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Figure 5.2: A (much too) simple example—The graphics here and later rep-
resent the map f sometimes by the S-box S in the elementwise assignments.

5.2 Example A: A One-Round-Cipher

We consider examples that are much too simple for real world applications
but illustrate the principles of linear cryptanalysis in an easily intelligible
way. We always assume round functions of the type f(a+k), that is we add
the key—or an n-bit part of it—to the plaintext before applying a bijective
S-box f : Fn

2 −→ Fn
2 . This is a quite special method of bringing the key into

play but nevertheless realistic. The paradigmatic sample ciphers Lucifer,
DES, and AES do so, the term used with AES [1] is “key-alternating cipher
structure”.

The simplest model is encryption by the formula

c = f(a+ k),

see Figure 5.2. This example is pointless because one block of known plain-
text gives a solution for k:

k = f
−1(c) + a.

Note that the attacker knows the inverse map f
−1 that is part of the decryp-

tion algorithm. (One-way encryption methods that assume that f−1 is not
efficiently deducible from f are the subject of another part of cryptography,
see Part III, Chapter 6, of these lecture notes.)

The somewhat more involved example A stops this attack:

c = f(a+ k
(0)) + k

(1)

(see Figure 5.3). This is the simplest example for which the method of linear
cryptanalysis makes sense: Let (α, β) be a pair of linear forms with

β ◦ f(x)
p
≈ α(x), (3)

where the symbol
p
≈ reads as “equal with probability p”, or in other words

p = pf,α,β :=
1

2n
·#{x ∈ Fn

2 | β ◦ f(x) = α(x)}.
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Figure 5.3: Example A
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Figure 5.4: Diagram for an “approximative” linear relation

The diagram in Figure 5.4 illustrates Formula (3). Note that the linear form
κ of the general theory is implicit in the present context: Since the key
bits are simply added to plaintext and (“intermediary”) ciphertext we have
κ = α for k(0), and κ = β for k(1), hence κ(k(0), k(1)) = α(k(0)) + β(k(1)).

How does this scenario fit the general situation from Chapter 2? In ex-
ample A we have

• key length l = 2n, key space F2n
2 , and keys of the form k = (k(0), k(1))

with k
(0)

, k
(1) ∈ Fn

2 .

• The cipher is defined by the map

F : Fn
2 × Fn

2 × Fn
2 −→ Fn

2 , (a, k(0), k(1)) �→ f(a+ k
(0)) + k

(1)
.

• The linear form κ : Fn
2 × Fn

2 −→ F2 is κ(k(0), k(1)) = α(k(0)) + β(k(1)).

Hence the probability of a linear relation for a fixed key k = (k(0), k(1)) is

pF,α,β,κ(k) =
1

2n
·#{a ∈ Fn

2 | κ(k) = α(a) + β(F (a, k))}

=
1

2n
·#{a ∈ Fn

2 | α(k(0)) + β(k(1)) = α(a) + β(f(a+ k
(0)) + k

(1))}

=
1

2n
·#{a ∈ Fn

2 | α(k(0)) = α(a) + β(f(a+ k
(0)))},
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where we omitted β(k(1)) that occurs on both sides of the equation inside
the curly set brackets.

This expression is independent of k(1), and the slightly rewritten equation

pF,α,β,κ(k) =
1

2n
·#{a ∈ Fn

2 | α(a+ k
(0)) = β(f(a+ k

(0)))}

shows that it assumes the same value for all k(0): With a also a+ k
(0) runs

through all of Fn
2 for a fixed k

(0). Therefore this value must agree with the
mean value over all k:

pF,α,β,κ(k) = pF,α,β,κ =
1

2n
·#{x ∈ Fn

2 | α(x) = β(f(x))} = p.

This consideration shows:

Proposition 3 In the scenario of example A the probability pF,α,β,κ(k) as-
sumes the same value

p =
1

2n
·#{x ∈ Fn

2 | α(x) = β(f(x))}

for all keys k ∈ F2n
2 . In particular p coincides with the mean value from

Equation (2).

Using the notations from Figure 5.3 we have

β(c) = β(b� + k
(1)) = β(b�) + β(k(1))

p
≈ α(b) + β(k(1)) = α(a+ k

(0)) + β(k(1)) = α(a) + α(k(0)) + β(k(1)).

This yields a linear relation for the bits of the key k = (k1, k2):

α(k(0)) + β(k(1))
p
≈ α(a) + β(c).

Treating the complementary relation

β ◦ f(x)
1−p
≈ α(x) + 1

in an analoguous way we get:

Proposition 4 In the scenario of example A let (α, β) be a pair of linear

forms for f with probability p as in Formula (3). Then p̂ = max{p, 1− p} is

the success probability for determing a single key bit by this linear relation

given one known plaintext block.
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a b b
�

c α(a) + β(c)
0000 1000 0010 0011 1
0001 1001 0110 0111 1
0010 1010 0011 0010 0
0011 1011 0001 0000 1
0100 1100 1001 1000 1
0101 1101 0100 0101 1
0110 1110 0101 0100 1
0111 1111 1000 1001 1
1000 0000 1100 1101 1
1001 0001 1111 1110 1
1010 0010 0111 0110 1
1011 0011 1010 1011 1
1100 0100 1110 1111 1
1101 0101 1101 1100 1
1110 0110 1011 1010 1
1111 0111 0000 0001 0

Table 5.3: A linear relation for the key bits

Example

Take n = 4, and for f take the S-box S0 of Lucifer. As the two right-
most columns of Table 5.1 show the linear relation defined by (α, β), where
α(x) = x4 and β(y) = y1 + y2 + y4, has probability pf,α,β = 14

16 = 7
8 (provid-

ing strong evidence that the designers of Lucifer weren’t aware of linear
cryptanalysis).

As concrete round keys take k0 = 1000 and k1 = 0001. Table 5.3, running
through all possible 16 plaintexts, shows that α(a)+β(c) assumes the value
1 = α(k0) + β(k1) for this partial sum of key bits exactly 14 times—as
expected.

How large is the success probability pN of correctly estimating this par-
tial sum, assuming N = 1, 2, . . . random known plaintexts from the set of 2n

possible plaintexts? (For given linear forms α and β with p = pf,α,β .) This is
exactly the scenario of the hypergeometric distribution (for an explanation
of the hypergeometric distribution see Appendix E). Therefore we have:

Proposition 5 In example A let (α, β) be a pair of linear forms that defines

a linear relation for f with probability p. Then the success probability for

determining a key bit by this linear relation from N known plaintexts is

the cumulated probability pN = p
(s)
N of the hypergeometric distribution with

parameters 2n, s = p̂ · 2n, and N where p̂ = max{p, 1− p}.

If we neglect exact mathematical reasoning and work with asymptotic
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Nλ 1 2 3 4 . . . 8 9
pN 84, 1% 92, 1% 95, 8% 97, 7% . . . 99, 8% 99, 9%

Table 5.4: Dependence of the success probability on the number of known
plaintexts

approximations (as is common in applied statistics), then we can replace the
hypergeometric distribution by the normal distribution. The usual (quite
vaguely stated) conditions for this approximation are “p not too different
from 1

2 , N � 2n, but N not too small.” This gives the formula

pN ≈ 1√
2π

·
� √

Nλ

−∞
e
−t2/2

dt, (4)

where λ = (2p − 1)2 is the potential of the linear relation. The values as-
sociated with the normal distribution are well-known and yield Table 5.4.
Instead of the approximation by the normal distribution we could directly
use the hypergeometric distribution. This would, in particular for small N ,
give a more precise value but not a closed formula as simple as (4).

To get a success probability of about 95% we need N ≈ 3
λ known plain-

texts according to the table. In the concrete example above we had p = 7
8 ,

hence λ = 9
16 , and the number of known plaintexts needed for a 95% suc-

cess probability is N ≈ 5. Using Table 5.2 we succeeded with only N = 3
plaintexts. This is not a great surprise because the a-priori probability of
this success is about 90% (for Nλ = 27

16 ≈ 1, 68 . . .).

In this example the condition “N not too small” for the ap-
proximation by the normal distribution is more than arguable.
However determining the exact values for the hypergeometric
distribution is easy: Consider an urn containing 16 balls, 14 black
ones and 2 white ones, and draw 3 balls by random. Then the
probability of all of them being black is 26

40 , the probability of
two being black and one being white is 13

40 . Hence the probability
of at least two balls being black is 39

40 = 97, 5%. This is clearly
more than the 90% from the approximation (4). The remaining
probabilities are 1

40 for exactly one black ball, and 0 for three
white balls.


