
Chapter 5

Cryptanalysis of Bitblock
Ciphers

For cryptanalyzing bitblock ciphers we know some basic approaches:

1. exhaustion = brute-force searching the complete key space

2. algebraic attack, see Chapter 2

3. statistical attacks against hidden linearity:

(a) linear cryptanalysis (Matsui/Yamagishi 1992), the subject of
the following sections

(b) differential cryptanalysis (Murphy, Shamir, Biham 1990)

(c) generalizations and mixtures of (a) and (b)

Differential cryptanalysis was known at IBM and NSA already in 1974
when designing DES. In contrast apparently linear cryptanalysis—though
conceptually simpler—was unknown to the designers of DES. Accordingly
the resistance of DES against linear cryptanalysis is suboptimal. However
an important design criterion was:

• The S-boxes should be as nonlinear as possible.

In the following years many people developed generalizations and com-
binations of linear and differential cryptanalysis:

• related keys attack (Biham 1992, Schneier)

• differentials of higher order (Harpes 1993, Biham 1994, Lai 1994)

• differential-linear cryptanalysis (Langford/Hellman 1994)

• partial differentials (Knudsen 1995)
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• I/O-sum analysis (Harpes/Kramer/Massey 1995)

• S-box-pair analysis (Davies/Murphy 1995, Mirza 1996)

• boomerang attack (Wagner 1999)

• slide attack against (maybe hidden) periodicity in ciphers or key sched-
ules (Biryukov/Wagner 1999)

• impossible differentials (Biham/Biryukov/Shamir 1999)

All these statistical attacks—including linear and differential
cryptanalysis—hardly break a cipher in the sense of classical crypt-
analysis. They usually assume lots of known plaintexts, much more than
an attacker could gather in a realistic scenario. Therefore a more adequate
term is “analysis” instead of “attack”. The analyses make sense for finding
measures for some partial aspects of security of bitblock ciphers. They
measure security for example by the number of known plaintext blocks
needed for the attack. If a cipher resists an attacker even with exaggerated
assumptions on her capabilities, then we feel safe to trust it in real life.

Given an SP-network the analysis starts with the nonlinear components
of the single rounds, in particular with the S-boxes. The next step extends
the potential attack over several rounds. This shows how the cost of the
attack grows with the number of rounds. In this way we find criteria for the
number of rounds for which the cipher is “secure”—at least from this special
attack.

By the way we should never forget that the attack always relates to
a certain fixed algebraic structure; in most cases to the structure of the
plaintext space as a vector space over F2. Of course a similar attack could
relate to another structure. A seemingly complex map could look simple
if considered with the structure as cyclic group Z/nZ in mind—or even
with “exotic” structures invented for the analysis of this single map. In the
following however we only consider the structure as a vector space over F2,
the structure that is best understood.

Security Criteria for Bitblock Ciphers

To escape attacks bitblock ciphers, or their round maps, or their S-boxes,
should fulfill some requirements. For background theory see the mathemat-
ical Appendix D.

• Balance All preimages have the same number of elements, or in other
words, the values of the map are uniformly distributed. Irregularities
of the distribution would provide hooks for statistical cryptanalysis.
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• Diffusion/avalanche effect If a single plaintext bit changes, about
50% of the ciphertext bits change. This effect conceals similarity of
plaintexts.

• Algebraic complexity The determination of preimages or parts
thereof should lead to equations whose solution is as difficult as possi-
ble. This requirement is related to the algebraic degree of the map, but
only in an indirect way. A suitable measure is “algebraic immunity”.

• Nonlinearity We know several criteria that measure linearity, also
“hidden” linearity, and are relatively easy to describe and to handle.
For example they quantify how susceptible Boolean maps are for linear
or differential cryptanalysis.

– The “linear potential” should be as low as possible, the “linear
spectrum” (or “linear profile”) as balanced as possible.

– The “differential potential” should be as low as possible, the “dif-
ferential spectrum” (or “differential profile”) as balanced as pos-
sible.

– The “nonlinearity” (in a narrow sense as the Hamming distance
from affine maps) should be as large as possible.

– The “linearity distance”, the Hamming distance from maps with
“linear structure”, should be as large as possible.

Some of these criteria are compatible with each other, some criteria con-
tradict other ones. Therefore the design of a bitblock cipher requires a bal-
ance between different criteria. Instead of optimizing a map for a single
criterion the designer should aim at a uniformly high level for all criteria.

Cipher designers usually decide the conflict between balance and non-
linearity in favour of balance. But there is no really convincing reason for
this—the psychological reason seems to be that statistical attacks that use
the nonuniform distribution of the output of non-balanced maps are easier
to understand and therefore taken more seriously. The trade-off for nonlin-
earity is then handled by increasing the number of rounds.

In this section we freely use the notations and results from the mathe-
matical appendices A to E—often without explicit reference.
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5.1 The Idea of Linear Cryptanalysis

Consider a bitblock cipher F of block length n and key length l,

F : Fn
2 × Fl

2 −→ Fn
2 .

Imagine the arguments of F as plain texts a ∈ Fn
2 and keys k ∈ Fl

2, the
values of F as cipher texts c ∈ Fn

2 . A linear relation between a plaintext
a ∈ Fn

2 , a key k ∈ Fl
2, and a ciphertext c = F (a, k) ∈ Fn

2 is described by
three linear forms

α : Fn
2 −→ F2, β : Fn

2 −→ F2, and κ : Fl
2 −→ F2

as an equation
κ(k) = α(a) + β(c). (1)

If I = (i1, . . . , ir) is the index set that corresponds to the linear form κ—
that is κ(k) = ki1 + · · · + kir—, then writing (1) more explicitly we get an
equation for the sum of the involved key bits ki1 , . . . , kir :

ki1 + · · ·+ kir = α(a) + β(c),

For an attack with known plaintext a this reduces the number of unknown
key bits to l − 1 by elimination of one of these bits.

In general the odds of the relation (1) for concrete random values of k, a,
and c are about fifty-fifty: both sides evaluate to 0 or 1 with probability 1

2 .
Best for security is a frequency of 50% plaintexts a that make the relation
true for a fixed key k, where c = F (a, k) is the corresponding ciphertext.
This would make the relation indistinguishable from a pure accidental one.
If the probability of the relation,

pF,α,β,κ(k) :=
1

2n
·#{a ∈ Fn

2 | κ(k) = α(a) + β(F (a, k))},

is conspicuously larger than 1
2 , this reveals a biased probability for the values

of the bits of k, and would result in a small advantage for the cryptanalyst.
If on the other hand the probability is noticeably smaller than 1

2 , then the
complementary relation κ(k) = α(a) + β(c) + 1 is true more often than
by pure chance. This also is a weakness. Because the situation concerning
the deviation of the probabilities from the ideal value 1

2 is symmetric (and
because the I/O-correlation and the potential are multiplicative, see Propo-
sition 6) it makes sense to consider symmetric quantities, the input-output
correlation:

τF,α,β,κ(k) := 2pF,α,β,κ(k)− 1

(in short: I/O-correlation) and the potential of a linear relation:

λF,α,β,κ(k) := τF,α,β,κ(k)
2
.
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The I/O-correlation takes values between −1 and 1. It is the correlation
of two Boolean functions on Fn

2 , namely α + κ(k) and β ◦ Fk. (For fixed k

the value of κ(k) is constant, i. e. 0 or 1.) The first of these functions picks
input bits, the second one, output bits. In general the correlation of Boolean
functions f, g : Fn

2 −→ F2 is the difference

c(f, g) :=
1

2n
· [#{x ∈ Fn

2 | f(x) = g(x)} −#{x ∈ Fn
2 | f(x) �= g(x)}] .

The potential takes values between 0 and 1, and measures the deviation
of the probability from 1

2 . In the best case it is 0, in the worst, 1. This “bad”
extreme case would provide an exact and directly useable relation for the
key bits. Figure 5.1 illustrates the connection.

Figure 5.1: Connection between probability p, I/O-correlation τ , and poten-
tial λ

Note that the key k is the target of the attack. As long as it is unknown,
the value of pF,α,β,κ(k) is also unknown. Thus for cryptanalysis it makes
sense to average the probabilities of a linear relation over all keys:

pF,α,β,κ :=
1

2n+l
#{(a, k) ∈ Fn

2 × Fl
2 | κ(k) = α(a) + β(F (a, k))}. (2)

This average probability is determined by the definition of the cipher F

alone, at least theoretically, neglecting efficiency. Calculating it however
amounts to an exhaustion of all plaintexts and keys, and thus is unreal-
istic for a realistic cipher with large block lengths. We extend the definition
for the “average case” also to I/O-correlation and potential:

τF,α,β,κ := 2pF,α,β,κ − 1,
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λF,α,β,κ := τ
2
F,α,β,κ.

Note that the I/O-correlation is also a mean value, but the potential is not!
Shamir already in Crypto 85 noticed that the S-boxes of DES ad-

mit linear relations with conspicuous probabilities. However it took another
seven years untilMatsui (after first attempts byGilbert and Chassé 1990
with the cipher FEAL) succeeded in making systematic use of this observa-
tion. For estimating κ(k) he proceeded as follows (in the case pF,α,β,κ >

1
2 ;

in the case pF,α,β,κ <
1
2 take the bitwise complement, in the case pF,α,β,κ = 1

2
the method is useless):

1. Collect N pairs of plaintexts and corresponding ciphertexts
(a1, c1), . . . , (aN , cN ).

2. Count the number

t := #{i = 1, . . . , N | α(ai) + β(ci) = 0}.

3. Decide by majority depending on t:

• If t > N
2 , estimate κ(k) = 0.

• If t < N
2 , estimate κ(k) = 1.

The case t = N
2 is worthless, however scarce—we might randomize the de-

cision between 0 and 1.
If we detect a linear relation whose probability differs from 1

2 in a suf-
ficient way, then this procedure will have a good success probability for
sufficiently large N . This allows to reduce the number of unknown key bits
by 1, applying elimination.

As a theoretical result from these considerations we’ll get a connection
between the number N of needed plaintext blocks and the success probabil-
ity, see Table 5.4.

The more linear relations with sufficiently high certainty the attacker
finds, the more she can reduce the size of the remaining key space until
finally an exhaustion becomes feasible. A concrete example in Section 5.7
will illustrate this.

Example

For a concrete example with n = l = 4 we consider the Boolean map f

that is given by the values in Table 5.1—by the way this is the S-box S0 of
Lucifer—and define the bitblock cipher

F : F4
2 × F4

2 −→ F4
2 by F (a, k) := f(a+ k).
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x y = f(x) x4 y1 + y2 + y4

0 0 0 0 1 1 0 0 0 0
0 0 0 1 1 1 1 1 1 1
0 0 1 0 0 1 1 1 0 0
0 0 1 1 1 0 1 0 1 1
0 1 0 0 1 1 1 0 0 0
0 1 0 1 1 1 0 1 1 1
0 1 1 0 1 0 1 1 0 0
0 1 1 1 0 0 0 0 1 0
1 0 0 0 0 0 1 0 0 0
1 0 0 1 0 1 1 0 1 1
1 0 1 0 0 0 1 1 0 1
1 0 1 1 0 0 0 1 1 1
1 1 0 0 1 0 0 1 0 0
1 1 0 1 0 1 0 0 1 1
1 1 1 0 0 1 0 1 0 0
1 1 1 1 1 0 0 0 1 1

Table 5.1: An S-box for f : F4
2 −→ F4

2 and two linear forms (the S-box S0 of
Lucifer)

a a+ k c α(a) β(c) α(a) + β(c)
0010 1010 0011 0 1 1
0101 1101 0100 1 1 0
1010 0010 0111 0 0 0

Table 5.2: Estimating a key bit after Matsui

We encrypt using the key k = 1000 (that we’ll attack later as a test case).
For a linear relation we consider the linear forms

α(a) = a4, β(c) = c1 + c2 + c4, κ(k) = k4.

In Section 5.2 we’ll see that with these linear forms the relation κ(k) =
α(a)+β(c) for F has a quite large probability. Table 5.2 shows the ciphertexts
belonging to three plaintexts a (that later we’ll assume as known plaintexts).
The values of c are taken from Table 5.1. The number t of observed values
0 of α(a) + β(c) is t = 2. Hence the majority decision gives the estimate
k4 = 0 (being in cheat mode we know it’s correct).

How successful will this procedure be in general? We have to analyse the
problems:

1. How to find linear relations of sufficiently high probabilities?
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2. Since in general bitblock ciphers consist of several rounds we ask:

(a) How to find useful linear relations for the round function of an
iterated bitblock cipher?

(b) How to combine these over the rounds as a linear relation for the
complete cipher?

(c) How to calculate the probability of a combined linear relation for
the complete cipher from the probabilities for the single rounds?

The answer to the first question and part (a) of the second one is: from the
linear spectrum, see Section 5.3, that is by Fourier analysis, see Appendix D.
The following partial questions lead to the analysis of linear paths, see Sec-
tion 5.5, and the cumulation of probabilities, see Proposition 7. For (c) finally
we only find a coarse rule of thumb.

Fourier analysis is quite efficient if the cost (time and space) is considered
as function of the input size. Unfortunately this grows exponentially with the
dimension. Therefore Fourier analysis soon becomes infeasible for dimensions
more than 10. For serious block ciphers we have dimensions, or block and
key sizes, of 64 or 128 bits, far out of reach.

At first sight this objection concerns also question 2 (a). However the
single rounds usually consist of processing much smaller pieces, the S-boxes,
in parallel. Hence one tries to reduce the problem to the analysis of the
S-boxes, and this is feasible: Even AES uses S-boxes of dimension 8 only.
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Figure 5.2: A (much too) simple example—The graphics here and later rep-
resent the map f sometimes by the S-box S in the elementwise assignments.

5.2 Example A: A One-Round-Cipher

We consider examples that are much too simple for real world applications
but illustrate the principles of linear cryptanalysis in an easily intelligible
way. We always assume round functions of the type f(a+k), that is we add
the key—or an n-bit part of it—to the plaintext before applying a bijective
S-box f : Fn

2 −→ Fn
2 . This is a quite special method of bringing the key into

play but nevertheless realistic. The paradigmatic sample ciphers Lucifer,
DES, and AES do so, the term used with AES [1] is “key-alternating cipher
structure”.

The simplest model is encryption by the formula

c = f(a+ k),

see Figure 5.2. This example is pointless because one block of known plain-
text gives a solution for k:

k = f
−1(c) + a.

Note that the attacker knows the inverse map f
−1 that is part of the decryp-

tion algorithm. (One-way encryption methods that assume that f−1 is not
efficiently deducible from f are the subject of another part of cryptography,
see Part III, Chapter 6, of these lecture notes.)

The somewhat more involved example A stops this attack:

c = f(a+ k
(0)) + k

(1)

(see Figure 5.3). This is the simplest example for which the method of linear
cryptanalysis makes sense: Let (α, β) be a pair of linear forms with

β ◦ f(x)
p
≈ α(x), (3)

where the symbol
p
≈ reads as “equal with probability p”, or in other words

p = pf,α,β :=
1

2n
·#{x ∈ Fn

2 | β ◦ f(x) = α(x)}.
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Figure 5.3: Example A
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Figure 5.4: Diagram for an “approximative” linear relation

The diagram in Figure 5.4 illustrates Formula (3). Note that the linear form
κ of the general theory is implicit in the present context: Since the key
bits are simply added to plaintext and (“intermediary”) ciphertext we have
κ = α for k(0), and κ = β for k(1), hence κ(k(0), k(1)) = α(k(0)) + β(k(1)).

How does this scenario fit the general situation from Chapter 2? In ex-
ample A we have

• key length l = 2n, key space F2n
2 , and keys of the form k = (k(0), k(1))

with k
(0)

, k
(1) ∈ Fn

2 .

• The cipher is defined by the map

F : Fn
2 × Fn

2 × Fn
2 −→ Fn

2 , (a, k(0), k(1)) �→ f(a+ k
(0)) + k

(1)
.

• The linear form κ : Fn
2 × Fn

2 −→ F2 is κ(k(0), k(1)) = α(k(0)) + β(k(1)).

Hence the probability of a linear relation for a fixed key k = (k(0), k(1)) is

pF,α,β,κ(k) =
1

2n
·#{a ∈ Fn

2 | κ(k) = α(a) + β(F (a, k))}

=
1

2n
·#{a ∈ Fn

2 | α(k(0)) + β(k(1)) = α(a) + β(f(a+ k
(0)) + k

(1))}

=
1

2n
·#{a ∈ Fn

2 | α(k(0)) = α(a) + β(f(a+ k
(0)))},
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where we omitted β(k(1)) that occurs on both sides of the equation inside
the curly set brackets.

This expression is independent of k(1), and the slightly rewritten equation

pF,α,β,κ(k) =
1

2n
·#{a ∈ Fn

2 | α(a+ k
(0)) = β(f(a+ k

(0)))}

shows that it assumes the same value for all k(0): With a also a+ k
(0) runs

through all of Fn
2 for a fixed k

(0). Therefore this value must agree with the
mean value over all k:

pF,α,β,κ(k) = pF,α,β,κ =
1

2n
·#{x ∈ Fn

2 | α(x) = β(f(x))} = p.

This consideration shows:

Proposition 3 In the scenario of example A the probability pF,α,β,κ(k) as-
sumes the same value

p =
1

2n
·#{x ∈ Fn

2 | α(x) = β(f(x))}

for all keys k ∈ F2n
2 . In particular p coincides with the mean value from

Equation (2).

Using the notations from Figure 5.3 we have

β(c) = β(b� + k
(1)) = β(b�) + β(k(1))

p
≈ α(b) + β(k(1)) = α(a+ k

(0)) + β(k(1)) = α(a) + α(k(0)) + β(k(1)).

This yields a linear relation for the bits of the key k = (k1, k2):

α(k(0)) + β(k(1))
p
≈ α(a) + β(c).

Treating the complementary relation

β ◦ f(x)
1−p
≈ α(x) + 1

in an analoguous way we get:

Proposition 4 In the scenario of example A let (α, β) be a pair of linear

forms for f with probability p as in Formula (3). Then p̂ = max{p, 1− p} is

the success probability for determing a single key bit by this linear relation

given one known plaintext block.
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a b b
�

c α(a) + β(c)
0000 1000 0010 0011 1
0001 1001 0110 0111 1
0010 1010 0011 0010 0
0011 1011 0001 0000 1
0100 1100 1001 1000 1
0101 1101 0100 0101 1
0110 1110 0101 0100 1
0111 1111 1000 1001 1
1000 0000 1100 1101 1
1001 0001 1111 1110 1
1010 0010 0111 0110 1
1011 0011 1010 1011 1
1100 0100 1110 1111 1
1101 0101 1101 1100 1
1110 0110 1011 1010 1
1111 0111 0000 0001 0

Table 5.3: A linear relation for the key bits

Example

Take n = 4, and for f take the S-box S0 of Lucifer. As the two right-
most columns of Table 5.1 show the linear relation defined by (α, β), where
α(x) = x4 and β(y) = y1 + y2 + y4, has probability pf,α,β = 14

16 = 7
8 (provid-

ing strong evidence that the designers of Lucifer weren’t aware of linear
cryptanalysis).

As concrete round keys take k0 = 1000 and k1 = 0001. Table 5.3, running
through all possible 16 plaintexts, shows that α(a)+β(c) assumes the value
1 = α(k0) + β(k1) for this partial sum of key bits exactly 14 times—as
expected.

How large is the success probability pN of correctly estimating this par-
tial sum, assuming N = 1, 2, . . . random known plaintexts from the set of 2n

possible plaintexts? (For given linear forms α and β with p = pf,α,β .) This is
exactly the scenario of the hypergeometric distribution (for an explanation
of the hypergeometric distribution see Appendix E). Therefore we have:

Proposition 5 In example A let (α, β) be a pair of linear forms that defines

a linear relation for f with probability p. Then the success probability for

determining a key bit by this linear relation from N known plaintexts is

the cumulated probability pN = p
(s)
N of the hypergeometric distribution with

parameters 2n, s = p̂ · 2n, and N where p̂ = max{p, 1− p}.

If we neglect exact mathematical reasoning and work with asymptotic
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Nλ 1 2 3 4 . . . 8 9
pN 84, 1% 92, 1% 95, 8% 97, 7% . . . 99, 8% 99, 9%

Table 5.4: Dependence of the success probability on the number of known
plaintexts

approximations (as is common in applied statistics), then we can replace the
hypergeometric distribution by the normal distribution. The usual (quite
vaguely stated) conditions for this approximation are “p not too different
from 1

2 , N � 2n, but N not too small.” This gives the formula

pN ≈ 1√
2π

·
� √

Nλ

−∞
e
−t2/2

dt, (4)

where λ = (2p − 1)2 is the potential of the linear relation. The values as-
sociated with the normal distribution are well-known and yield Table 5.4.
Instead of the approximation by the normal distribution we could directly
use the hypergeometric distribution. This would, in particular for small N ,
give a more precise value but not a closed formula as simple as (4).

To get a success probability of about 95% we need N ≈ 3
λ known plain-

texts according to the table. In the concrete example above we had p = 7
8 ,

hence λ = 9
16 , and the number of known plaintexts needed for a 95% suc-

cess probability is N ≈ 5. Using Table 5.2 we succeeded with only N = 3
plaintexts. This is not a great surprise because the a-priori probability of
this success is about 90% (for Nλ = 27

16 ≈ 1, 68 . . .).

In this example the condition “N not too small” for the ap-
proximation by the normal distribution is more than arguable.
However determining the exact values for the hypergeometric
distribution is easy: Consider an urn containing 16 balls, 14 black
ones and 2 white ones, and draw 3 balls by random. Then the
probability of all of them being black is 26

40 , the probability of
two being black and one being white is 13

40 . Hence the probability
of at least two balls being black is 39

40 = 97, 5%. This is clearly
more than the 90% from the approximation (4). The remaining
probabilities are 1

40 for exactly one black ball, and 0 for three
white balls.
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 16 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
1 8 6 6 8 8 6 6 8 8 6 6 8 8 14 6 8
2 8 10 8 6 4 6 8 6 6 12 6 8 10 8 6 8
3 8 12 10 6 12 8 10 6 6 6 8 8 10 10 8 8
4 8 8 4 8 8 8 8 4 10 6 6 6 10 6 10 10
5 8 10 10 12 8 10 6 8 10 8 4 10 10 8 8 6
6 8 10 8 10 8 10 8 10 8 10 8 2 8 10 8 10
7 8 8 10 6 8 8 2 6 8 8 10 6 8 8 10 6
8 8 8 6 10 6 10 8 8 4 8 10 10 10 10 12 8
9 8 10 8 10 6 4 10 8 8 6 8 6 6 8 10 4
10 8 6 10 8 6 8 8 10 6 4 8 6 12 6 6 8
11 8 12 8 8 6 6 6 10 10 6 10 10 8 8 8 12
12 8 8 10 10 6 10 8 4 6 6 8 8 4 8 6 10
13 8 6 12 6 6 8 10 8 10 8 6 8 8 10 12 8
14 8 6 10 12 10 4 8 6 8 10 10 8 10 8 8 10
15 8 8 8 8 10 6 6 10 4 8 4 8 6 6 10 10

Table 5.5: Approximation table of the S-box S0 of Lucifer. Row and column
indices are linear forms represented by integers. To get the probabilities
divide by 16.

5.3 Approximation Table, Correlation Matrix,
and Linear Spectrum of a Boolean Map

Linear relations for a Boolean map (or S-box) f : Fn
2 −→ Fq

2 are true
with certain frequencies (or probabilities). We collect these frequencies in
a matrix of size 2n × 2q, called the approximation table of f . This table
gives, for each pair (α, β) of linear forms, the number of arguments x where
β ◦ f(x) = α(x). Table 5.5 shows the approximation table of the S-box S0 of
Lucifer. The entry 16 in the upper left corner says that the relation 0 = 0
is true in all 16 possible cases. At the same time 16 is the common denom-
inator by which we have to divide all other entries to get the probabilities.
In the general case the upper left corner would be 2n. The remaining entries
of the first column (corresponding to β = 0) are 8 because each non-zero
linear form α takes the value 0 in exactly half of all cases, that is 8 times. (In
the language of linear algebra we express this fact as: The kernel of a linear
form �= 0 is a subspace of dimension n− 1.) For the first row an analogous
argument is true—provided that f is bijective (or balanced).

The correlation matrix and the linear spectrum (also called linear
profile or linearity profile—not to be confused with the linear complexity
profile of a bit sequence that is defined by linear feedback shift registers and
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 −1

4 −1
4 0 0 −1

4 −1
4 0 0 −1

4 −1
4 0 0 3

4 −1
4 0

2 0 1
4 0 −1

4 −1
2 −1

4 0 −1
4 −1

4
1
2 −1

4 0 1
4 0 −1

4 0
3 0 1

2
1
4 −1

4
1
2 0 1

4 −1
4 −1

4 −1
4 0 0 1

4
1
4 0 0

4 0 0 −1
2 0 0 0 0 −1

2
1
4 −1

4 −1
4 −1

4
1
4 −1

4
1
4

1
4

5 0 1
4

1
4

1
2 0 1

4 −1
4 0 1

4 0 −1
2

1
4

1
4 0 0 −1

4
6 0 1

4 0 1
4 0 1

4 0 1
4 0 1

4 0 2 0 1
4 0 1

4
7 0 0 1

4 −1
4 0 0 2 −1

4 0 0 1
4 −1

4 0 0 1
4 −1

4
8 0 0 −1

4
1
4 −1

4
1
4 0 0 −1

2 0 1
4

1
4

1
4

1
4

1
2 0

9 0 1
4 0 1

4 −1
4 −1

2
1
4 0 0 −1

4 0 −1
4 −1

4 0 1
4 −1

2
10 0 −1

4
1
4 0 −1

4 0 0 1
4 −1

4 −1
2 0 −1

4
1
2 −1

4 −1
4 0

11 0 1
2 0 0 −1

4 −1
4 −1

4
1
4

1
4 −1

4
1
4

1
4 0 0 0 1

2
12 0 0 1

4
1
4 −1

4
1
4 0 −1

2 −1
4 −1

4 0 0 −1
2 0 −1

4
1
4

13 0 −1
4

1
2 −1

4 −1
4 0 1

4 0 1
4 0 −1

4 0 0 1
4

1
2 0

14 0 −1
4

1
4

1
2

1
4 −1

2 0 −1
4 0 1

4
1
4 0 1

4 0 0 1
4

15 0 0 0 0 1
4 −1

4 −1
4

1
4 −1

2 0 −1
2 0 −1

4 −1
4

1
4

1
4

Table 5.6: Correlation matrix of the S-box S0 of Lucifer. Row and column
indices are linear forms represented by integers.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1

16
1
16 0 0 1

16
1
16 0 0 1

16
1
16 0 0 9

16
1
16 0

2 0 1
16 0 1

16
1
4

1
16 0 1

16
1
16

1
4

1
16 0 1

16 0 1
16 0

3 0 1
4

1
16

1
16

1
4 0 1

16
1
16

1
16

1
16 0 0 1

16
1
16 0 0

4 0 0 1
4 0 0 0 0 1

4
1
16

1
16

1
16

1
16

1
16

1
16

1
16

1
16

5 0 1
16

1
16

1
4 0 1

16
1
16 0 1

16 0 1
4

1
16

1
16 0 0 1

16
6 0 1

16 0 1
16 0 1

16 0 1
16 0 1

16 0 9
16 0 1

16 0 1
16

7 0 0 1
16

1
16 0 0 9

16
1
16 0 0 1

16
1
16 0 0 1

16
1
16

8 0 0 1
16

1
16

1
16

1
16 0 0 1

4 0 1
16

1
16

1
16

1
16

1
4 0

9 0 1
16 0 1

16
1
16

1
4

1
16 0 0 1

16 0 1
16

1
16 0 1

16
1
4

10 0 1
16

1
16 0 1

16 0 0 1
16

1
16

1
4 0 1

16
1
4

1
16

1
16 0

11 0 1
4 0 0 1

16
1
16

1
16

1
16

1
16

1
16

1
16

1
16 0 0 0 1

4
12 0 0 1

16
1
16

1
16

1
16 0 1

4
1
16

1
16 0 0 1

4 0 1
16

1
16

13 0 1
16

1
4

1
16

1
16 0 1

16 0 1
16 0 1

16 0 0 1
16

1
4

1
16

14 0 1
16

1
16

1
4

1
16

1
4 0 1

16 0 1
16

1
16 0 1

16 0 0 1
16

15 0 0 0 0 1
16

1
16

1
16

1
16

1
4 0 1

4 0 1
16

1
16

1
16

1
16

Table 5.7: Linear spectrum of the S-box S0 of Lucifer. Row and column
indices are linear forms represented by integers.
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sometimes also called linearity profile) are the analogous matrices whose
entries are the I/O-correlations or the potentials of the corresponding linear
relations. The correlation matrix arises from the approximation table by first
dividing the entries by 2n (getting the probabilities p) and then transforming
the probabilities to I/O-correlations by the formula τ = 2p − 1. To get the
linear spectrum we have to square the single entries of the correlation matrix.

For S0 Table 5.6 shows the correlation matrix, and Table 5.7, the linear
spectrum. Here again the first rows and columns hit the eye: The zeroes tell
that a linear relation involving the linear form 0 has potential 0, hence is
useless. The 1 in the upper left corner says that the relation 0 = 0 holds for
any arguments, but is useless too. In the previous subsection we picked the
pair (α, β) where α(x) = x4 (represented by 0001 =̂ 1) and β(y) = y1+y2+y4

(represented 1101 =̂ 13) in row 1, column 13. It assumes the maximum value
9
16 for the potential that moreover also occurs at the coordinates (6, 11) and
(7, 6). (We ignore the true, but useless, maximum value 1 in the upper left
corner.)
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a = c
(0)

❄
f✍✌✎☞

✛
k
(1)

❄

f(c(0), k(1)) = c
(1)

❄
f✍✌✎☞

✛
k
(2)

❄

c = f(c(1), k(2)) = c
(2)

linear relation (α1, β1, κ1)

with κ1(k(1))
p1≈ α1(c(0)) + β1(c(1))

linear relation (α2, β2, κ2)

with κ2(k(2))
p2≈ α2(c(1)) + β2(c(2))

Figure 5.5: General two-round cipher

5.4 Example B: A Two-Round Cipher

As a next step we iterate the round map

f : Fn
2 × Fq

2 −→ Fn
2

of a bitblock cipher over two rounds using round keys k(i) ∈ Fq
2 as illustrated

in Figure 5.5.

Remark In a certain sense example A already was a two-round cipher since
we used two partial keys. Adding one more S-box at the right side of
Figure 5.3 would be cryptologically irrelevant, because this non-secret
part of the algorithm would be known to the cryptanalyst who simply
could “strip it off” (that is, apply its inverse to the cipher text) and be
left with example A. In a similar way we could interpret example B as a
three-round cipher. However this would be a not so common counting
of rounds.

We consider linear relations

κ1(k
(1))

p1≈ α1(c
(0)) + β1(c

(1))

with probability p1, I/O-correlation τ1 = 2p1 − 1, and potential λ1 = τ
2
1 ,

and
κ2(k

(2))
p2≈ α2(c

(1)) + β2(c
(2))
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with probability p2, I/O-correlation τ2 = 2p2−1, and potential λ2 = τ
2
2 . We

can combine these two linear relations if α2 = β1, thereby getting a linear
relation for some key bits expressed by the (known) plaintext c(0) = a and
the ciphertext c(2) = c,

κ1(k
(1)) + κ2(k

(2))
p
≈ α1(c

(0)) + β2(c
(2)),

that holds with a certain probability p, and has I/O-correlation τ and po-
tential λ, that in general depend on k = (k(1), k(2)) and are difficult to de-
termine. Therefore we again consider a simplified example B, see Figure 5.6.
Encryption is done step by step by the formulas

b
(0) = a+k

(0)
, a

(1) = f1(b
(0)), b(1) = a

(1)+k
(1)

, a
(2) = f2(b

(1)), c = a
(2)+k

(2)
.

(Here f1 is given by the S-box S0, and f2, by the S-box S1 that could be
identical with S0. Note that we allow that the round functions of the differ-
ent rounds differ. The reason is that usually the round function consists of
several parallel S-boxes and the permutations direct an input bit through
different S-boxes on its way through the rounds, see Section 5.7.)

As for example A adding some key bits after the last round prevents
the “stripping off” of f2. Comparing example B with the general settings in
Chapter 2 we have:

• key length l = 3n, key space F3n
2 , and keys of the form k =

(k(0), k(1), k(2)) with k
(0)

, k
(1)

, k
(2) ∈ Fn

2 .

• Encryption is defined by the map

F : Fn
2 × Fn

2 × Fn
2 × Fn

2 −→ Fn
2 ,

(a, k(0), k(1), k(2)) �→ f2(f1(a+ k
(0)) + k

(1)) + k
(2)

.

• The linear form κ: Fn
2 × Fn

2 × Fn
2 −→ F2 is given by

κ(k(0), k(1), k(2)) = α(k(0)) + β(k(1)) + γ(k(2)).

Here (α, β) is a linear relation for f1 with probability p1, I/O-correlation
τ1, and potential λ1, and (β, γ), a linear relation for f2 with probability p2,
I/O-correlation τ2, and potential λ2 (the same β since we want to combine
the linear relations), where

p1 =
1

2n
·#{x ∈ Fn

2 | β ◦ f1(x) = α(x)}

p2 =
1

2n
·#{y ∈ Fn

2 | γ ◦ f2(y) = β(y)}
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Fn
2

✲ Fn
2

�

Fn
2

❄ ✲f1 Fn
2

✲

Fn
2

❄
�

Fn
2

✲f2 Fn
2

✲

Fn
2

❄
�

Fn
2

F2

❅
❅❅❘α

�
��✠ β

p1≈

F2

❅
❅❅❘β

�
��✠ γ

p2≈

a ✲ b
(0)

k
(0)

❄ ✲S0 a
(1)

k
(1)

❄✲ b
(1) ✲S1 a

(2)

k
(2)

❄✲ c

Figure 5.6: Example B

With the notations of Figure 5.6 we have

γ(c) = γ(a(2)) + γ(k(2))
p2≈ β(b(1)) + γ(k(2)) = β(a(1)) + β(k(1)) + γ(k(2))

p1≈ α(b(0)) + β(k(1)) + γ(k(2)) = α(a) + α(k(0)) + β(k(1)) + γ(k(2))

Hence we get a linear relation for the key bits as a special case of Equation (1)
in the form

α(k(0)) + β(k(1)) + γ(k(2))
p
≈ α(a) + γ(c)

with a certain probability p that is defined by the formula

p = pF,α,β,γ(k)

=
1

2n
·#{a ∈ Fn

2 | α(k(0)) + β(k(1)) + γ(k(2)) = α(a) + γ(F (a, k))}.

We try to explicitly determine p. As for the one-round case we first ask how
p depends on k. Insert the definition of F (a, k) into the defining equation
inside the set brackets. Then γ(k(2)) cancels out and we are left with

pF,α,β,γ(k) =
1

2n
·#{a ∈ Fn

2 |α(k(0)+a)+β(k(1)) = γ(f2(k
(1)+f1(k

(0)+a)))}.

This is independent of k(2), and for all k(0) assumes the same value

pF,α,β,γ(k) =
1

2n
·#{x ∈ Fn

2 | α(x) = β(k(1)) + γ(f2(k
(1) + f1(x)))}

because x = k
(0) + a runs through Fn

2 along with a. This value indeed
depends on k, but only on the middle component k(1). Now form the mean
value p̄ := pF,α,β,γ over all keys:

p̄ =
1

22n
·#{(x, k(1)) ∈ F2n

2 | α(x) = β(k(1)) + γ(f2(k
(1) + f1(x)))}.
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Inside the brackets we see the expression γ(f2(k(1) + f1(x))), and we know:

γ(f2(k
(1) + f1(x))) =

�
β(k(1) + f1(x)) with probability p2,

1 + β(k(1) + f1(x)) with probability 1− p2.

Here “probability p2” means that the statement is true for p2 · 22n of all
possible (x, k(1)) ∈ F2n

2 . Substituting this we get

p̄ =
1

22n
·
�
p2 ·#{(x, k(1)) ∈ F2n

2 | α(x) = β(f1(x))}

+(1− p2) ·#{(x, k(1)) ∈ F2n
2 | α(x) �= β(f1(x))}

�

where now the defining equations of both sets are also independent of k(1).
We recognize the definition of p1 and substitute it getting

p̄ = p1p2 + (1− p1)(1− p2) = 2p1p2 − p1 − p2 + 1.

This formula looks much more beautiful if expressed in terms of the I/O-
correlations τ̄ = 2p̄− 1 and τi = 2pi − 1 for i = 1 and 2:

τ̄ = 2p̄− 1 = 4p1p2 − 2p1 − 2p2 + 1 = (2p1 − 1)(2p2 − 1) = τ1τ2.

In summary we have proved:

Proposition 6 For example B we have:

(i) The probability pF,α,β,γ(k) depends only on the middle component k(1)

of the key k = (k(0), k(1), k(2)) ∈ Fn
2 × Fn

2 × Fn
2 .

(ii) The mean value of these probabilities over all keys k is pF,α,β,γ =
p̄ = 2p1p2 − p1 − p2 + 1.

(iii) The I/O-correlations and the potentials are multiplicative:

τF,α,β,γ = τ1τ2 and λF,α,β,γ = λ1λ2.

In Matsui’s test we face the decision whether to use the linear relation
or its negation for estimating a bit. We can’t do better than use the mean
value pF,α,β,γ since the key and the true probability pF,α,β,γ(k) are unknown.
This could be an error since these two probabilities might lie on different
sides of 1

2 .

Example

Let n = 4, S0 as in example A, and S1 as given in Table 5.8 (in different
order) as transition from column b

(1) to column a
(2). (By the way this is

the second S-box of Lucifer.) Consider the linear forms α =̂ 0001 and β =̂
1101 as before with p1 = 7

8 , τ1 = 3
4 , λ1 = 9

16 . Furthermore let γ =̂ 1100.
Then the linear relation for f2 defined by (β, γ) (see Table 5.9, row index
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a b
(0)

a
(1)

b
(1)

a
(2)

c β(b(1)) γ(a(2)) α(a) + γ(c)
0000 1000 0010 0011 1001 1111 1 1 0
0001 1001 0110 0111 0100 0010 0 1 1
0010 1010 0011 0010 1110 1000 0 0 1
0011 1011 0001 0000 0111 0001 0 1 1
0100 1100 1001 1000 1100 1010 1 0 1
0101 1101 0100 0101 1011 1101 0 1 1
0110 1110 0101 0100 0011 0101 1 0 1
0111 1111 1000 1001 1101 1011 0 0 0
1000 0000 1100 1101 1111 1001 1 0 1
1001 0001 1111 1110 1000 1110 0 1 1
1010 0010 0111 0110 0000 0110 1 0 1
1011 0011 1010 1011 1010 1100 0 1 1
1100 0100 1110 1111 0101 0011 1 1 0
1101 0101 1101 1100 0110 0000 0 1 1
1110 0110 1011 1010 0001 0111 1 0 1
1111 0111 0000 0001 0010 0100 1 0 0

Table 5.8: The data flow in the concrete example for B, and some linear
forms

13, column index 12) has probability p2 = 1
4 , I/O-correlation τ2 = −1

2 , and
potential λ2 =

1
4 , the maximum possible value by Table 5.10. (Note that the

linear profile of S1 is more uniform than that of S0.)
As concrete round keys take k

(0) = 1000, k(1) = 0001—as before—,
and k

(2) = 0110. We want to gain the bit α(k(0))+β(k(1))+γ(k(2)) (that in
cheat mode we know is 0). Since τ1τ2 < 0 in the majority of cases α(a)+γ(c)
should give the complementary bit 1. Table 5.8 shows that in 12 of 16 cases
this prediction is correct. Therefore 1 − p = 3

4 , p = 1
4 , τ = −1

2 , λ = 1
4 .

Remember that this value depends on the key component k
(1). In fact it

slightly deviates from the mean value

p̄ = 2 · 7
8
· 1
4
− 7

8
− 1

4
+ 1 =

7

16
− 14

16
− 4

16
+

16

16
=

5

16
.

Calculating the variation of the probability as function of the partial key
k
(1) we get the values 1

4 and 3
8 each 8 times, all lying on the “correct side”

of 1
2 and having the correct mean value 5

16 .
There are other “paths” from α to γ—we could insert any β in between.

Calculating the mean probabilities yields—besides the already known 5
16—

three times 15
32 , eleven times exactly 1

2 , and even a single 17
32 that lies on the

“wrong” side of 1
2 . Thus only the one case we explicitly considered is really

good.
As an alternative concrete example take β =̂ 0001. Here λ1 =

1
16 , p1 =

3
8 ,
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 16 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
1 8 10 8 10 8 6 12 10 10 4 6 8 10 8 10 8
2 8 6 4 10 6 8 6 8 8 10 4 6 10 8 10 8
3 8 8 8 8 6 6 6 6 10 6 6 10 4 8 8 12
4 8 8 8 4 8 8 8 4 6 6 6 10 10 10 10 6
5 8 6 8 10 4 6 8 6 8 6 12 6 8 10 8 6
6 8 10 12 10 6 12 6 8 10 8 6 8 8 10 8 6
7 8 8 8 12 10 10 10 6 4 8 8 8 6 10 10 10
8 8 8 6 10 10 6 8 8 10 10 8 12 8 12 6 6
9 8 6 6 8 6 12 8 10 8 6 10 12 10 8 8 10
10 8 6 6 8 12 10 6 8 10 4 8 6 6 8 8 6
11 8 4 10 10 8 8 10 6 8 8 6 10 8 4 6 6
12 8 8 6 6 6 10 12 8 8 8 6 6 6 10 4 8
13 8 10 6 8 6 8 8 10 6 8 8 10 4 6 10 4
14 8 10 6 8 8 10 10 4 12 10 10 8 8 6 10 8
15 8 4 10 6 8 8 10 10 10 10 8 8 6 10 12 8

Table 5.9: Approximation table of the S-box S1 of Lucifer. Row and column
indices are linear forms represented by integers. For the probabilities divide
by 16.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1

16 0 1
16 0 1

16
1
4

1
16

1
16

1
4

1
16 0 1

16 0 1
16 0

2 0 1
16

1
4

1
16

1
16 0 1

16 0 0 1
16

1
4

1
16

1
16 0 1

16 0
3 0 0 0 0 1

16
1
16

1
16

1
16

1
16

1
16

1
16

1
16

1
4 0 0 1

4
4 0 0 0 1

4 0 0 0 1
4

1
16

1
16

1
16

1
16

1
16

1
16

1
16

1
16

5 0 1
16 0 1

16
1
4

1
16 0 1

16 0 1
16

1
4

1
16 0 1

16 0 1
16

6 0 1
16

1
4

1
16

1
16

1
4

1
16 0 1

16 0 1
16 0 0 1

16 0 1
16

7 0 0 0 1
4

1
16

1
16

1
16

1
16

1
4 0 0 0 1

16
1
16

1
16

1
16

8 0 0 1
16

1
16

1
16

1
16 0 0 1

16
1
16 0 1

4 0 1
4

1
16

1
16

9 0 1
16

1
16 0 1

16
1
4 0 1

16 0 1
16

1
16

1
4

1
16 0 0 1

16
10 0 1

16
1
16 0 1

4
1
16

1
16 0 1

16
1
4 0 1

16
1
16 0 0 1

16
11 0 1

4
1
16

1
16 0 0 1

16
1
16 0 0 1

16
1
16 0 1

4
1
16

1
16

12 0 0 1
16

1
16

1
16

1
16

1
4 0 0 0 1

16
1
16

1
16

1
16

1
4 0

13 0 1
16

1
16 0 1

16 0 0 1
16

1
16 0 0 1

16
1
4

1
16

1
16

1
4

14 0 1
16

1
16 0 0 1

16
1
16

1
4

1
4

1
16

1
16 0 0 1

16
1
16 0

15 0 1
4

1
16

1
16 0 0 1

16
1
16

1
16

1
16 0 0 1

16
1
16

1
4 0

Table 5.10: Linear profile of the S-box S1 of Lucifer. Row and column
indices are linear forms represented by integers.
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τ1 = −1
4 , and λ2 = 1

16 , p2 = 5
8 , τ2 = 1

4 . Hence τ = − 1
16 and p = 15

32 . The

target bit is α(k(0))+β(k(1))+γ(k(2))+1 = 1, and the success probability is
1− p = 17

32 . The mean value of p over all keys is 15
32 for this β in coincidence

with the key-specific value.
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Figure 5.7: Example C

5.5 Linear Paths

Consider the general case where the round map f: Fn
2 ×Fq

2 −→ Fn
2 is iterated

for r rounds with round keys k
(i) ∈ Fq

2, in analogy with Figure 5.5. Let
(αi, βi, κi) be a linear relation for round i. Let αi = βi−1 for i = 2, . . . , r.
Set β0 := α1. Then the chain β = (β0, . . . , βr) is called a linear path for
the cipher.

For a simplified scenario, let’s call it example C as a generalization of
example B, again we’ll derive a useful result on the probabilities. So we con-
sider the special but relevant case where the round keys enter the algorithm
in an additive way, see Figure 5.7.

Given a key k = (k(0), . . . , k(r)) ∈ Fn·(r+1)
2 we compose the encryption

function F successively with the intermediate results

a
(0) = a | b(0) = a

(0) + k
(0) | a(1) = f1(b

(0)) | b(1) = a
(1) + k

(1) | . . .

b
(r−1) = a

(r−1) + k
(r−1) | a(r) = fr(b

(r−1)) | b(r) = a
(r) + k

(r) = c =: F (a, k)

The general formula is

b
(i) = a

(i) + k
(i) for i = 0, . . . , r,

a
(0) = a and a

(i) = fi(b
(i−1)) for i = 1, . . . , r.

We consider a linear relation

κ(k)
p
≈ β0(a) + βr(c),

where
κ(k) = β0(k

(0)) + · · ·+ βr(k
(r)),

and p is the probability

pF,β(k) =
1

2n
·#{a ∈ Fn

2 |
r�

i=0

βi(k
(i)) = β0(a) + βr(F (a, k))}
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that depends on the key k. Denote the mean value of these probabilities over
all k by qr. It depends on (f1, . . . , fr) and on the linear path β:

qr :=
1

2n·(r+2)
·#{a, k(0), . . . , k(r) ∈ Fn

2 |
r�

i=0

βi(k
(i)) = β0(a) + βr(F (a, k))}.

Substitute F (a, k) = a
(r) + k

(r) = fr(b(r−1)) + k
(r) into the defining equa-

tion of this set. Then βr(k(r)) cancels out, and we see that the count is
independent of k(r). The remaining formula is

qr =
1

2n·(r+1)
·#{a, k(0), . . . , k(r−1) ∈ Fn

2 |
r−1�

i=0

βi(k
(i)) = β0(a)+βr(fr(b

(r−1)))}.

In this formula the probability pr is hidden: We have

βr(fr(b
(r−1))) =

�
βr−1(b(r−1)) with probability pr,

1 + βr−1(b(r−1)) with probability 1− pr,

where “with probability pr” means: in pr · 2n·(r+1) of the 2n·(r+1) possible
cases. Hence

qr =
1

2n·(r+1)
·
�
pr ·#{a, k(0), . . . , k(r−1) |

r−1�

i=0

βi(k
(i)) = β0(a) + βr−1(b

(r−1))}

+(1− pr) ·#{a, k(0), . . . , k(r−1) |
r−1�

i=0

βi(k
(i)) = 1 + β0(a) + βr−1(b

(r−1))}
�

= pr · qr−1 + (1− pr) · (1− qr−1),

for the final counts exactly correspond to the probabilities for r− 1 rounds.
This is the perfect entry to a proof by induction, showing:

Proposition 7 (Matsuis Piling-Up Theorem) In example C the mean

value pF,β of the probabilities pF,β(k) over all keys k ∈ Fn(r+1)
2 fulfills

2pF,β − 1 =
r�

i=1

(2pi − 1).

In particular the I/O-correlations and the potentials are multiplicative.

Proof. The induction starts with the trivial case r = 1 (or with the case
r = 2 that we proved in Proposition 6).

From the previous consideration we conclude

2qr − 1 = 4prqr−1 − 2pr − 2qr−1 + 1 = (2pr − 1)(2qr−1 − 1),
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and the assertion follows by induction on r. ✸

For real ciphers in general the round keys are not independent but derive
from a “master key” by a specific key schedule. In practice however this effect
is negligeable. The method of linear cryptanalysis follows the rule of thumb:

Along a linear path the potentials are multiplicative.

Proposition 7, although valid only in a special situation and somewhat
imprecise for real life ciphers, gives a good impression of how the crypt-
analytic advantage (represented by the potential) of linear approximations
decreases with an increasing number of rounds; note that the product of
numbers smaller than 1 (and greater than 0) decreases with the number of
factors. This means that the security of a cipher against linear cryptanalysis
is the better, the more rounds it involves.
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Figure 5.8: Example D, parallel arrangement of m S-boxes S1, . . . , Sm of
width q

5.6 Parallel Arrangement of S-Boxes

The round map of an SP-network usually involves several “small” S-boxes
in a parallel arrangement. On order to analyze the effect of this construction
we again consider a simple example D, see Figure 5.8.

Proposition 8 Let S1, . . . ,Sm : Fq
2 −→ Fq

2 be Boolean maps, n = m · q, and
f , the Boolean map

f : Fn
2 −→ Fn

2 , f(x1, . . . , xm) = (S1(x1), . . . ,Sm(xm)) for x1, . . . , xm ∈ Fq
2.

Let (αi, βi) for i = 1, . . . ,m be linear relations for Si with probabilities pi.

Let

α(x1, . . . , xm) = α1(x1) + · · ·+ αm(xm)

β(y1, . . . , ym) = β1(y1) + · · ·+ βm(ym)

Then (α, β) is a linear relation for f with probability p given by

2p− 1 = (2p1 − 1) · · · (2pm − 1).

Proof. We consider the case m = 2 only; the general case follows by a
simple induction as for Proposition 7.

In the case m = 2 we have β ◦ f(x1, x2) = α(x1, x2) if and only if
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• either β1 ◦ S1(x1) = α1(x1) and β2 ◦ S2(x2) = α2(x2)

• or β1 ◦ S1(x1) = 1 + α1(x1) and β2 ◦ S2(x2) = 1 + α2(x2).

Hence p = p1p2 + (1− p1)(1− p2), and the assertion follows as for Proposi-
tion 6. ✸

As a consequence the I/O-correlations and the potentials are multi-
plicative also for a parallel arrangement. At first view this might seem a
strengthening of the security, but this appearance is deceiving! We cannot
detain the attacker from choosing all linear forms as zeroes except the “best”
one. And the zero forms have probabilities pi = 1 and potentials 1. Hence
the attacker picks a pair (αj , βj) with maximum potential, and then sets
α(x1, . . . , xm) = αj(xj) and β(y1, . . . , ym) = βj(yj). In a certain sense she
turns the other S-boxes, except Sj , “inactive”. Then the complete linear
relation inherits exactly the probability and the potential of the “active”
S-box Sj .

Example

Once again we consider a concrete example with m = 2 and q = 4, hence
n = 8. As S-boxes we take the ones from Lucifer, S0 at the left, and
S1 at the right, see Figure 5.8. For the left S-box S0 we take the linear
relation with α =̂ 0001 and β =̂ 1101, that we know has probability p1 =

7
8 ,

for the right S-Box S1 we take the relation (0, 0) with probability 1. The
combined linear relation for f = (S0, S1) then also has probability p = 7

8
and potential λ = 9

16 , and we know that linear cryptanalysis with N = 5
pairs of plaintext and ciphertext has 95% success probability. We decompose
all relevant bitblocks into bits:

plaintext: a = (a0, . . . , a7) ∈ F8
2,

ciphertext: c = (c0, . . . , c7) ∈ F8
2,

key: k = (k0, . . . , k15) ∈ F16
2 where (k0, . . . , k7) serves as “initial key” (cor-

responding to k
(0) in Figure 5.8), and (k8, . . . , k15) as “final key” (cor-

responding to k
(1)).

Then α(a) = a3, β(c) = c0 + c1 + c3, and κ(k) = α(k0, . . . , k7) +
β(k8, . . . , k15) = k3 + k8 + k9 + k11. Hence the target relation is

k3 + k8 + k9 + k11 = a3 + c0 + c1 + c3.

We use the key k = 1001011000101110 whose relevant bit is k3 + k8 +
k9 + k11 = 1, and generate five random pairs of plaintext and ciphertext,
see Table 5.11. We see that for this example Matsui’s algorithm guesses the
relevant key bit correctly with no dissentient.
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a a3 c c0 + c1 + c3 estimate
00011110 1 00000010 0 1
00101100 0 00111111 1 1
10110010 1 01011101 0 1
10110100 1 01010000 0 1
10110101 1 01010111 0 1

Table 5.11: Calculations for example D
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index i 0 1 2 3 4 5 6 7
P(i) 2 5 4 0 3 1 7 6

Table 5.12: Lucifer’s permutation P

5.7 Mini-Lucifer

As a slightly more complex example we define a toy cipher “Mini-Lucifer”
that employs the S-boxes and a permutation of the true Lucifer. Here is
the construction, see Figure 5.9:

• Before and after each round map we add a partial key. We use two
keys k(0) and k

(1) in alternating order. They consist of the first or last
8 bits of the 16 bit master key. In particular for r ≥ 3 the round keys
are not independent.

• The round function consists of a parallel arrangement of the two S-
boxes, as in the example of Section 5.6, followed by the permutation
P.

• The permutation P maps a single byte (octet) to itself as defined in
Table 5.12. As usual for SP-networks we omit it in the last round.

Up to now we ignored permutations in linear cryptanalysis. How do they
influence the analysis?

Well, let f be a Boolean map, (α, β), a linear relation for f with proba-
bility p, and P, a permutation of the range of f . Then we set β� = β ◦ P−1,
a linear form, and immediately see that (α, β�) is a linear relation for P ◦ f
with the same probability p:

p =
1

2n
·#{x ∈ Fn

2 | β(f(x)) = α(x)}

=
1

2n
·#{x ∈ Fn

2 | (β ◦ P−1)(P ◦ f(x)) = α(x)}.

The assignment β �→ β
� simply permutes the linear forms β. In other words:

appending a permutation to f permutes the columns of the approximation
table, of the correlation matrix, and of the linear profile.

Inserting a permutation into the round function of an SP-

network affects linear cryptanalysis in a marginal way only.

We’ll verify this assertion for a concrete example, and see how “marginal”
the effect really is. By the way the same argument holds if we replace the
permutation by a more general bijective linear map L: also β �→ β ◦ L−1

permutes the linear forms.
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Figure 5.9: Mini-Lucifer
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Figure 5.10: Mini-Lucifer with 2 rounds

Example

The concrete example is specified in Figure 5.10. The relation 1, namely

β(b�)
p1≈ α(a+ k

(0))

holds with probability p1 =
7
8 between α =̂ 0001 and β =̂ 1101. The permu-

tation P transforms it to the relation 2, namely

β ◦ P−1(a�)
p1≈ α(a+ k

(0)) = α(a) + α(k(0)).

But P also distributes the bits from the left-hand side of the relation over
the two S-boxes of the next round. So the cryptanalytic trick of letting only
one S-box per round become active works only for the first round.

Inserting a permutation into the round function of an SP-

network has the effect that linear cryptanalysis has to deal with

more than one parallel S-box becoming active in later rounds.

We’ll soon see in the example that this effect reduces the potential. The
relevant bits a�3, a

�
4, a

�
5, or, after adding the key, a�3 + k11, a�4 + k12, a�5 + k13,

split as input to the left S-box S0 of the second round (namely a
�
3 + k11),

and to the right one, S1 (namely a
�
4 + k12 and a

�
5 + k13).
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On the left-hand side, for S0, the linear form for the input is β�
1 =̂ 0001

=̂ 1, on the right-hand side, for S1, we have β�
2 =̂ 1100 =̂ 12. From the linear

profile of S0 we see that the maximum possible potential for β
�
1 is λ

�
2 = 9

16
with p

�
2 =

7
8 , assumed for γ1 =̂ 13 =̂ 1101.

For β�
2 the maximum potential is λ��

2 = 1
4 . Having two choices we choose

γ2 =̂ 6 =̂ 0110 with probability p
��
2 = 3

4 . The combined linear relation with
β
�(x) = β

�
1(x0, . . . , x3) + β

�
2(x4, . . . , x7) and, on the output side, γ(y) =

γ1(y0, . . . , y3) + γ2(y4, . . . , y7) has I/O-correlation

2p2 − 1 = (2p�2 − 1)(2p��2 − 1) =
3

8

by Proposition 8, hence p2 =
11
16 , λ2 =

9
64 .

The relation between β
�(a�+k

(1)) and γ(b��) is labelled by 3 in Figure 5.10,
namely

γ(b��)
p2≈ β

�(a� + k
(1)) = β

�(a�) + β
�(k(1)).

Combining 2 and 3 (and cancelling k3) yields the relation

γ(c) + γ(k(0)) = γ(c+ k
(0)) = γ(b��)

p
≈ α(a) + α(k(0)) + β

�(k(1)),

labelled by 4 in the figure, whose probability p is given by Proposition 7
since the two round keys are independent. We get

2p− 1 = (2p1 − 1)(2p2 − 1) =
3

4
· 3
8
=

9

32
,

whence p = 41
64 . The corresponding potential is λ = 81

1024 .
The number N of needed plaintexts for a 95% success probability follows

from the approximation in Table 5.4:

N =
3

λ
=

1024

27
≈ 38.

Note that there are only 256 possible plaintexts at all.
In the example the success probability derived from the product of the

I/O-correlations (or of the potentials) of all active S-boxes. We had luck
since in this example the involved partial keys were independent. In the
general case this is not granted. Nevertheless the cryptanalyst relies on the
empirical evidence and ignores the dependencies, trusting the rule of thumb:

The success probability of linear cryptanalysis is (approximately)

determined by the multiplicativity of the I/O-correlations (or of

the potentials) of all the active S-boxes along the considered path

(including all of its ramifications).
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The restriction in this rule of thumb concerns the success probability of
linear cryptanalysis but not the course of action. The cryptanalyst is right
if and only if she succeeds, no matter whether her method had an exact
mathematical foundation for all details.

Now we obtained a single bit. So what?
Of course we may find more relations, and detect more key bits. However

we have to deal with smaller and smaller potentials, and face an increasing
danger of hitting a case where the probability for the concrete (target) key
lies on the “wrong” side of 1

2 . Moreover we run into a multiple test situation
reusing the same known plaintexts several times. This enforces an unpleasant
adjustment of the success probabilities.
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5.8 Systematic Search for Linear Relations

The search for useful linear relations over several rounds has no general
elegant solution. The published examples often use linear paths that more
or less appear from nowhere, and it is not evident that they are the best
ones.

Let n be the block length of the cipher, and r, the number of rounds.
Then for each round the choice is between 2n linear formes, making a total of
2n(r+1) choices. This number also specifies the cost of determining the best
relation by complete search. There are some simplifications that however
don’t reduce the order of magnitude of the cost:

• In the first round consider only linear forms that activate only one
S-box.

• Then choose the next linear form such that it activates the least possi-
ble number of S-boxes of the next round (with high, but not necessarily
maximum potential).

• If one of the relations in a linear path has probability 1
2 , or I/O-

correlation 0, then the total I/O-correlation is 0 by multiplicativity,
and this path may be neglected. The same is true componentwise if
the linear forms split among the S-boxes of the respective round. How-
ever this negligence could introduce errors since we deal with average
probabilities not knowing the key-dependent ones.

For our 2-round example with Mini-Lucifer the systematic search is fea-
sible by pencil and paper or by a Sage or Python script. Our example has
the following characteristics:

• α = (α1, α2) with α1 =̂ 1 =̂ 0001 and α2 =̂ 0 =̂ 0000 (α1 was formerly
denoted α. Now for uniformity we make both components of all linear
forms explicit and index them by 1 and 2.)

• β = (β1, β2) with β1 =̂ 13 =̂ 1101 and β2 =̂ 0 =̂ 0000

• β
� = (β�

1, β
�
2) with β

�
1 =̂ 1 =̂ 0001, β�

2 =̂ 12 =̂ 1100

• γ = (γ1, γ2) with γ1 =̂ 13 =̂ 1101, γ2 =̂ 6 =̂ 0110

• τ1 =
3
4 , τ

�
2 =

3
4 , τ

��
2 = 1

2 , τ2 =
3
8 , τ = 9

32 , p = 41
64 = 0, 640625

• c0 + c1 + c3 + c5 + c6
p
≈ a3 + k0 + k1 + k5 + k6 + k11 + k12 + k13

An alternative choice of γ2 is γ2 =̂ 14 =̂ 1110; this yields a linear path with
the characteristics

• α =̂ (1, 0), β =̂ (13, 0), β� =̂ (1, 12), γ =̂ (13, 14)
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– τ = − 9
32 , p = 23

64 = 0, 359375

– c0+c1+c3+c4+c5+c6
p
≈ a3+k0+k1+k4+k5+k6+k11+k12+k13

The systematic search finds two even “better” linear paths, characterized
by

• α =̂ (8, 0), β =̂ (8, 0), β� =̂ (1, 0), γ =̂ (13, 0)

– τ = −3
8 , p = 5

16 = 0, 3125

– c0 + c1 + c3
p
≈ a0 + k1 + k3 + k11

• α =̂ (15, 0), β =̂ (8, 0), β� =̂ (1, 0), γ =̂ (13, 0)

– τ = −3
8 , p = 5

16 = 0, 3125

– c0 + c1 + c3
p
≈ a0 + a1 + a2 + a3 + k2 + k11

that do not completely exhaust the potential of the single S-boxes but on
the other hand activate only one S-box of the second round, and thereby
show the larger potential λ = 9

64 . Thus we get a 95% success probability
with only

N =
3

λ
=

64

3
≈ 21

known plaintexts for determining one bit.
The designer of a cipher should take care that in each round the active

bits fan out over as many S-boxes as possible. The inventors of AES, Daemen
and Rijmen call this design approach “wide-trail strategy”. The design of
AES strengthens this effect by involving a linear map instead of a mere
permutation, thereby replacing the “P” of an SP-network by an “L”.

Figure 5.11 shows an example of a linear path with all its ramifications.

Example (Continued)

For an illustration of the procedure we generate 25 pairs of known plaintexts
and corresponding ciphertexts using the key k =̂ 1001011000101110. The
target key bits are

b0 = k0 + k1 + k5 + k6 + k11 + k12 + k13

b1 = k0 + k1 + k4 + k5 + k6 + k11 + k12 + k13

b2 = k1 + k3 + k11

b3 = k2 + k11

that we know in cheat mode are b0 = 1, b1 = 1, b2 = 1, b3 = 0. We use all
four good relations at the same time without fearing the possible reduction
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of the success probability. All of these relations assert the probable equality
of the bits

b0
p
≈ c0 + c1 + c3 + c5 + c6 + a3

b1
p
≈ 1 + c0 + c1 + c3 + c4 + c5 + c6 + a3

b2
p
≈ 1 + c0 + c1 + c3 + a0

b3
p
≈ 1 + c0 + c1 + c3 + a0 + a1 + a2 + a3

each with its individual corresponding probability p. For the last three of
these sums we have to take the complementary bits since the corresponding
I/O-correlations are negative (the probabilities are <

1
2). This is done by

adding the bit 1.
Table 5.13 shows the results for these plaintext-ciphertext pairs. As we

see our guess is correct for all four bits.
As a consequence of our analysis we get a system of four linear equations

for the 16 unknown key bits:

1 = k0 + k1 + k5 + k6 + k11 + k12 + k13

1 = k0 + k1 + k4 + k5 + k6 + k11 + k12 + k13

1 = k1 + k3 + k11

0 = k2 + k11

that allow us to reduce the number of keys for an exhaustion from 216 =
65536 to 212 = 4096. Note the immediate simplifications of the system:
k11 = k2 from the last equation, and k4 = 0 from the first two.

As a cross-check we run some more simulations. The next four yield

• 15, 16, 19, 16

• 15, 16, 13, 17

• 15, 20, 19, 17

• 19, 19, 20, 18

correct guesses, and so on. Only run number 10 produced a wrong bit (the
second one):

• 17, 12, 14, 17

then again run number 25. Thus empirical evidence suggests a success prob-
ability of at least 90% in this scenario.
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nr plaintext ciphertext b0 b1 b2 b3

1 00001111 00001010 1 1 1 1
2 00010001 11001110 1 1 1 0
3 00010110 11001001 1 1 1 0
4 00111101 10110010 0 1 1 1
5 01000000 11100111 0 1 1 0
6 01001000 01010111 0 1 1 0
7 01001100 11101010 1 1 1 0
8 01001101 01011100 1 1 1 0
9 01001111 01111010 1 1 1 0
10 01100111 00110011 0 1 0 0
11 10000011 11110100 0 1 1 1
12 10010011 01101011 1 1 1 0
13 10011000 01100111 0 1 1 0
14 10101011 11011001 1 1 1 0
15 10110001 11001000 1 1 0 0
16 10110010 10100100 1 0 1 1
17 10110110 11000100 0 1 0 0
18 10111001 11000001 1 0 0 0
19 10111101 10111111 1 1 0 0
20 11000100 01001111 1 1 1 0
21 11000111 00111111 1 1 1 0
22 11011111 11011010 1 1 1 1
23 11100000 11101110 0 0 0 0
24 11100100 01110011 1 0 0 0
25 11110101 11110101 1 0 1 0

true bit: 1 1 1 0
correct guesses: 17 20 18 20

Table 5.13: Plaintext/ciphertext pairs for Mini-Lucifer
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Analysis over Four Rounds

Now let’s explore how an increasing number of rounds impedes linear crypt-
analysis.

Consider the toy cipher Mini-Lucifer over four rounds. Searching an op-
timal linear path over four rounds is somewhat expensive, so we content
ourselves with extending the best example from the two round case, the
third one, over two additional rounds. Slightly adapting the notation we
get:

• for the first round β0 = α =̂ (8, 0) and β1 =̂ (8, 0) (the “old” β) with
τ1 = −1

2 ,

• for the second round (applying the permutation P to β1) β
�
1 =̂ (1, 0)

and β2 =̂ (13, 0) (the “old” γ) with τ2 =
3
4 ,

• for the third round β
�
2 =̂ (1, 12) and β3 =̂ (13, 6) with τ3 =

3
8 ,

• for the fourth round β
�
3 =̂ (5, 13) and β = β4 =̂ (3, 12) (the “new” β)

with τ4 = −1
4 .

Figure 5.11 shows this linear path with its ramifications.
The repeated round keys we used are not independent. Therefore multi-

plicativity of I/O-correlations is justified by the rule of thumb only yielding
an approximate value for the I/O-correlation of the linear relation (α, β)
over all of the four rounds:

τ ≈ 1

2
· 3
4
· 3
8
· 1
4
=

9

256
≈ 0, 035.

The other characteristics are

p ≈ 265

512
≈ 0, 518, λ ≈ 81

65536
≈ 0, 0012, N ≈ 65536

27
≈ 2427,

the last one being the number of needed known plaintexts for a 95% success
probability.

Comparing this with the cost of exhaustion over all 65536 possible keys
we seem to have gained an advantage. However there are only 256 different
possible plaintexts all together. So linear cryptanalysis completely lost its
sense by the increased number of rounds.
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Figure 5.11: A linear path with ramifications (“trail”). For S the linear form
in the range is chosen (for high potential), indicated by a red dot. For P the
linear form in the range results by applying the permutation.
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5.9 The Idea of Differential Cryptanalysis

Differential cryptanalysis has some similarities with linear cryptanalysis but
instead of linear relations it uses approximations of Boolean maps by linear
structures (see Appendix C). The idea is to consider a difference vector
before applying a round map, and its possible values thereafter. Sequences of
difference vectors that fit together over all the rounds of an iterated bitblock
cipher are called a differential path or a characteristic [Biham/Shamir
1990]. The potential of a differential path is approximated by the product
of the potentials of the single steps. A differential hull or a differential
[Lai/Massey/Murphy 1991] is the collection of all paths between a given
input difference (of the entire cipher) and a given output difference. The
success of differential cryptanalysis relies on an analoguous rule of thumb:

Along a differential path the differential potentials are multiplica-

tive. The potential of a differential hull is approximated by the

potential of a dominant differential path.

This potential reflects the probability for getting an equation for some key
bits.


