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5.1 The Idea of Linear Cryptanalysis

Consider a bitblock cipher F of block length n and key length l,

F : Fn
2 × Fl

2 −→ Fn
2 .

Imagine the arguments of F as plain texts a ∈ Fn
2 and keys k ∈ Fl

2, the
values of F as cipher texts c ∈ Fn

2 . A linear relation between a plaintext
a ∈ Fn

2 , a key k ∈ Fl
2, and a ciphertext c = F (a, k) ∈ Fn

2 is described by
three linear forms

α : Fn
2 −→ F2, β : Fn

2 −→ F2, and κ : Fl
2 −→ F2

as an equation
κ(k) = α(a) + β(c). (1)

If I = (i1, . . . , ir) is the index set that corresponds to the linear form κ—
that is κ(k) = ki1 + · · · + kir—, then writing (1) more explicitly we get an
equation for the sum of the involved key bits ki1 , . . . , kir :

ki1 + · · ·+ kir = α(a) + β(c),

For an attack with known plaintext a this reduces the number of unknown
key bits to l − 1 by elimination of one of these bits.

In general the odds of the relation (1) for concrete random values of k, a,
and c are about fifty-fifty: both sides evaluate to 0 or 1 with probability 1

2 .
Best for security is a frequency of 50% plaintexts a that make the relation
true for a fixed key k, where c = F (a, k) is the corresponding ciphertext.
This would make the relation indistinguishable from a pure accidental one.
If the probability of the relation,

pF,α,β,κ(k) :=
1

2n
·#{a ∈ Fn

2 | κ(k) = α(a) + β(F (a, k))},

is conspicuously larger than 1
2 , this reveals a biased probability for the values

of the bits of k, and would result in a small advantage for the cryptanalyst.
If on the other hand the probability is noticeably smaller than 1

2 , then the
complementary relation κ(k) = α(a) + β(c) + 1 is true more often than
by pure chance. This also is a weakness. Because the situation concerning
the deviation of the probabilities from the ideal value 1

2 is symmetric (and
because the I/O-correlation and the potential are multiplicative, see Propo-
sition 6) it makes sense to consider symmetric quantities, the input-output
correlation:

τF,α,β,κ(k) := 2pF,α,β,κ(k)− 1

(in short: I/O-correlation) and the potential of a linear relation:

λF,α,β,κ(k) := τF,α,β,κ(k)
2
.
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The I/O-correlation takes values between −1 and 1. It is the correlation
of two Boolean functions on Fn

2 , namely α + κ(k) and β ◦ Fk. (For fixed k

the value of κ(k) is constant, i. e. 0 or 1.) The first of these functions picks
input bits, the second one, output bits. In general the correlation of Boolean
functions f, g : Fn

2 −→ F2 is the difference

c(f, g) :=
1

2n
· [#{x ∈ Fn

2 | f(x) = g(x)}−#{x ∈ Fn
2 | f(x) �= g(x)}] .

The potential takes values between 0 and 1, and measures the deviation
of the probability from 1

2 . In the best case it is 0, in the worst, 1. This “bad”
extreme case would provide an exact and directly useable relation for the
key bits. Figure 5.1 illustrates the connection.

Figure 5.1: Connection between probability p, I/O-correlation τ , and poten-
tial λ

Note that the key k is the target of the attack. As long as it is unknown,
the value of pF,α,β,κ(k) is also unknown. Thus for cryptanalysis it makes
sense to average the probabilities of a linear relation over all keys:

pF,α,β,κ :=
1

2n+l
#{(a, k) ∈ Fn

2 × Fl
2 | κ(k) = α(a) + β(F (a, k))}. (2)

This average probability is determined by the definition of the cipher F

alone, at least theoretically, neglecting efficiency. Calculating it however
amounts to an exhaustion of all plaintexts and keys, and thus is unreal-
istic for a realistic cipher with large block lengths. We extend the definition
for the “average case” also to I/O-correlation and potential:

τF,α,β,κ := 2pF,α,β,κ − 1,
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λF,α,β,κ := τ
2
F,α,β,κ.

Note that the I/O-correlation is also a mean value, but the potential is not!
Shamir already in Crypto 85 noticed that the S-boxes of DES ad-

mit linear relations with conspicuous probabilities. However it took another
seven years untilMatsui (after first attempts byGilbert and Chassé 1990
with the cipher FEAL) succeeded in making systematic use of this observa-
tion. For estimating κ(k) he proceeded as follows (in the case pF,α,β,κ >

1
2 ;

in the case pF,α,β,κ <
1
2 take the bitwise complement, in the case pF,α,β,κ = 1

2
the method is useless):

1. Collect N pairs of plaintexts and corresponding ciphertexts
(a1, c1), . . . , (aN , cN ).

2. Count the number

t := #{i = 1, . . . , N | α(ai) + β(ci) = 0}.

3. Decide by majority depending on t:

• If t > N
2 , estimate κ(k) = 0.

• If t < N
2 , estimate κ(k) = 1.

The case t = N
2 is worthless, however scarce—we might randomize the de-

cision between 0 and 1.
If we detect a linear relation whose probability differs from 1

2 in a suf-
ficient way, then this procedure will have a good success probability for
sufficiently large N . This allows to reduce the number of unknown key bits
by 1, applying elimination.

As a theoretical result from these considerations we’ll get a connection
between the number N of needed plaintext blocks and the success probabil-
ity, see Table 5.4.

The more linear relations with sufficiently high certainty the attacker
finds, the more she can reduce the size of the remaining key space until
finally an exhaustion becomes feasible. A concrete example in Section 5.7
will illustrate this.

Example

For a concrete example with n = l = 4 we consider the Boolean map f

that is given by the values in Table 5.1—by the way this is the S-box S0 of
Lucifer—and define the bitblock cipher

F : F4
2 × F4

2 −→ F4
2 by F (a, k) := f(a+ k).



K. Pommerening, Bitblock Ciphers 62

x y = f(x) x4 y1 + y2 + y4

0 0 0 0 1 1 0 0 0 0
0 0 0 1 1 1 1 1 1 1
0 0 1 0 0 1 1 1 0 0
0 0 1 1 1 0 1 0 1 1
0 1 0 0 1 1 1 0 0 0
0 1 0 1 1 1 0 1 1 1
0 1 1 0 1 0 1 1 0 0
0 1 1 1 0 0 0 0 1 0
1 0 0 0 0 0 1 0 0 0
1 0 0 1 0 1 1 0 1 1
1 0 1 0 0 0 1 1 0 1
1 0 1 1 0 0 0 1 1 1
1 1 0 0 1 0 0 1 0 0
1 1 0 1 0 1 0 0 1 1
1 1 1 0 0 1 0 1 0 0
1 1 1 1 1 0 0 0 1 1

Table 5.1: An S-box for f : F4
2 −→ F4

2 and two linear forms (the S-box S0 of
Lucifer)

a a+ k c α(a) β(c) α(a) + β(c)
0010 1010 0011 0 1 1
0101 1101 0100 1 1 0
1010 0010 0111 0 0 0

Table 5.2: Estimating a key bit after Matsui

We encrypt using the key k = 1000 (that we’ll attack later as a test case).
For a linear relation we consider the linear forms

α(a) = a4, β(c) = c1 + c2 + c4, κ(k) = k4.

In Section 5.2 we’ll see that with these linear forms the relation κ(k) =
α(a)+β(c) for F has a quite large probability. Table 5.2 shows the ciphertexts
belonging to three plaintexts a (that later we’ll assume as known plaintexts).
The values of c are taken from Table 5.1. The number t of observed values
0 of α(a) + β(c) is t = 2. Hence the majority decision gives the estimate
k4 = 0 (being in cheat mode we know it’s correct).

How successful will this procedure be in general? We have to analyse the
problems:

1. How to find linear relations of sufficiently high probabilities?
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2. Since in general bitblock ciphers consist of several rounds we ask:

(a) How to find useful linear relations for the round function of an
iterated bitblock cipher?

(b) How to combine these over the rounds as a linear relation for the
complete cipher?

(c) How to calculate the probability of a combined linear relation for
the complete cipher from the probabilities for the single rounds?

The answer to the first question and part (a) of the second one is: from the
linear spectrum, see Section 5.3, that is by Fourier analysis, see Appendix D.
The following partial questions lead to the analysis of linear paths, see Sec-
tion 5.5, and the cumulation of probabilities, see Proposition 7. For (c) finally
we only find a coarse rule of thumb.

Fourier analysis is quite efficient if the cost (time and space) is considered
as function of the input size. Unfortunately this grows exponentially with the
dimension. Therefore Fourier analysis soon becomes infeasible for dimensions
more than 10. For serious block ciphers we have dimensions, or block and
key sizes, of 64 or 128 bits, far out of reach.

At first sight this objection concerns also question 2 (a). However the
single rounds usually consist of processing much smaller pieces, the S-boxes,
in parallel. Hence one tries to reduce the problem to the analysis of the
S-boxes, and this is feasible: Even AES uses S-boxes of dimension 8 only.


