

Figure 5.7: Example C

5.5 Linear Paths

Consider the general case where the round map $f: \mathbb{F}_{2}^{n} \times \mathbb{F}_{2}^{q} \longrightarrow \mathbb{F}_{2}^{n}$ is iterated for r rounds with round keys $k^{(i)} \in \mathbb{F}_{2}^{q}$, in analogy with Figure 5.5. Let ($\alpha_{i}, \beta_{i}, \kappa_{i}$) be a linear relation for round i. Let $\alpha_{i}=\beta_{i-1}$ for $i=2, \ldots, r$. Set $\beta_{0}:=\alpha_{1}$. Then the chain $\beta=\left(\beta_{0}, \ldots, \beta_{r}\right)$ is called a linear path for the cipher.

For a simplified scenario, let's call it example C as a generalization of example B, again we'll derive a useful result on the probabilities. So we consider the special but relevant case where the round keys enter the algorithm in an additive way, see Figure 5.7.

Given a key $k=\left(k^{(0)}, \ldots, k^{(r)}\right) \in \mathbb{F}_{2}^{n \cdot(r+1)}$ we compose the encryption function F successively with the intermediate results

$$
\begin{gathered}
a^{(0)}=a\left|b^{(0)}=a^{(0)}+k^{(0)}\right| a^{(1)}=f_{1}\left(b^{(0)}\right)\left|b^{(1)}=a^{(1)}+k^{(1)}\right| \ldots \\
b^{(r-1)}=a^{(r-1)}+k^{(r-1)}\left|a^{(r)}=f_{r}\left(b^{(r-1)}\right)\right| b^{(r)}=a^{(r)}+k^{(r)}=c=: F(a, k)
\end{gathered}
$$

The general formula is

$$
\begin{gathered}
b^{(i)}=a^{(i)}+k^{(i)} \text { for } i=0, \ldots, r, \\
a^{(0)}=a \text { and } a^{(i)}=f_{i}\left(b^{(i-1)}\right) \text { for } i=1, \ldots, r .
\end{gathered}
$$

We consider a linear relation

$$
\kappa(k) \stackrel{p}{\approx} \beta_{0}(a)+\beta_{r}(c),
$$

where

$$
\kappa(k)=\beta_{0}\left(k^{(0)}\right)+\cdots+\beta_{r}\left(k^{(r)}\right),
$$

and p is the probability

$$
p_{F, \beta}(k)=\frac{1}{2^{n}} \cdot \#\left\{a \in \mathbb{F}_{2}^{n} \mid \sum_{i=0}^{r} \beta_{i}\left(k^{(i)}\right)=\beta_{0}(a)+\beta_{r}(F(a, k))\right\}
$$

that depends on the key k. Denote the mean value of these probabilities over all k by q_{r}. It depends on $\left(f_{1}, \ldots, f_{r}\right)$ and on the linear path β :
$q_{r}:=\frac{1}{2^{n \cdot(r+2)}} \cdot \#\left\{a, k^{(0)}, \ldots, k^{(r)} \in \mathbb{F}_{2}^{n} \mid \sum_{i=0}^{r} \beta_{i}\left(k^{(i)}\right)=\beta_{0}(a)+\beta_{r}(F(a, k))\right\}$.
Substitute $F(a, k)=a^{(r)}+k^{(r)}=f_{r}\left(b^{(r-1)}\right)+k^{(r)}$ into the defining equation of this set. Then $\beta_{r}\left(k^{(r)}\right)$ cancels out, and we see that the count is independent of $k^{(r)}$. The remaining formula is
$q_{r}=\frac{1}{2^{n \cdot(r+1)}} \cdot \#\left\{a, k^{(0)}, \ldots, k^{(r-1)} \in \mathbb{F}_{2}^{n} \mid \sum_{i=0}^{r-1} \beta_{i}\left(k^{(i)}\right)=\beta_{0}(a)+\beta_{r}\left(f_{r}\left(b^{(r-1)}\right)\right)\right\}$.
In this formula the probability p_{r} is hidden: We have

$$
\beta_{r}\left(f_{r}\left(b^{(r-1)}\right)\right)= \begin{cases}\beta_{r-1}\left(b^{(r-1)}\right) & \text { with probability } p_{r} \\ 1+\beta_{r-1}\left(b^{(r-1)}\right) & \text { with probability } 1-p_{r}\end{cases}
$$

where "with probability p_{r} " means: in $p_{r} \cdot 2^{n \cdot(r+1)}$ of the $2^{n \cdot(r+1)}$ possible cases. Hence

$$
\begin{aligned}
q_{r}= & \frac{1}{2^{n \cdot(r+1)}} \cdot\left[p_{r} \cdot \#\left\{a, k^{(0)}, \ldots, k^{(r-1)} \mid \sum_{i=0}^{r-1} \beta_{i}\left(k^{(i)}\right)=\beta_{0}(a)+\beta_{r-1}\left(b^{(r-1)}\right)\right\}\right. \\
& \left.+\left(1-p_{r}\right) \cdot \#\left\{a, k^{(0)}, \ldots, k^{(r-1)} \mid \sum_{i=0}^{r-1} \beta_{i}\left(k^{(i)}\right)=1+\beta_{0}(a)+\beta_{r-1}\left(b^{(r-1)}\right)\right\}\right] \\
= & p_{r} \cdot q_{r-1}+\left(1-p_{r}\right) \cdot\left(1-q_{r-1}\right)
\end{aligned}
$$

for the final counts exactly correspond to the probabilities for $r-1$ rounds.
This is the perfect entry to a proof by induction, showing:
Proposition 7 (Matsuis Piling-Up Theorem) In example C the mean value $p_{F, \beta}$ of the probabilities $p_{F, \beta}(k)$ over all keys $k \in \mathbb{F}_{2}^{n(r+1)}$ fulfills

$$
2 p_{F, \beta}-1=\prod_{i=1}^{r}\left(2 p_{i}-1\right)
$$

In particular the I/O-correlations and the potentials are multiplicative.
Proof. The induction starts with the trivial case $r=1$ (or with the case $r=2$ that we proved in Proposition 6).

From the previous consideration we conclude

$$
2 q_{r}-1=4 p_{r} q_{r-1}-2 p_{r}-2 q_{r-1}+1=\left(2 p_{r}-1\right)\left(2 q_{r-1}-1\right)
$$

and the assertion follows by induction on r. \diamond

For real ciphers in general the round keys are not independent but derive from a "master key" by a specific key schedule. In practice however this effect is negligeable. The method of linear cryptanalysis follows the rule of thumb:

Along a linear path the potentials are multiplicative.
Proposition 7, although valid only in a special situation and somewhat imprecise for real life ciphers, gives a good impression of how the cryptanalytic advantage (represented by the potential) of linear approximations decreases with an increasing number of rounds; note that the product of numbers smaller than 1 (and greater than 0) decreases with the number of factors. This means that the security of a cipher against linear cryptanalysis is the better, the more rounds it involves.

