 + k13,
split as input to the left S-box S0 of the second round (namely a′3 + k11),
and to the right one, S1 (namely a′4 + k12 and a′5 + k13).
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On the left-hand side, for S0, the linear form for the input is β′1 =̂ 0001

=̂ 1, on the right-hand side, for S1, we have β′2 =̂ 1100 =̂ 12. From the linear
profile of S0 we see that the maximum possible potential for β′1 is λ′2 = 9

16
with p′2 = 7

8 , assumed for γ1 =̂ 13 =̂ 1101.
For β′2 the maximum potential is λ′′2 = 1

4 . Having two choices we choose
γ2 =̂ 6 =̂ 0110 with probability p′′2 = 3

4 . The combined linear relation with
β′(x) = β′1(x0, . . . , x3) + β′2(x4, . . . , x7) and, on the output side, γ(y) =
γ1(y0, . . . , y3) + γ2(y4, . . . , y7) has I/O-correlation

2p2 − 1 = (2p′2 − 1)(2p′′2 − 1) =
3

8

by Proposition 8, hence p2 = 11
16 , λ2 = 9

64 .

The relation between β′(a′+k(1)) and γ(b′′) is labelled by 3 in Figure 5.10,
namely

γ(b′′)
p2≈ β′(a′ + k(1)) = β′(a′) + β′(k(1)).

Combining 2 and 3 (and cancelling k3) yields the relation

γ(c) + γ(k(0)) = γ(c+ k(0)) = γ(b′′)
p
≈ α(a) + α(k(0)) + β′(k(1)),

labelled by 4 in the figure, whose probability p is given by Proposition 7
since the two round keys are independent. We get

2p− 1 = (2p1 − 1)(2p2 − 1) =
3

4
· 3

8
=

9

32
,

whence p = 41
64 . The corresponding potential is λ = 81

1024 .
The number N of needed plaintexts for a 95% success probability follows

from the approximation in Table 5.4:

N =
3

λ
=

1024

27
≈ 38.

Note that there are only 256 possible plaintexts at all.
In the example the success probability derived from the product of the

I/O-correlations (or of the potentials) of all active S-boxes. We had luck
since in this example the involved partial keys were independent. In the
general case this is not granted. Nevertheless the cryptanalyst relies on the
empirical evidence and ignores the dependencies, trusting the rule of thumb:

The success probability of linear cryptanalysis is (approximately)
determined by the multiplicativity of the I/O-correlations (or of
the potentials) of all the active S-boxes along the considered path
(including all of its ramifications).
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The restriction in this rule of thumb concerns the success probability of
linear cryptanalysis but not the course of action. The cryptanalyst is right
if and only if she succeeds, no matter whether her method had an exact
mathematical foundation for all details.

Now we obtained a single bit. So what?
Of course we may find more relations, and detect more key bits. However

we have to deal with smaller and smaller potentials, and face an increasing
danger of hitting a case where the probability for the concrete (target) key
lies on the “wrong” side of 1

2 . Moreover we run into a multiple test situation
reusing the same known plaintexts several times. This enforces an unpleasant
adjustment of the success probabilities.
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5.8 Systematic Search for Linear Relations

The search for useful linear relations over several rounds has no general
elegant solution. The published examples often use linear paths that more
or less appear from nowhere, and it is not evident that they are the best
ones.

Let n be the block length of the cipher, and r, the number of rounds.
Then for each round the choice is between 2n linear formes, making a total of
2n(r+1) choices. This number also specifies the cost of determining the best
relation by complete search. There are some simplifications that however
don’t reduce the order of magnitude of the cost:

• In the first round consider only linear forms that activate only one
S-box.

• Then choose the next linear form such that it activates the least possi-
ble number of S-boxes of the next round (with high, but not necessarily
maximum potential).

• If one of the relations in a linear path has probability 1
2 , or I/O-

correlation 0, then the total I/O-correlation is 0 by multiplicativity,
and this path may be neglected. The same is true componentwise if
the linear forms split among the S-boxes of the respective round. How-
ever this negligence could introduce errors since we deal with average
probabilities not knowing the key-dependent ones.

For our 2-round example with Mini-Lucifer the systematic search is fea-
sible by pencil and paper or by a Sage or Python script. Our example has
the following characteristics:

• α = (α1, α2) with α1 =̂ 1 =̂ 0001 and α2 =̂ 0 =̂ 0000 (α1 was formerly
denoted α. Now for uniformity we make both components of all linear
forms explicit and index them by 1 and 2.)

• β = (β1, β2) with β1 =̂ 13 =̂ 1101 and β2 =̂ 0 =̂ 0000

• β′ = (β′1, β
′
2) with β′1 =̂ 1 =̂ 0001, β′2 =̂ 12 =̂ 1100

• γ = (γ1, γ2) with γ1 =̂ 13 =̂ 1101, γ2 =̂ 6 =̂ 0110

• τ1 = 3
4 , τ ′2 = 3

4 , τ ′′2 = 1
2 , τ2 = 3

8 , τ = 9
32 , p = 41

64 = 0, 640625

• c0 + c1 + c3 + c5 + c6
p
≈ a3 + k0 + k1 + k5 + k6 + k11 + k12 + k13

An alternative choice of γ2 is γ2 =̂ 14 =̂ 1110; this yields a linear path with
the characteristics

• α =̂ (1, 0), β =̂ (13, 0), β′ =̂ (1, 12), γ =̂ (13, 14)
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– τ = − 9
32 , p = 23

64 = 0, 359375

– c0+c1+c3+c4+c5+c6
p
≈ a3+k0+k1+k4+k5+k6+k11+k12+k13

The systematic search finds two even “better” linear paths, characterized
by

• α =̂ (8, 0), β =̂ (8, 0), β′ =̂ (1, 0), γ =̂ (13, 0)

– τ = −3
8 , p = 5

16 = 0, 3125

– c0 + c1 + c3
p
≈ a0 + k1 + k3 + k11

• α =̂ (15, 0), β =̂ (8, 0), β′ =̂ (1, 0), γ =̂ (13, 0)

– τ = −3
8 , p = 5

16 = 0, 3125

– c0 + c1 + c3
p
≈ a0 + a1 + a2 + a3 + k2 + k11

that do not completely exhaust the potential of the single S-boxes but on
the other hand activate only one S-box of the second round, and thereby
show the larger potential λ = 9

64 . Thus we get a 95% success probability
with only

N =
3

λ
=

64

3
≈ 21

known plaintexts for determining one bit.
The designer of a cipher should take care that in each round the active

bits fan out over as many S-boxes as possible. The inventors of AES, Daemen
and Rijmen call this design approach “wide-trail strategy”. The design of
AES strengthens this effect by involving a linear map instead of a mere
permutation, thereby replacing the “P” of an SP-network by an “L”.

Figure 5.11 shows an example of a linear path with all its ramifications.

Example (Continued)

For an illustration of the procedure we generate 25 pairs of known plaintexts
and corresponding ciphertexts using the key k =̂ 1001011000101110. The
target key bits are

b0 = k0 + k1 + k5 + k6 + k11 + k12 + k13

b1 = k0 + k1 + k4 + k5 + k6 + k11 + k12 + k13

b2 = k1 + k3 + k11

b3 = k2 + k11

that we know in cheat mode are b0 = 1, b1 = 1, b2 = 1, b3 = 0. We use all
four good relations at the same time without fearing the possible reduction
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of the success probability. All of these relations assert the probable equality
of the bits

b0
p
≈ c0 + c1 + c3 + c5 + c6 + a3

b1
p
≈ 1 + c0 + c1 + c3 + c4 + c5 + c6 + a3

b2
p
≈ 1 + c0 + c1 + c3 + a0

b3
p
≈ 1 + c0 + c1 + c3 + a0 + a1 + a2 + a3

each with its individual corresponding probability p. For the last three of
these sums we have to take the complementary bits since the corresponding
I/O-correlations are negative (the probabilities are < 1

2). This is done by
adding the bit 1.

Table 5.13 shows the results for these plaintext-ciphertext pairs. As we
see our guess is correct for all four bits.

As a consequence of our analysis we get a system of four linear equations
for the 16 unknown key bits:

1 = k0 + k1 + k5 + k6 + k11 + k12 + k13

1 = k0 + k1 + k4 + k5 + k6 + k11 + k12 + k13

1 = k1 + k3 + k11

0 = k2 + k11

that allow us to reduce the number of keys for an exhaustion from 216 =
65536 to 212 = 4096. Note the immediate simplifications of the system:
k11 = k2 from the last equation, and k4 = 0 from the first two.

As a cross-check we run some more simulations. The next four yield

• 15, 16, 19, 16

• 15, 16, 13, 17

• 15, 20, 19, 17

• 19, 19, 20, 18

correct guesses, and so on. Only run number 10 produced a wrong bit (the
second one):

• 17, 12, 14, 17

then again run number 25. Thus empirical evidence suggests a success prob-
ability of at least 90% in this scenario.
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nr plaintext ciphertext b0 b1 b2 b3
1 00001111 00001010 1 1 1 1
2 00010001 11001110 1 1 1 0
3 00010110 11001001 1 1 1 0
4 00111101 10110010 0 1 1 1
5 01000000 11100111 0 1 1 0
6 01001000 01010111 0 1 1 0
7 01001100 11101010 1 1 1 0
8 01001101 01011100 1 1 1 0
9 01001111 01111010 1 1 1 0
10 01100111 00110011 0 1 0 0
11 10000011 11110100 0 1 1 1
12 10010011 01101011 1 1 1 0
13 10011000 01100111 0 1 1 0
14 10101011 11011001 1 1 1 0
15 10110001 11001000 1 1 0 0
16 10110010 10100100 1 0 1 1
17 10110110 11000100 0 1 0 0
18 10111001 11000001 1 0 0 0
19 10111101 10111111 1 1 0 0
20 11000100 01001111 1 1 1 0
21 11000111 00111111 1 1 1 0
22 11011111 11011010 1 1 1 1
23 11100000 11101110 0 0 0 0
24 11100100 01110011 1 0 0 0
25 11110101 11110101 1 0 1 0

true bit: 1 1 1 0
correct guesses: 17 20 18 20

Table 5.13: Plaintext/ciphertext pairs for Mini-Lucifer
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Analysis over Four Rounds

Now let’s explore how an increasing number of rounds impedes linear crypt-
analysis.

Consider the toy cipher Mini-Lucifer over four rounds. Searching an op-
timal linear path over four rounds is somewhat expensive, so we content
ourselves with extending the best example from the two round case, the
third one, over two additional rounds. Slightly adapting the notation we
get:

• for the first round β0 = α =̂ (8, 0) and β1 =̂ (8, 0) (the “old” β) with
τ1 = −1

2 ,

• for the second round (applying the permutation P to β1) β′1 =̂ (1, 0)
and β2 =̂ (13, 0) (the “old” γ) with τ2 = 3

4 ,

• for the third round β′2 =̂ (1, 12) and β3 =̂ (13, 6) with τ3 = 3
8 ,

• for the fourth round β′3 =̂ (5, 13) and β = β4 =̂ (3, 12) (the “new” β)
with τ4 = −1

4 .

Figure 5.11 shows this linear path with its ramifications.
The repeated round keys we used are not independent. Therefore multi-

plicativity of I/O-correlations is justified by the rule of thumb only yielding
an approximate value for the I/O-correlation of the linear relation (α, β)
over all of the four rounds:

τ ≈ 1

2
· 3

4
· 3

8
· 1

4
=

9

256
≈ 0, 035.

The other characteristics are

p ≈ 265

512
≈ 0, 518, λ ≈ 81

65536
≈ 0, 0012, N ≈ 65536

27
≈ 2427,

the last one being the number of needed known plaintexts for a 95% success
probability.

Comparing this with the cost of exhaustion over all 65536 possible keys
we seem to have gained an advantage. However there are only 256 different
possible plaintexts all together. So linear cryptanalysis completely lost its
sense by the increased number of rounds.
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Figure 5.11: A linear path with ramifications (“trail”). For S the linear form
in the range is chosen (for high potential), indicated by a red dot. For P the
linear form in the range results by applying the permutation.
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5.9 The Idea of Differential Cryptanalysis

Differential cryptanalysis has some similarities with linear cryptanalysis but
instead of linear relations it uses approximations of Boolean maps by linear
structures (see Appendix C). The idea is to consider a difference vector
before applying a round map, and its possible values thereafter. Sequences of
difference vectors that fit together over all the rounds of an iterated bitblock
cipher are called a differential path or a characteristic [Biham/Shamir
1990]. The potential of a differential path is approximated by the product
of the potentials of the single steps. A differential hull or a differential
[Lai/Massey/Murphy 1991] is the collection of all paths between a given
input difference (of the entire cipher) and a given output difference. The
success of differential cryptanalysis relies on an analoguous rule of thumb:

Along a differential path the differential potentials are multiplica-
tive. The potential of a differential hull is approximated by the
potential of a dominant differential path.

This potential reflects the probability for getting an equation for some key
bits.



Chapter 6

AES

The cipher AES (“Advanced Encryption Standard”) is the successor of the
obsolete DES. It was adopted after a thorough competitive selection pro-
cedure in 2001. The winner of the competiton was the Belgian algorithm
Rijndael, henceforth called AES, sparing English speaking people the plight
of correct pronunciation, and neglecting a small difference in the specifi-
cations: Rijndael contains some extended parameter options that are not
standardized for AES.

AES is a multiple cipher with several rounds but not a Feistel cipher,
not even an SP-network in the proper sense. The kernel map is based on an
S-box that essentially is the multiplicative inversion in the finite field F256.
For a comprehensive analysis of the nonlinear properties of this S-box see
Appendix D.

The inventors Joan Daemen and Vincent Rijmen themselves published
a book that provides a very comprehensive und comprehensible description
of the method:

Joan Daemen, Vincent Rijmen, The Design of Rijndael. AES
– The Advanced Encryption Standard. Springer-Verlag, Berlin
2002. ISBN 3-540-42580-2.

(Note that Joan is a Flemish version of John.)
In this text we only give an introduction into the overall scheme and the

kernel map.

97
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6.1 The Structure of AES

Overview

Figures 6.1 and 6.2 give an overall impression of the scheme of AES and
illustrate how the construction principles derived in former sections show
up in AES.

• The block length is n = 128, the key length, l = 128, 192, or 256, the
number of rounds, r = 10, 12 oder 14.

• As a first step of each round, and as a last step after the last round,
a partial key is added to the current bitblock, making a total of r + 1
partial keys.

• The 128-bit “partial keys” k(i) are not partial keys in the proper sense
but are extracted from the real key k by a somewhat involved proce-
dure called “key expansion”. In particular they are not stochastically
independent.

• At the begin of each round, after adding the round key, the current
128-bit block is decomposed into 16 partial blocks each with 8 bits.
The S-box S : F8

2 −→ F8
2 is applied to each of these 16 blocks. The

linear potential of the S-box is 1
64 , see Appendix D.

• The “diffusion” step consists of a permutation followed by a linear
map. This step is slightly more complex than the standard for a pure
SP-network as in Section 2.4.

A further remark on the key expansion: The selection of the “round keys”
k(i) conceal the “real” key. Cryptanalytic approaches attack the “effective”
key consisting of the collection of the round keys k(i). This is adequate for
breaking the cipher—the real key is not needed. However the complexity of
the key expansion might prevent exploiting a dependency of the different
round keys, for instance in the case where the round keys are overlapping
partial blocks of the “real” key.

Representation of the Bitblocks

AES operates on octets (8-bit bytes), that is, on the F2 vector space F8
2.

Since the structure of this vector space as a field with 256 elements plays
a crucial role in several steps of the algorithm identifying this vector space
with the field F256 suggests itself. The exact identification map is given in
Section 6.2.

AES operates on bitblocks of lengths that are multiples of 32. Plaintexts,
ciphertexts, an intermediate results have 128 bits, the key length is 128, 192,
or 256.
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Remark The only difference between Rijndael and AES is that the spec-
ification of Rijndael allows block and key lengths of 128, 160, 192,
224, 256 each. The AES standardization procedure makes no asser-
tions about the security of Rijndael for the additional sizes of these
parameters.

Interpret the 32-bit blocks as columns with 4 octets, that is, as elements of
the 4-dimensional F256 vector space F4

256. So each block of length n = 32 ·Nb

is an Nb-tuple of such columns, or a 4×Nb-matrix

a =

a0,0 . . . a0,Nb−1
...

...
a3,0 . . . a3,Nb−1

 ∈M4,Nb(F256) =: M.

Analogously let the key length be l = 32 · Nk; however we don’t use the
corresponding matrices but expand the keys and then decompose them into
round keys k(i).

The specification of Rijndael uses Nb, Nk ∈ {4, 5, 6, 7, 8}, the
specification of AES, Nb = 4, Nk ∈ {4, 6, 8}.

The Iteration Scheme

An AES encryption runs through r rounds. Each round consists of the (bi-
nary) addition of a round key and the kernel map ρ. In the last round the
kernel map is slightly abbreviated—more on this later on. After the last
round one more partial key is added. Therefore the key expansion has to
produce r + 1 partial keys, each consisting of 32Nb bits, from the total of l
key bits. The kernel map is invertible, and is the same for all rounds except
the last one.
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The number of rounds for Rijndael is specified as follows:

Nb

Nk 4 5 6 7 8

4 10 11 12 13 14
5 11 11 12 13 14

6 12 12 12 13 14
7 13 13 13 13 14

8 14 14 14 14 14

For AES with key lengths 128, 192, or 256 the number of rounds is 10, 12,
or 14, tagged green in the table.

The Kernel Map

Each round of AES (or Rijndael) consists of four steps

1. AddRoundKey, the addition of the round key, see Figure 6.3.

2. SubBytes, a substitution that consists of parallel application of the
S-box on each octet, see Figure 6.4,

3. ShiftRows, a permutation of each matrix row, see Figure 6.5,
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4. MixColums, a linear map of each matrix column to itself, see Figure 6.6,

The kernel map ρ consists of steps 2 to 4. In the last round step 4, MixColums,
is omitted. In this way the inverse map—decryption—has the same struc-
ture. The cryptographic strength is not affected by this omission.

Figures 6.3 to 6.6 are taken from the Wikipedia article on AES (for the
case Nb = Nk = 4).

Figure 6.3: The operation of AddRoundKey

The Substitution Step SubBytes

Apply the S-box SRD separately in parallel to all octets of the current state,
that is, to all entries of the current matrix b ∈M. This S-box is the compo-
sition SRD = f ◦ g of two maps, the inversion g in F256,

g : F256 −→ F256, g(x) =

{
x−1 for x 6= 0,

0 for x = 0,
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Figure 6.4: The operation of SubBytes

(whose nonlinearity properties we know already well), and the affine map

f : F8
2 −→ F8

2,



x7

x6

x5

x4

x3

x2

x1

x0


7→



1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1
1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1





x7

x6

x5

x4

x3

x2

x1

x0


+



0
1
1
0
0
0
1
1


.

This construction ensures that

• SRD has no fixed point, that is, SRD(b) 6= b for all b ∈ F256,

• SRD has no “anti fixed point”, that is, SRD(b) 6= b̄ for all b ∈ F256;

where b̄ = (1−b7, . . . , 1−b0) is the Boolean complement, that is, the bitwise
logical negation.

The drawback of this modification of the inversion map is that the invo-
lutory property of g gets lost; therefore the decryption algorithm needs the
implementation of another S-box S−1

RD.

The Row Permutation ShiftRows

Each of the four rows of the current state—a 4×Nb-matrix—gets cyclically
shifted to the left by an individual amount; row i by Ci positions. The Ci
depend on the block length in the following way:
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Nb C0 C1 C2 C3

4 0 1 2 3
5 0 1 2 3
6 0 1 2 3
7 0 1 2 4
8 0 1 3 4

Figure 6.5: The operation of ShiftRows

The Linear Transformation of the Columns, MixColumns

The current state is multipled with a fixed 4× 4-matrix column by column
from the left; in other words, the state matrix ∈ M is multiplied from the
left to generate some diffusion. This is the F256-linear map

µ : F4
256 −→ F4

256,

specified by the matrix 
02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02


whose entries must be interpreted as octets in hexadecimal representation,
for example 03 = (00000011) ∈ F8

2.

Decryption

The complete AES (or Rijndael) encryption is the composition

Fk = κr ◦ τ ◦ σ ◦ κr−1︸ ︷︷ ︸
i=r

◦ . . . ◦ [µ ◦ τ ◦ σ ◦ κi−1]︸ ︷︷ ︸
i=1,...,r−1

◦ . . . ◦ κ0

of maps M −→ M. Here κi is the addition of the i-th round key, τ =
ShiftRows, σ = SubBytes, and µ = MixColumns, and the kernel map is
ρ = µ ◦ τ ◦ σ.
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Figure 6.6: The operation of MixColumns

For decryption we need the inverse map that looks as follows:

F−1
k = κ−1

0 ◦ . . . ◦ [κ−1
i−1 ◦ σ

−1 ◦ τ−1 ◦ µ−1] ◦ . . . ◦ κ−1
r−1 ◦ σ

−1 ◦ τ−1 ◦ κ−1
r .

The promised structural analogy with Fk follows after some transformations:

• We have κ−1
i = κi for all i.

• Because σ acts on the matrix entries, in the same way on each entry,
we have τ ◦ σ = σ ◦ τ .

• Finally κi ◦ µ(x) = µ(x) + k(i) = µ(x + µ−1(k(i))) = µ ◦ κ̃i(x) since µ
is linear. Hence µ−1 ◦ κi = κ̃i ◦ µ−1, where κ̃i is the binary addition of
µ−1(k(i)). Use this for i = 1, . . . , r.

This gives

F−1
k = κ0 ◦ τ−1 ◦ σ−1 ◦ κ̃1 ◦ . . . ◦ [µ−1 ◦ τ−1 ◦ σ−1 ◦ κ̃i] ◦ . . . ◦ κr.

Hence the decryption algorithm is composed in the same way as the encryp-
tion algorithm with the following modifications:

• a modified key expansion: κ̃i instead of κi,

• the reverse order of the partial keys,

• MixColumns: µ replaced by the inverse linear map µ−1,

• Shiftrows: τ replaced by a right shift,

• S-box SRD replaced by the inverse map S−1
RD.
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Key Expansion

We wont describe the key expansion in detail, but only mention that it
involves cyclic shifts of bytes inside blocks of lengths 4, the S-box SRD, and
the addition of fixed constants.
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6.2 The Arithmetic of the Base Field

For the description of AES we identify the 8-dimensional F2 vector space F8
2

and the field F256. We specify the exact mapping in the following subsections.

Algebraic Representation of the Base Field

The simplest construction of a finite field, see Appendix A, is as a factor
ring of the polynomial ring Fp[X] over its prime field Fp by a principal ideal
that is generated by an irreducible polynomial h ∈ Fp[X]. The ideal hFp[X]
is prime, hence

K := Fp[X]/hFp[X]

is a finite field and has degree (= dimension) n = deg h over Fp. For the
identification of K with the vector space Fnp we identify the residue classes
of the powers of X with the n unit vectors. So setting x = X mod h we
identify:

x0 = 1 =


0
0
...
0
1

 , x1 = x =


0
0
...
1
0

 , . . . , xn−1 =


1
0
...
0
0

 .

If h = Xn + a1X
n−1 + · · ·+ an−1X + an (monic without loss of generality),

then from h mod h = 0 we get

xn = −a1x
n−1 − · · · − an−1x− an

in K. Moreover this equation shows how to express the residue class of an
arbitrary polynomial f by the canonical basis 1, x, . . . , xn−1. Algorithmically
this amounts to the remainder of a polynomial division “f divided by h”.

For AES we use the polynomial

h = X8 +X4 +X3 +X + 1 ∈ F2[X].

Multiplication Table

The multiplication table for the basis (1, x, . . . , xn−1) follows from the rela-
tion defined by h. In F256 (for AES) we have

x2 · x7 = x9 = x · x8 = x · (x4 + x3 + x+ 1) = x5 + x4 + x2 + x.

Efficient inversion

The implementation of AES uses a complete value table of the S-box. This
is efficient for we have to specify only 256 values.



Appendix A

Finite Fields

As a corollary of the Euclidean algorithm we saw that the integers modulo a
prime number p form a field, Z/pZ = Fp. (For a simple direct proof observe
that multiplying by a nonzero element is injective.) The fields Fp play an
important role in the theory of finite fields.

The purpose of this appendix is to determine all finite fields.

A.1 Prime Fields

For an arbitrary ring R (with 1) and an integer n the product n · 1 ∈ R has
a natural definition as sum 1 + · · ·+ 1 of n exemplars of 1, if n > 0, as 0, if
n = 0, and as −|n| · 1, if n < 0. This makes R an algebra over Z and defines
a canonical ring homomorphism

α : Z −→ R, α(n) = n · 1.

The kernel of α is an ideal mZ with m ≥ 0. If m = rs, then α(r)α(s) = 0
in R. Thus if R is an integral domain (say a field), then m = p is a prime
number or 0, and is called the characteristic of R. If K is a finite field,
then p > 0 (else α would be injective), and the Homomorphy Theorem yields
a natural embedding Fp ↪→ K. Usually one identifies the field Fp with its
image in K and calls it the prime field of K.

Remarks

1. If K is a field of characteristic p > 0, then pa = 0 for all a ∈ K, since
pa = (p · 1) · a = 0 · a.

2. With the same assumptions (a+ b)p = ap + bp for all a, b ∈ K. For by
the Binomial Theorem

(a+ b)p = ap +

p−1∑
i=1

(
p

i

)
ap−ibi + bp.

108
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Since p divides all binomial coefficients
(
p
i

)
for 0 < i < p the sum is 0.

In particular the map a 7→ ap is a ring homomorphism of K into itself
with kernel 0, hence injective. If K is finite, it is an automorphism.

Now let K be a finite field of characteristic p with q = #K elements.
Then K is a finite dimensional vector space over Fp. If e = dimK, then K
as a vector space is isomorphic with Fep. Hence q = pe.

We have proved:

Theorem 4 Let K be a finite field, and q the number of its elements. Then
there is a prime number p and an exponent e such that q = pe. Furthermore
K has characteristic p and contains the prime field Fp (up to isomorphism).

A.2 The Multiplicative Group of a Finite Field

This is a standard result of Algebra:

Proposition 9 Let K be a field, and G ≤ K× a finite subgroup with #G =
n elements. Then G is cyclic and consists of the n-th roots of unity in K.

Proof. For a ∈ G always an = 1. Hence G is contained in the set of roots of
the polynomial Tn − 1 ∈ K[T ]. Hence K has exactly n different n-th roots
of unity, and G consists exactly of these. Now let m be the exponent of G, in
particular m ≤ n. The following Lemma 2 yields: All a ∈ G are m-th roots
of unity whose number—as roots of the polynomial Tm − 1—is at most m.
Therefore also n ≤ m, hence n = m, and G has an element of order n. 3

Lemma 2 Sei G be an abelian group.

(i) Let a, b ∈ G, ord a = m, ord b = n, where m,n are finite and coprime.
Then ord ab = mn.

(ii) Let a, b ∈ G, ord a, ord b finite, q = lcm(ord a, ord b). Then there is a
c ∈ G with ord c = q.

(iii) Let m = max{ord a|a ∈ G}, the exponent of G, be finite. Then ord b |m
for all b ∈ G.

Proof. (i) Let k := ord(ab). From (ab)mn = (am)n · (bn)m = 1 it follows
that k|mn. Since akn = akn · (bn)k = (ab)kn = 1 also m|kn, hence m|k, and
likewise n|k, hence mn|k.

(ii) Let pe be a prime power with pe|q, say pe|m := ord a. Then am/p
e

has
order pe. If q = pe11 · · · perr is the prime decomposition with different primes
pi, then there are ci ∈ G with ord ci = peii . By (i) c = c1 · · · cr has order q.
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(iii) Let ord b = n. Then there is a c ∈ G with ord c = lcm(m,n). Thus
lcm(m,n) ≤ m, hence = m, hence n|m. 3

Theorem 5 Let K be a finite field, #K = q. Then the multiplicative group
K× is cyclic of order q − 1, and aq−1 = 1 for all a ∈ K×. Moreover aq = a
for all a ∈ K. In particular K consists exactly of the roots of the polynomial
T q − T ∈ Fp[T ].

An element a ∈ K, K finite, is called primitive if it generates the
multiplicative group K×.

A.3 Irreducible Polynomials and Field Extensions

Given two fields L ⊇ K with n = DimKL < ∞ we call L a finite field
extension of K, and n its degree.

There is a common way of constructing field extensions: Let f ∈ K[T ]
be an irreducible polynomial of degree n.

The definition of “irreducible” is: f is not constant, and if f = gh
for g, h ∈ K[T ], then g or h is constant.

We’ll show that L = K[T ]/fK[T ] is a field extension of degree n.
First K ⊆ K[T ] as the set of constant polynomials, and K ∩ fK[T ] =

0. Therefore the natural homomorphism K[T ] → L induces an injection
K ↪→ L, that allows us to identify K as a subfield of L.

Next we want to show that L is a field. We start with the division
algorithm of polynomials. For a convenient handling of the zero polynomial
in this context we assign it the degree −∞. Thus deg r < 0 is equivalent
with r = 0.

Proposition 10 Let K be a field, and let f, g ∈ K[T ], g 6= 0. Then there
are uniquely determined polynomials q, r ∈ K[T ] such that f = q · g + r and
deg r < deg g.

Proof. Uniqueness : If f = q̃ · g + r̃ with deg r̃ < deg g, then

0 = (q̃ − q) · g + r̃ − r,

(q − q̃) · g = r̃ − r.

The degree of the right-hand side is < deg g. If we assume that q 6= q̃, then
the left-hand side has degree ≥ deg g because the degree of a product is the
sum of the degrees, contradiction. Hence q = q̃, and consequently also r = r̃.

Existence : We use the following Lemma 3 to conclude that we get a
correct algorithm by the instructions:
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Initialization: Put r := f , q := 0. (Then f = qg + r.)

Division loop: While deg r ≥ deg g, replace q by q + s and r by r − sg
with deg(r − sg) < deg r. (Then deg r decreases while the condition
f = qg + r is preserved.)

At the exit of the loop we have the sought-after polynomials. 3

Lemma 3 Let n ≥ m and f = anT
n + · · · a0, g = bmT

m + · · · + b0 with
leading coefficients an, bm 6= 0. Then deg(f − qg) < deg f for

q =
an
bn
· Tn−m.

Proof. The leading term of f cancels out. 3

As for integers this algorithm leads to an Euclidean algorithm. Here we
only need a theoretical consequence. Define a principal ring to be a ring
R all of whose ideals are principal, that is of the form aR (we consider
commutative rings only). We already know a principal ring: Z.

Proposition 11 The polynomial ring K[T ] over a field K is principal.

Proof. Let a � K[T ] be an ideal. We may assume a 6= 0. Choose g ∈ a of
minimal degree ≥ 0, and f ∈ a arbitrary. Division yields r = f − qg ∈ a
with a smaller gegree. This is possible only if r = 0, hence f = qg ∈ gK[T ].
Therefore a = gK[T ]. 3

An ideal m � R of a ring R is called maximal if it is maximal in the
ordered set of proper ideals a 6= R. An ideal m is maximal if and only if the
residue class ring R/m has only two ideals: the zero ideal m/m, and the unit
ideal R/m, that is if and only if it is a field.

Proposition 12 Let f ∈ K[T ] be irreducible and have degree n. Then L =
K[T ]/fK[T ] is a field extension of K of degree n.

Proof. First L is a field since fK[T ] is a maximal ideal: If fK[T ] ⊆ a�K[T ],
then the ideal a also is principal = gK[T ]. As a member of this ideal f = gh,
and the irreducibility forces h ∈ K. Hence fK[T ] = gK[T ] = a.

Furthermore L as a vector space is spanned by the residue classes ti =
T i mod f . The equation f mod f = 0 displays tn as a linear combination of
t0, . . . , tn−1. By induction all ti (i ≥ n) are linear combinations. Hence the
dimension is ≤ n. A linear combination = 0 of t0, . . . , tn−1 would define a
polynomial g ≡ 0 (mod f) of degree ≤ n− 1. Hence all its coefficients must
be 0. Thus the dimension is = n. 3
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An isomorphism of field extensions of K is an isomorphism of fields
that fixes all elements of K. By K[a] for a ∈ L ⊇ K we denote the smallest
subring of L that contains K and a. It consists of the polynomial expressions
in a with coefficients in K. Note that in general these are not all different
as elements of L.

Corollary 3 Let f ∈ K[T ] be irreducible. Then in the field L =
K[T ]/fK[T ] the polynomial f has the root t = T mod f .

If M ⊇ K is a field extension containing a root a of f , then K[a] ∼= L.

Proof. The natural homomorphism K[T ] → L coincides with the substitu-
tion map g 7→ g(t). It maps f to 0, and that means that f(t) = 0.

The substitution map K[T ]→M , g 7→ g(a), is a homomorphism whose
kernel contains fK[T ]. By the Homomorphy Theorem it induces a homo-
morphism ϕ : L→M . Since L is a field ϕ is injective, and the image of ϕ is
K[a]. 3

This construction of field extensions generalizes one of the usual con-
structions of the complex numbers as C = R[T ]/(T 2 + 1)R[T ].

A.4 Splitting Fields

Continuing the considerations of the last section we are going to construct
a field extension where a given polynomial f , not necessarily irreducible,
splits into linear factors.

If f is reducible (i. e. not irreducible), then we split off a factor of smaller
degree and successively arrive at a decomposition into irreducible polynomi-
als. (Showing the uniqueness is easy but not needed here.) Therefore there is
a field extension L ⊇ K such that f has a root in L, hence a linear factor in
L[T ] ⊇ K[T ]. Split this factor off and process the remaining polynomial in
the same way until there remain only linear factors. A field extension L ⊇ K
where f ∈ K[T ] decomposes into linear factors is called splitting field of
f . We just have shown the existence:

Proposition 13 Every polynomial f ∈ K[T ] has a splitting field.

Now let L ⊇ K be an arbitrary field extension, and a ∈ L. Then

a = {g ∈ K[T ] | g(a) = 0}

is an ideal of K[T ], hence a principal ideal fK[T ], where f has minimal
degree in a − {0} and is irreducible. (Otherwise a would be a root of a
proper factor of f that also would belong to a.) Assume without restriction
that the leading coefficient of f is 1. Then f is called minimal polynomial
of a. Clearly its degree is dimK K[a].
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This said we return to finite fields. Let K be one of them with q = pe

elements, p a prime number. Choose a primitive element a ∈ K. Then each
element 6= 0 of K is a power of a, whence a forteriori a polynomial in a.
Hence K = Fp[a]. The minimal polynomial f ∈ Fp[T ] of a divides T q − T ,
and K ∼= Fp[T ]/fFp[T ].

Consider an arbitrary field L of q elements. Then L ⊇ Fp, and L is a
splitting field of T q − T ∈ Fp[T ]. In particular f has a root b in L. Hence
Fp[b] ∼= Fp[T ]/fFp[T ] ∼= K, and because Fp[b] has q elements it must be the
whole of L. Hence L is isomorphic with K: Up to isomorphism there is at
most one field with q elements.

To show the existence we start with a splitting field K of h = T q − T ∈
Fp[T ]. (We know there is one.) The derivative h′ = −1 is constant 6= 0.
Hence all roots of h in K are different. In particular there are q of them.
They constitute a subfield of L: The sum of two roots a, b is again a root,
(a+ b)p = ap + bp = a+ b, likewise the product, and for a 6= 0 also 1/a. We
proved:

Theorem 6 (Galois 1830/E. H. Moore 1893) For each prime power q
there is up to isomorphism exactly one field with q elements.

This result allows us to think of the field of q elements. We denote it by
Fq.



Appendix B

Polynomials and Polynomial
Functions

Consider an arbitrary (commutative) field K. The functions from Kn to K
form a K-algebra A := Map(Kn,K). Let K[T ] be the polynomial algebra
in the n-tuple T = (T1, . . . , Tn) of indeterminates. Then

α : K[T ] −→ A,

ϕ 7→ α(ϕ) with α(ϕ)(x1, . . . , xn) := ϕ(x1, . . . , xn)

is a K-algebra homomorphism, called the “substitution homomorphism”.
Its image, α(K[T ]) ⊆ A, is the algebra of polynomial functions on Kn. We
distinguish two fundamentally different cases—K is infinite, or K is finite.

B.1 Polynomial Functions over Infinite Fields

Let K be infinite. Then α is

• injective, i. e., different polynomials define different functions—the
proof is the uniqueness proof of interpolation formulas, and is given
below,

• not surjective, because K[T ] has the same cardinality as K, but A is
strictly larger—the proof is elementary set theory.

The proof of injectivity relies on the following lemma:

Lemma 4 Let K be a field with at least d + 1 elements, and let ϕ ∈ K[T ]
be a polynomial of degree ≤ d with ϕ(x) = 0 for all x ∈ Kn. Then ϕ = 0.

Proof. We prove this by induction on the dimension n. In the case n = 1 the
polynomial ϕ has more than d roots, whence ϕ = 0 by elementary algebra.
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Now let n ≥ 2. Split the indeterminates into X = (T1, . . . , Tn−1) and
Y = Tn. Then

ϕ =

d∑
i=0

ψi(X) · Y i where degψi ≤ d− i ≤ d.

Fix an arbitrary x ∈ Kn−1. Then ϕ(x, y) =
∑

i ψi(x) · yi = 0 for all y ∈ K.
The assertion in the case n = 1 gives ψ0(x) = . . . = ψd(x) = 0. Since this
holds for all x, induction gives ψ0 = . . . = ψd = 0. Hence ϕ = 0. 3

From this lemma we immediately get the following theorem:

Theorem 7 Let K be an infinite field. Then the substitution homomor-
phism α : K[T ] −→ A is injective.

Now let x1, . . . , xd ∈ Kn be d distinct points, xi = (xi1, . . . , xin). We
want to construct a polynomial that takes given (not necessarily distinct)
values a1, . . . , ad at these points. To this end consider the polynomials

ψk :=
∏

i∈{1,...,d}\{k}

∏
j∈{1,...,n | xij 6=xkj}

(Tj − xij).

For i 6= k at least one coordinate xij 6= xkj , therefore ψk(xi) = 0. On the
other hand ψk(xk) 6= 0. Hence for ϕk := ψk/ψk(xk) we conclude:

Lemma 5 For each k = 1, . . . d there is a polynomial ϕk ∈ K[T ] with all
partial degrees ≤ d− 1 and

ϕk(xi) =

{
1 for i = k,

0 for i otherwise.

Taking the linear combination ϕ =
∑
akϕk we get:

Theorem 8 Let x1, . . . , xd ∈ Kn be d distinct points, and a1, . . . , ad ∈ K.
Then there is a polynomial ϕ ∈ K[T1, . . . , Tn] of partial degree ≤ d − 1 in
each Ti such that ϕ(xk) = ak for k = 1, . . . d.

Note that the proof was constructive but didn’t care about the most
efficient algorithm.

B.2 Polynomial Functions over Finite Fields

Let K be finite with #K = q elements. Then α is

• not injective, because K[T ] is infinite, but #A = qq
n
.
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• surjective, because F ∈ A is completely determined by the qn pairs
(x, F (x)), x ∈ Kn, that is by the graph of F ; interpolation gives a
polynomial ϕ ∈ K[T ] with ϕ(x) = F (x) for all x ∈ Kn, i. e., α(ϕ) = F .
A proof follows directly from Theorem 8, however in the following we
give an independent proof.

The polynomial

ϕ =
n∏
i=1

(
−T q−1

i + 1
)
∈ K[T ]

has partial degree q − 1 in each Ti.

Lemma 6 The function α(ϕ) is the indicator function

ϕ(x) =

{
1 for x = 0,

0 for x ∈ Kn otherwise.

Proof. This is immediate from aq−1 = 1 for a ∈ K×. 3

Corollary 1 For each a ∈ K there is a polynomial ϕa ∈ K[T ] with all
partial degrees q − 1 and

ϕa(x) =

{
1 for x = a,

0 for x ∈ Kn otherwise.

Proof. Take ϕa = ϕ(T1 − a1, . . . , Tn − an). 3

Now let F : Kn −→ K be given. Then the polynomial

ϕ =
∑
a∈Kn

F (a)ϕa ∈ K[T ]

has all partial degrees ≤ q− 1, and ϕ(x) = F (x) for all x ∈ Kn. This proves
the following theorem:

Theorem 9 Let K be a finite field with q elements, and n ∈ N. Then each
function F : Kn −→ K is given by a polynomial ϕ ∈ K[T1, . . . , Tn] of partial
degree ≤ q − 1 in each Ti.

Corollary 2 Each function F : Fn2 −→ F2 is given by a polynomial ϕ ∈
F2[T1, . . . , Tn] that is linear in each Ti.

Corollary 3 The kernel of the substitution homomorphism α is the ideal
a = (T q1 − T1, . . . , T

q
n − Tn) �K[T ].
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Proof. Clearly a ⊆ kerα. Because dimK[T ]/a = qn = dimA, and α is
surjective, we have a = kerα. 3

Corollary 4 Let m,n ∈ N. Then each map F : Kn −→ Km is given by
an m-tuple (ϕ1, . . . , ϕm) of polynomials ϕi ∈ K[T1, . . . , Tn] of partial degree
≤ q − 1 in each Ti.

Corollary 5 Each map F : V −→ W between finite dimensional K-
vectorspaces V and W is polynomial with partial degrees each ≤ q − 1.



Appendix C

Boolean Functions, Boolean
Maps, and Boolean Circuits

This Chapter is in the separate document Boole.pdf
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Appendix D

Fourier Analysis of Boolean
Maps

This Chapter is in the separate document Fourier.pdf
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Appendix E

The Hypergeometric
Distribution

The urn problem underlying the hypergeometric distribution is “drawing
without replacement”. Assume the urn contains n balls s of which are black,
and t = n− s are white. Let

p :=
s

n

be the proportion of black balls, and assume without loss of generality that
p > 1

2 . (The case p = 1
2 is not interesting, the case p < 1

2 is symmetric to
the considered case.)

Draw r balls (r ≤ n) by random. The probability that exactly ν of the
balls are white is

q(s)
r (ν) =

(
s

r−ν
)(
t
ν

)(
n
r

) .

The function
q(s)
r : Z −→ R

is called the hypergeometric distribution (with parameters n, s, and r).

We have q
(s)
r (ν) = 0 for ν < 0 as well as for ν > r. The probability of

drawing more blacks balls than white ones is

p(s)
r =


∑ r−1

2
ν=0 q

(s)
r (ν) if r is odd,∑ r

2
−1

ν=0 q
(s)
r (ν) + 1

2q
(s)
r ( r2) if r is even,

in case of a tie we randomly decide between black and white with probability
1
2 .

In the uninteresting case p = 1
2 obviously all p

(s)
r = 1

2 .

Lemma 7
(i) p

(s)
1 = p.
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(ii) p
(s)
2 = p

(s)
1 (if t ≥ 1).

(iii) p
(s)
3 = s(s−1)

n(n−1) ·
[
3− 2 · s−2

n−2

]
(if t ≥ 2).

(iv) p
(s)
4 = p

(s)
3 (if t ≥ 2).

(v) p
(s)
r = 1 for r > 2t.

Proof. (i) Trivial.
(ii) We draw two balls, and break the tie (in the case where we draw one

ball of each type) by a random decision. Therefore the numerator is(
s

2

)
+

1

2

(
s

1

)(
t

1

)
=
s(s− 1)

2
+
s(n− s)

2
=
s(n− 1)

2
.

The denominator is n(n−1)
2 , and the quotient is

p
(s)
2 =

s(n− 1)

n(n− 1)
= p.

(iii) Here the numerator is(
s

3

)
+

(
s

2

)
· (n− s) =

s(s− 1)(s− 2) + 3s(s− 1)(n− s)
6

=
s(s− 1)

6
· [s− 2 + 3 · (n− s)]

=
s(s− 1)

6
· [3 · (n− 2)− 2 · (s− 2)].

The denominator is 1
6 · n(n− 1)(n− 2), hence the asserted value of p

(s)
3 .

(iv) We omit the calculation since the next lemma contains a more gen-
eral statement.

(v) In this case we necessarily draw a majority of black balls. 3

Lemma 8 If r is even and 2 ≤ r ≤ 2t, then

p
(s)
r+1 > p(s)

r = p
(s)
r−1.

Proof. Let A
(s)
r (ν) =

(
n
r

)
· q(s)
r (ν) be the numerator of q

(s)
r (ν), and B

(s)
r =(

n
r

)
· p(s)
r , the numerator of p

(s)
r .

After r+1 drawings we have a black majority in B
(s)
r+1 cases. Considering

the change from r to r + 1 we have:

•
∑ r

2
−1

ν=0 A
(s)
r (ν) cases where the number of black balls is at least r

2 + 1
after r drawings. We have n−r possibilities for the (r+1)-th ball, but
all of these cannot change the majority. So we get

X1 = (n− r) ·

r
2
−1∑
ν=0

A(s)
r (ν)
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cases with a black majority.

• A
(s)
r ( r2) cases where after r drawings we have exactly r

2 black balls.
From the n− r possibilities for the (r + 1)-th ball

– s− r
2 are black and give a black majority,

– t− r
2 are white and give a white majority.

Thus we get another

X2 = (s− r

2
) ·A(s)

r (
r

2
)

cases with a black majority.

• In the remaining cases after r drawings we have at most r
2 − 1 black

balls. Therefore the (r + 1)-th ball cannot change the white majority.

This count contains each resulting set exactly r + 1 times. Therefore

B
(s)
r+1 =

1

r + 1
· (X1 +X2) =

n− r
r + 1

·

 r
2
−1∑
ν=0

A(s)
r (ν) +

s− r
2

n− r
·A(s)

r (
r

2
)

 .
For the coefficient of the last term we have

s− r
2

n− r
>

1

2
⇐⇒ 2s− r > n− r ⇐⇒ s >

n

2
.

(Since r ≤ 2t also r < n.) Therefore

B
(s)
r+1 >

n− r
r + 1

·B(s)
r ,

and the first part of the assertion, p
(s)
r+1 > p

(s)
r , follows.

Analyzing the change from r − 1 to r is somewhat more complicated.

After r drawings we have a black majority in B
(s)
r cases. Among these are:

•
∑ r

2
−2

ν=0 A
(s)
r−1 cases where after r − 1 drawings we have at least r

2 + 1
black balls. The n − r + 1 possibilities for the r-th ball can’t change
the decision. Hence we get

Y1 = (n− r + 1) ·

r
2
−2∑
ν=0

A
(s)
r−1

cases with black majority.

• A
(s)
r−1( r2 − 1) cases where after r− 1 drawings we have exactly r

2 black
balls. The n− r + 1 possibilities for the r-th ball dissociate into
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– s− r
2 black ones that result in a black majority. This makes

Y2 = (s− r

2
) ·A(s)

r−1(
r

2
− 1)

additional cases.

– t+ 1− r
2 white ones where we randomly decide with probability

1
2 . This adds another

Y3 =
1

2
· (t+ 1− r

2
) ·A(s)

r−1(
r

2
− 1)

cases to our collection.

• A
(s)
r−1( r2) cases where after r− 1 drawings we have exactly r

2 − 1 black
balls. The n− r + 1 possibilities for the r-th ball dissociate into

– s+ 1− r
2 black ones where we randomly decide with probability

1
2 . This gives another

Y4 =
1

2
· (s+ 1− r

2
) ·A(s)

r−1(
r

2
)

cases.

– t− r
2 white ones that don’t disturb the white majority.

• In the remaining cases after r−1 drawings we have at most r
2−2 black

balls. The white majority is unchanged.

Each set of drawn balls is counted exactly r times. Therefore

B(s)
r =

1

r
· (Y1 + Y2 + Y3 + Y4)

=
n− r + 1

r
·

r
2
−2∑
ν=0

A
(s)
r−1 +

1

r
· (s− r

2
+
t

2
+

1

2
− r

4
) ·A(s)

r−1(
r

2
− 1)

+
1

2r
· (s− r

2
+ 1) ·A(s)

r−1(
r

2
)

Since s+ t
2 = n− t

2 the coefficient of the middle term equals

s− r

2
+
t

2
− r

4
+

1

2
= n− t

2
− r +

r

4
+ 1− 1

2
= (n− r + 1)− 1

2
· (t− r

2
+ 1).

Hence

B(s)
r =

n− r + 1

r
·

r
2
−1∑
ν=0

A
(s)
r−1

− 1

2r
(t− r

2
+ 1)

(
s
r
2

)(
t

r
2 − 1

)
+

1

2r
(s− r

2
+ 1)

(
s

r
2 − 1

)(
t
r
2

)
.
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The two last terms cancel. What remains is

B(s)
r =

n− r + 1

r
·B(s)

r−1.

This proves the second part of the assertion. 3

We conclude:

Proposition 14 The probability p
(s)
r grows monotonically with r from

p
(s)
1 = p to p

(s)
2t+1 = 1.

If the quotients
rs

n
,
rt

n
,

(n− r)s
n

,
(n− r)t

n
are sufficiently large (by Fisher’s rule of thumb: ≥ 5), the normal distribu-
tion approximates the hypergeometric distribution well. In particular

x∑
ν=0

q(s)
r (ν) ≈ Φ(

x− µ
σ

) =
1√
2π
·
∫ x−µ

σ

−∞
e−t

2/2 dt (1)

where µ is the mean value and σ2 is the variance of the hypergeometric
distribution (with parameters n, s, and r), and Φ is the distribution function
of the normal distribution. For mean value and variance we have:

Lemma 9

µ =
rt

n
,

σ2 =
r(n− r) · t(n− t)

n2(n− 1)
.

Proof. Take a random sample of r balls. Let Xk : Ω −→ R be a random
variable that assumes the value 0 if the k-th ball is black, and 1 if it is
white. Then S = X1 + · · ·+Xr : Ω −→ R is a random variable that counts
the number of white balls in our sample. Then µ = E(S) is the expectation
and σ2 = Var(S) is the variance of this random variable.

Since E(Xk) = t
n we have E(S) = r · tn .

We note that X2
k = Xk and derive

Var(Xk) = E(X2
k)− E(Xk)

2 =
t

n
− t2

n2
=
t(n− t)
n2

.

Since XjXk(ω) = 1 ⇐⇒ Xj(ω) = 1 and Xk(ω) = 1 the probability of

this event is t(t−1)
n(n−1) . This gives the expectation E(XjXk) = t(t−1)

n(n−1) . Thus the
covariance is

Cov(Xj , Xk) = E(XjXk)− E(Xj)E(Xk) =
t(t− 1)

n(n− 1)
− t2

n2

=
t(n(t− 1)− t(n− 1))

n2(n− 1)
=

t(t− n)

n2(n− 1)
.
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We deduce the variance of S:

Var(S) =

r∑
k=1

Var(Xk) + 2 ·
∑

1≤j<k≤r
Cov(Xj , Xk)

=
rt(n− t)

n2
+ r(r − 1) · t(t− n)

n2(n− 1)
=
rt(n− t)

n2
·
[
1− r − 1

n− 1

]
=

rt(n− t)
n2(n− 1)

· [n− r],

as claimed. 3

Proposition 15 (Asymptotic distribution) The probability of a major-
ity of black balls is

p(s)
r ≈

1√
2π
·
∫ √rλ
−∞

e−t
2/2dt

with λ = (2p− 1)2, under the assumption that p ≈ 1
2 , r � n, and r not too

small.

[By Fisher’s rule of thumb 10 ≤ r ≤ n− 10 suffices if p ≈ 1
2 .

Note that this “proposition” lacks mathematical precision.]
Proof. We look at the upper boundary of the integral (1) for x = r

2 :

x− µ
σ

=
( r2 −

rt
n ) · n ·

√
n− 1√

r(n− r)t(n− t)
=

(rn− 2rt)
√
n− 1

2 ·
√
r(n− r)t(n− t)

=

√
r
√
n− 1√
n− r

· s− t
2
√
st

=

√
n− 1√
n− r

·
√
r · 2p− 1

2
√
p(1− p)

≈ 1 ·
√
r · 2p− 1

2 ·
√

1
4

=
√
rλ,

as claimed. 3
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