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Figure 5.7: Example C

5.5 Linear Paths

Consider the general case where the round map f: Fn
2 ×Fq

2 −→ Fn
2 is iterated

for r rounds with round keys k
(i) ∈ Fq

2, in analogy with Figure 5.5. Let
(αi,βi,κi) be a linear relation for round i. Let αi = βi−1 for i = 2, . . . , r.
Set β0 := α1. Then the chain β = (β0, . . . ,βr) is called a linear path for
the cipher.

For a simplified scenario, let’s call it example C as a generalization of
example B, again we’ll derive a useful result on the probabilities. So we con-
sider the special but relevant case where the round keys enter the algorithm
in an additive way, see Figure 5.7.

Given a key k = (k(0), . . . , k(r)) ∈ Fn·(r+1)
2 we compose the encryption

function F successively with the intermediate results

a
(0) = a | b(0) = a

(0) + k
(0) | a(1) = f1(b

(0)) | b(1) = a
(1) + k

(1) | . . .

b
(r−1) = a

(r−1) + k
(r−1) | a(r) = fr(b

(r−1)) | b(r) = a
(r) + k

(r) = c =: F (a, k)

The general formula is

b
(i) = a

(i) + k
(i) for i = 0, . . . , r,

a
(0) = a and a

(i) = fi(b
(i−1)) for i = 1, . . . , r.

We consider a linear relation

κ(k)
p
≈ β0(a) + βr(c),

where
κ(k) = β0(k

(0)) + · · ·+ βr(k
(r)),

and p is the probability

pF,β(k) =
1

2n
·#{a ∈ Fn

2 |
r�

i=0

βi(k
(i)) = β0(a) + βr(F (a, k))}
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that depends on the key k. Denote the mean value of these probabilities over
all k by qr. It depends on (f1, . . . , fr) and on the linear path β:

qr :=
1

2n·(r+2)
·#{a, k(0), . . . , k(r) ∈ Fn

2 |
r�

i=0

βi(k
(i)) = β0(a) + βr(F (a, k))}.

Substitute F (a, k) = a
(r) + k

(r) = fr(b(r−1)) + k
(r) into the defining equa-

tion of this set. Then βr(k(r)) cancels out, and we see that the count is
independent of k(r). The remaining formula is

qr =
1

2n·(r+1)
·#{a, k(0), . . . , k(r−1) ∈ Fn

2 |
r−1�

i=0

βi(k
(i)) = β0(a)+βr(fr(b

(r−1)))}.

In this formula the probability pr is hidden: We have

βr(fr(b
(r−1))) =

�
βr−1(b(r−1)) with probability pr,

1 + βr−1(b(r−1)) with probability 1− pr,

where “with probability pr” means: in pr · 2n·(r+1) of the 2n·(r+1) possible
cases. Hence

qr =
1

2n·(r+1)
·
�
pr ·#{a, k(0), . . . , k(r−1) |

r−1�

i=0

βi(k
(i)) = β0(a) + βr−1(b

(r−1))}

+(1− pr) ·#{a, k(0), . . . , k(r−1) |
r−1�

i=0

βi(k
(i)) = 1 + β0(a) + βr−1(b

(r−1))}
�

= pr · qr−1 + (1− pr) · (1− qr−1),

for the final counts exactly correspond to the probabilities for r− 1 rounds.
This is the perfect entry to a proof by induction, showing:

Proposition 7 (Matsuis Piling-Up Theorem) In example C the mean

value pF,β of the probabilities pF,β(k) over all keys k ∈ Fn(r+1)
2 fulfills

2pF,β − 1 =
r�

i=1

(2pi − 1).

In particular the I/O-correlations and the potentials are multiplicative.

Proof. The induction starts with the trivial case r = 1 (or with the case
r = 2 that we proved in Proposition 6).

From the previous consideration we conclude

2qr − 1 = 4prqr−1 − 2pr − 2qr−1 + 1 = (2pr − 1)(2qr−1 − 1),
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and the assertion follows by induction on r. ✸

For real ciphers in general the round keys are not independent but derive
from a “master key” by a specific key schedule. In practice however this effect
is negligeable. The method of linear cryptanalysis follows the rule of thumb:

Along a linear path the potentials are multiplicative.

Proposition 7, although valid only in a special situation and somewhat
imprecise for real life ciphers, gives a good impression of how the crypt-
analytic advantage (represented by the potential) of linear approximations
decreases with an increasing number of rounds; note that the product of
numbers smaller than 1 (and greater than 0) decreases with the number of
factors. This means that the security of a cipher against linear cryptanalysis
is the better, the more rounds it involves.


